1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
#!/usr/bin/env python3
#
#
# By Daniel Bates, with minor adaptations by Alexander Pruss
#
from mc import *
#import pygame.image # comment this out if not using images - it's slow to import. If you uncomment, uncomment the image reference below.
import random
import server
# TODO: use numpy matrices/vectors instead of my own ones.
class coordinate3d:
"""Class used to represent a point in 3D space."""
def __init__(self,x,y,z):
self.x = x
self.y = y
self.z = z
def __add__(self, other):
return coordinate3d(self.x+other.x, self.y+other.y, self.z+other.z)
class transformation:
"""Representation of homogeneous matrices used to apply transformations to
coordinates - using a 4x4 matrix allows shifts as well as scales/rotations.
Transformations can be combined by multiplying them together."""
def __init__(self, matrix):
self.matrix = matrix
def __mul__(self, other):
if isinstance(other, transformation):
return self.compose(other)
elif isinstance(other, coordinate3d):
return self.apply(other)
else:
print "Can't multiply transformation by {0}".format(type(other))
def compose(self, other):
"""Compose this transformation with another, returning a new transformation."""
newmatrix = [[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]
for i in range(4):
for j in range(4):
for k in range(4):
newmatrix[i][k] += self.matrix[i][j]*other.matrix[j][k]
return transformation(newmatrix)
def apply(self, point):
"""Apply this transformation to a coordinate, returning a new coordinate."""
return coordinate3d(
self.matrix[0][0]*point.x + self.matrix[0][1]*point.y + self.matrix[0][2]*point.z + self.matrix[0][3],
self.matrix[1][0]*point.x + self.matrix[1][1]*point.y + self.matrix[1][2]*point.z + self.matrix[1][3],
self.matrix[2][0]*point.x + self.matrix[2][1]*point.y + self.matrix[2][2]*point.z + self.matrix[2][3])
## Shape functions
def cuboid(dx,dy,dz):
for x in range(dx):
for y in range(dy):
for z in range(dz):
yield coordinate3d(x,y,z)
def floor(dx,dz):
return cuboid(dx,1,dz)
def hollowcuboid(dx,dy,dz):
# Iterating through the six faces would be more efficient, but I'm lazy.
for x in range(dx):
for y in range(dy):
for z in range(dz):
if x==0 or x==(dx-1) or y==0 or y==(dy-1) or z==0 or z==(dz-1):
yield coordinate3d(x,y,z)
def sphere(r):
for x in range(-r,r):
for y in range(-r,r):
for z in range(-r,r):
if x**2 + y**2 + z**2 < r**2:
yield coordinate3d(x,y,z)
def pyramid(h):
for level in range(h):
for point in floor(2*(h-level),2*(h-level)):
yield point + coordinate3d(level,level,level)
def cylinder(r,h):
for x in range(-int(r),int(r)):
for z in range(-int(r),int(r)):
if x**2 + z**2 < r**2:
for y in range(h):
yield coordinate3d(x,y,z)
def cone(r,h):
for level in range(h):
for point in cylinder((float(h-level)/h)*r,1):
yield point + coordinate3d(0,level,0)
def line(x0,y0,z0,x1,y1,z1):
"""Draw a line using a 3D adaptation of Bressenham's algorithm.
http://www.cobrabytes.com/index.php?topic=1150.0"""
# Check for steep xy line
swap_xy = abs(y1-y0) > abs(x1-x0)
if swap_xy:
x0,y0 = y0,x0
x1,y1 = y1,x1
# Check for steep xz line
swap_xz = abs(z1-z0) > abs(x1-x0)
if swap_xz:
x0,z0 = z0,x0
x1,z1 = z1,x1
# Lengths in each direction
delta_x = abs(x1-x0)
delta_y = abs(y1-y0)
delta_z = abs(z1-z0)
# Drift tells us when to take a step in a direction
drift_xy = delta_x/2
drift_xz = delta_x/2
# Direction of line
step_x = 1
if x0 > x1: step_x = -1
step_y = 1
if y0 > y1: step_y = -1
step_z = 1
if z0 > z1: step_z = -1
# Starting point
y = y0
z = z0
for x in range(x0,x1,step_x):
cx,cy,cz = x,y,z
# Perform any necessary unswaps
if swap_xz: cx,cz = cz,cx
if swap_xy: cx,cy = cy,cx
# Place a block
yield coordinate3d(cx,cy,cz)
# Update progress
drift_xy -= delta_y
drift_xz -= delta_z
# Step in y direction
if drift_xy < 0:
y += step_y
drift_xy += delta_x
# Step in z direction
if drift_xz < 0:
z += step_z
drift_xz += delta_x
# Final block
yield coordinate3d(x1,y1,z1)
def text(data):
# Not implemented yet - create an image from the text, and search for coloured
# pixels.
pass
def mengersponge(depth):
"""3D cube-based fractal."""
if depth == 0:
yield coordinate3d(0,0,0)
else:
scale = 3**(depth-1) # size of each sub-cube
for x in range(3):
for y in range(3):
for z in range(3):
if not(x==1 and y==1 or x==1 and z==1 or y==1 and z==1):
for block in mengersponge(depth-1):
yield block + coordinate3d(x*scale,y*scale,z*scale)
def building(width, height, depth):
"""All dimensions are specified in the number of windows."""
for point in hollowcuboid(width*5-1, height*5+1, depth*5-1):
# Shift the building down by 1 so the floor is the right height.
yield point + coordinate3d(0,-1,0)
def revolvingdoor():
# A couple of shifts we need to get the doors to cross.
# This does work, but it was a bit too jerky to show off in the video.
xshift = shift(-2,0,0)
zshift = shift(0,0,-2)
for point in cuboid(1,3,5):
yield zshift*point
for point in cuboid(5,3,1):
yield xshift*point
def maze(width, depth):
"""Credit to autophil! http://jsfiddle.net/q7DSY/4/"""
# Ensure width and depth are odd so we get outer walls
if width%2==0: width += 1
if depth%2==0: depth += 1
maze.location = (1,1)
history = []
# Initialise 2d grid: 0 = wall; 1 = passageway.
grid = [depth*[0] for x in range(width)]
grid[maze.location[0]][maze.location[1]] = 1
history.append(maze.location)
def randomiseDirections():
directions = [(0,1),(1,0),(0,-1),(-1,0)]
random.shuffle(directions)
return directions
# Work out where to go next - don't want to leave the maze or go somewhere
# we've already been.
def nextDirection():
for direction in randomiseDirections():
x = maze.location[0] + 2*direction[0]
z = maze.location[1] + 2*direction[1]
if 0<x<width and 0<z<depth and grid[x][z]==0:
return direction
# Dig two squares or backtrack
def dig():
direction = nextDirection()
if direction:
for i in range(2):
maze.location = (maze.location[0] + direction[0], maze.location[1] + direction[1])
grid[maze.location[0]][maze.location[1]] = 1
history.append(maze.location)
return True
elif history:
maze.location = history.pop()
return maze.location
else:
return None
# Keep digging out the maze until we can't dig any more.
while dig():
pass
# Finally, start returning the blocks to draw.
for x in range(width):
for z in range(depth):
if grid[x][z] == 0:
yield coordinate3d(x,0,z)
yield coordinate3d(x,1,z)
yield coordinate3d(x,2,z)
arrow = [coordinate3d(0,0,0), coordinate3d(0,1,0), coordinate3d(0,2,0),
coordinate3d(0,3,0), coordinate3d(0,4,0), coordinate3d(-2,2,0),
coordinate3d(-1,3,0), coordinate3d(1,3,0), coordinate3d(2,2,0)]
## Fill functions
def solid(material):
"""All one material."""
def f(point):
return material
return f
def randomfill(materials):
"""Choose a random material from those listed. A material may be repeated to
increase its chance of being chosen."""
def f(point):
return random.choice(materials)
return f
def chequers(material1, material2):
"""Alternate between materials (in all directions)."""
def f(point):
if (point.x+point.y+point.z) % 2 == 0:
return material1
else:
return material2
return f
def officeblock(wallmaterial):
"""Create a repeating pattern of 2x2 windows."""
def f(point):
goodx = (point.x%5 == 1) or (point.x%5 == 2)
goody = (point.y%5 == 1) or (point.y%5 == 2)
goodz = (point.z%5 == 1) or (point.z%5 == 2)
if (goodx and goody) or (goodz and goody):
return GLASS
else:
return wallmaterial
return f
def image(path, w, h):
"""Scale the image to the given size."""
img = pygame.image.load(path)
width = img.get_width()
height = img.get_height()
scale_x = width/w
scale_y = height/h
def f(point):
x = int(scale_x/2) + scale_x*point.x
y = height - int(scale_y/2) - scale_y*point.y
material = None
# Anti-aliasing means that some pixels are a mix of colours.
# Keep trying until we get one we can deal with.
while material == None:
r,g,b,a = img.get_at((x,y))
material = tomaterial(r,g,b)
x += 1
return material
return f
def tomaterial(r,g,b):
# Just a quick hack for now - could of course add more colours
# and a way of finding the nearest supported colour.
if (r,g,b) == (255,255,255): # white
return AIR
elif (r,g,b) == (0,0,0): # black
return OBSIDIAN
elif (r,g,b) == (188,17,66): # pink
return REDSTONE_ORE
elif (r,g,b) == (117,169,40): # green
return MELON
else:
return None
## Transformation functions
def identity():
return transformation([[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]])
def shift(x,y,z):
"""Move by a given offset."""
return transformation([[1,0,0,x],
[0,1,0,y],
[0,0,1,z],
[0,0,0,1]])
def rotationx(angle):
"""Rotate about the x axis by the given number of degrees."""
angle = radians(angle)
return transformation([[1, 0, 0, 0],
[0, cos(angle), sin(angle), 0],
[0, -sin(angle), cos(angle), 0],
[0, 0, 0, 1]])
def rotationy(angle):
"""Rotate about the y axis by the given number of degrees."""
angle = radians(angle)
return transformation([[ cos(angle), 0, sin(angle), 0],
[ 0, 1, 0, 0],
[-sin(angle), 0, cos(angle), 0],
[ 0, 0, 0, 1]])
def rotationz(angle):
"""Rotate about the z axis by the given number of degrees."""
angle = radians(angle)
return transformation([[ cos(angle), sin(angle), 0, 0],
[-sin(angle), cos(angle), 0, 0],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1]])
## Other functions
def fillshape(shape, transform=identity(), material=None,fillfunc=None):
"""Build a shape in the Minecraft world.
shape must be iterable: it can be a list, tuple, etc., or a generator function.
transform is of type transformation - multiple transformations can be combined
by multiplying them together.
material or fillfunc specify which material(s) to build the shape out of."""
if fillfunc == None:
fillfunc = solid(material)
for point in shape:
point2 = transform * point
mc.setBlock(int(point2.x), int(point2.y), int(point2.z), fillfunc(point))
def clear(shape, transform=identity()):
"""Remove any non-air blocks in the given shape."""
fillshape(shape,transform,AIR)
def main():
global mc
"""Function used to build my demo world. Extra clearing may be required for
hilly worlds."""
mc = Minecraft()
# Create a large empty space with a neat, grassy floor. Takes a long time!
clear(cuboid(100,10,120))
fillshape(floor(100,120), shift(0,-1,0), material=GRASS)
# Introduce basic shapes/transformations/fill functions.
fillshape(arrow, material=STONE)
fillshape(arrow, shift(6,0,0), STONE)
fillshape(arrow, shift(12,0,0)*rotationx(90), STONE)
fillshape(arrow, shift(18,0,0)*rotationx(45), STONE)
fillshape(arrow, shift(24,0,0), fillfunc=chequers(WOOD, STONE))
# Introduce generator functions.
fillshape(cuboid(4,4,4), shift(30,0,0), STONE)
fillshape(cuboid(3,8,2), shift(36,0,0), STONE)
# Show other simple shapes.
fillshape(sphere(5), shift(45,5,0), STONE)
fillshape(pyramid(5), shift(50,0,0), STONE)
fillshape(cylinder(5,4), shift(65,0,0), STONE)
fillshape(cone(5,5), shift(75,0,0), STONE)
# Show some fill functions.
fillshape(cuboid(4,4,4), shift(80,0,5), fillfunc=chequers(GOLD_BLOCK, IRON_BLOCK))
fillshape(pyramid(5), shift(80,0,10), fillfunc=randomfill([SAND, SANDSTONE]))
fillshape(hollowcuboid(4,6,4), shift(80,0,22), WOOD)
fillshape(building(2,6,2), shift(80,0,30), fillfunc=officeblock(COBBLESTONE))
# Line drawing.
fillshape(line(80,0,40,85,5,45), material=WOOL)
fillshape(line(80,0,40,80,2,50), material=WOOL)
fillshape(line(80,2,50,85,5,45), material=WOOL)
# Fun lava sphere.
fillshape(sphere(10), shift(80,10,60), GLASS)
fillshape(sphere(9), shift(80,10,60), LAVA)
# Fractals - far easier to code than to build by hand.
fillshape(mengersponge(0), shift(70,0,75), IRON_BLOCK)
fillshape(mengersponge(1), shift(66,0,75), IRON_BLOCK)
fillshape(mengersponge(2), shift(56,0,75), IRON_BLOCK)
fillshape(mengersponge(3), shift(28,0,75), IRON_BLOCK)
# Maze.
fillshape(maze(25,25), shift(0,0,75), STONE)
# Picture - can use the same technique to draw text.
# fillshape(cuboid(24,30,1), shift(0,0,30), fillfunc=image("pi.png",24,30))
if __name__ == "__main__":
main()
|