1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
#
# Code under the MIT license by Alexander Pruss
#
import mcpi.minecraft as minecraft
import mcpi.block as block
from mcpi.block import *
from mcpi.entity import *
from math import *
from numbers import Number,Integral
class V3(tuple):
def __new__(cls,*args):
if len(args) == 1:
return tuple.__new__(cls,tuple(*args))
else:
return tuple.__new__(cls,args)
def dot(self,other):
return self[0]*other[0]+self[1]*other[1]+self[2]*other[2]
@property
def x(self):
return self[0]
@property
def y(self):
return self[1]
@property
def z(self):
return self[2]
def __add__(self,other):
other = tuple(other)
return V3(self[0]+other[0],self[1]+other[1],self[2]+other[2])
def __radd__(self,other):
other = tuple(other)
return V3(self[0]+other[0],self[1]+other[1],self[2]+other[2])
def __sub__(self,other):
other = tuple(other)
return V3(self[0]-other[0],self[1]-other[1],self[2]-other[2])
def __rsub__(self,other):
other = tuple(other)
return V3(other[0]-self[0],other[1]-self[1],other[2]-self[2])
def __neg__(self):
return V3(-self[0],-self[1],-self[2])
def __pos__(self):
return self
def len2(self):
return self[0]*self[0]+self[1]*self[1]+self[2]*self[2]
def __abs__(self):
return sqrt(self.len2())
def __div__(self,other):
if isinstance(other,Number):
y = float(other)
return V3(self[0]/y,self[1]/y,self[2]/y)
else:
return NotImplemented
def __mul__(self,other):
if isinstance(other,Number):
return V3(self[0]*other,self[1]*other,self[2]*other)
else:
other = tuple(other)
# cross product
return V3(self[1]*other[2]-self[2]*other[1],self[2]*other[0]-self[0]*other[2],self[0]*other[1]-self[1]*other[0])
def __rmul__(self,other):
return self.__mul__(other)
def __repr__(self):
return "V3"+repr(tuple(self))
def ifloor(self):
return V3(int(floor(self[0])),int(floor(self[1])),int(floor(self[2])))
def iceil(self):
return V3(int(ceil(self[0])),int(ceil(self[1])),int(ceil(self[2])))
TO_RADIANS = pi / 180.
TO_DEGREES = 180. / pi
ICOS = [1,0,-1,0]
ISIN = [0,1,0,-1]
def makeMatrix(compass,vertical,roll):
m0 = matrixMultiply(yawMatrix(compass), pitchMatrix(vertical))
return matrixMultiply(m0, rollMatrix(roll))
def applyMatrix(m,v):
if m is None:
return v
else:
return V3(m[i][0]*v[0]+m[i][1]*v[1]+m[i][2]*v[2] for i in range(3))
def matrixDistanceSquared(m1,m2):
d2 = 0.
for i in range(3):
for j in range(3):
d2 += (m1[i][j]-m2[i][j])**2
return d2
def iatan2(y,x):
"""One coordinate must be zero"""
if x == 0:
return 90 if y > 0 else -90
else:
return 0 if x > 0 else 180
def icos(angleDegrees):
"""Calculate a cosine of an angle that must be a multiple of 90 degrees"""
return ICOS[(angleDegrees % 360) // 90]
def isin(angleDegrees):
"""Calculate a sine of an angle that must be a multiple of 90 degrees"""
return ISIN[(angleDegrees % 360) // 90]
def matrixMultiply(a,b):
c = [[0,0,0],[0,0,0],[0,0,0]]
for i in range(3):
for j in range(3):
c[i][j] = a[i][0]*b[0][j] + a[i][1]*b[1][j] + a[i][2]*b[2][j]
return c
def yawMatrix(angleDegrees):
if isinstance(angleDegrees, Integral) and angleDegrees % 90 == 0:
return [[icos(angleDegrees), 0, -isin(angleDegrees)],
[0, 1, 0],
[isin(angleDegrees), 0, icos(angleDegrees)]]
else:
theta = angleDegrees * TO_RADIANS
return [[cos(theta), 0., -sin(theta)],
[0., 1., 0.],
[sin(theta), 0., cos(theta)]]
def rollMatrix(angleDegrees):
if isinstance(angleDegrees, Integral) and angleDegrees % 90 == 0:
return [[icos(angleDegrees), -isin(angleDegrees), 0],
[isin(angleDegrees), icos(angleDegrees),0],
[0, 0, 1]]
else:
theta = angleDegrees * TO_RADIANS
return [[cos(theta), -sin(theta), 0.],
[sin(theta), cos(theta),0.],
[0., 0., 1.]]
def pitchMatrix(angleDegrees):
if isinstance(angleDegrees, Integral) and angleDegrees % 90 == 0:
return [[1, 0, 0],
[0, icos(angleDegrees),isin(angleDegrees)],
[0, -isin(angleDegrees),icos(angleDegrees)]]
else:
theta = angleDegrees * TO_RADIANS
return [[1., 0., 0.],
[0., cos(theta),sin(theta)],
[0., -sin(theta),cos(theta)]]
def get2DTriangle(a,b,c):
"""get the points of the 2D triangle"""
minX = {}
maxX = {}
for line in (traverse2D(a,b), traverse2D(b,c), traverse2D(a,c)):
for p in line:
minX0 = minX.get(p[1])
if minX0 == None:
minX[p[1]] = p[0]
maxX[p[1]] = p[0]
yield(p)
elif p[0] < minX0:
for x in xrange(p[0],minX0):
yield(x,p[1])
minX[p[1]] = p[0]
else:
maxX0 = maxX[p[1]]
if maxX0 < p[0]:
for x in range(maxX0,p[0]):
yield(x,p[1])
maxX[p[1]] = p[0]
def getFace(vertices):
if len(vertices) < 1:
raise StopIteration
if len(vertices) <= 2:
for p in traverse(V3(vertices[0]), V3(vertices[1])):
yield p
v0 = V3(vertices[0])
for i in range(2,len(vertices)):
for p in traverse(V3(vertices[i-1]), V3(vertices[i])):
for q in traverse(p, v0):
yield q
def getTriangle(p1, p2, p3):
"""
Note that this will return many duplicate poitns
"""
p1,p2,p3 = V3(p1),V3(p2),V3(p3)
for u in traverse(p2,p3):
for w in traverse(p1,u):
yield w
def frac(x):
return x - floor(x)
def traverse2D(a,b):
"""
equation of line: a + t(b-a), t from 0 to 1
Based on Amantides and Woo's ray traversal algorithm with some help from
http://stackoverflow.com/questions/12367071/how-do-i-initialize-the-t-variables-in-a-fast-voxel-traversal-algorithm-for-ray
"""
inf = float("inf")
if b[0] == a[0]:
if b[1] == a[1]:
yield (int(floor(a[0])),int(floor(a[1])))
return
tMaxX = inf
tDeltaX = 0
else:
tDeltaX = 1./abs(b[0]-a[0])
tMaxX = tDeltaX * (1. - frac(a[0]))
if b[1] == a[1]:
tMaxY = inf
tDeltaY = 0
else:
tDeltaY = 1./abs(b[1]-a[1])
tMaxY = tDeltaY * (1. - frac(a[1]))
endX = int(floor(b[0]))
endY = int(floor(b[1]))
x = int(floor(a[0]))
y = int(floor(a[1]))
if x <= endX:
stepX = 1
else:
stepX = -1
if y <= endY:
stepY = 1
else:
stepY = -1
yield (x,y)
if x == endX:
if y == endY:
return
tMaxX = inf
if y == endY:
tMaxY = inf
while True:
if tMaxX < tMaxY:
x += stepX
yield (x,y)
if x == endX:
tMaxX = inf
else:
tMaxX += tDeltaX
else:
y += stepY
yield (x,y)
if y == endY:
tMaxY = inf
else:
tMaxY += tDeltaY
if tMaxX == inf and tMaxY == inf:
return
def traverse(a,b):
"""
equation of line: a + t(b-a), t from 0 to 1
Based on Amantides and Woo's ray traversal algorithm with some help from
http://stackoverflow.com/questions/12367071/how-do-i-initialize-the-t-variables-in-a-fast-voxel-traversal-algorithm-for-ray
"""
inf = float("inf")
if b.x == a.x:
if b.y == a.y and b.z == a.z:
yield a.ifloor()
return
tMaxX = inf
tDeltaX = 0
else:
tDeltaX = 1./abs(b.x-a.x)
tMaxX = tDeltaX * (1. - frac(a.x))
if b.y == a.y:
tMaxY = inf
tDeltaY = 0
else:
tDeltaY = 1./abs(b.y-a.y)
tMaxY = tDeltaY * (1. - frac(a.y))
if b.z == a.z:
tMaxZ = inf
tDeltaZ = 0
else:
tDeltaZ = 1./abs(b.z-a.z)
tMaxZ = tDeltaZ * (1. - frac(a.z))
end = b.ifloor()
x = int(floor(a.x))
y = int(floor(a.y))
z = int(floor(a.z))
if x <= end.x:
stepX = 1
else:
stepX = -1
if y <= end.y:
stepY = 1
else:
stepY = -1
if z <= end.z:
stepZ = 1
else:
stepZ = -1
yield V3(x,y,z)
if x == end.x:
if y == end.y and z == end.z:
return
tMaxX = inf
if y == end.y:
tMaxY = inf
if z == end.z:
tMaxZ = inf
while True:
if tMaxX < tMaxY:
if tMaxX < tMaxZ:
x += stepX
yield V3(x,y,z)
if x == end.x:
tMaxX = inf
else:
tMaxX += tDeltaX
else:
z += stepZ
yield V3(x,y,z)
if z == end.z:
tMaxZ = inf
else:
tMaxZ += tDeltaZ
else:
if tMaxY < tMaxZ:
y += stepY
yield V3(x,y,z)
if y == end.y:
tMaxY = inf
else:
tMaxY += tDeltaY
else:
z += stepZ
yield V3(x,y,z)
if z == end.z:
tMaxZ = inf
else:
tMaxZ += tDeltaZ
if tMaxX == inf and tMaxY == inf and tMaxZ == inf:
return
# Brasenham's algorithm
def getLine(x1, y1, z1, x2, y2, z2):
line = []
x1 = int(floor(x1))
y1 = int(floor(y1))
z1 = int(floor(z1))
x2 = int(floor(x2))
y2 = int(floor(y2))
z2 = int(floor(z2))
point = [x1,y1,z1]
dx = x2 - x1
dy = y2 - y1
dz = z2 - z1
x_inc = -1 if dx < 0 else 1
l = abs(dx)
y_inc = -1 if dy < 0 else 1
m = abs(dy)
z_inc = -1 if dz < 0 else 1
n = abs(dz)
dx2 = l << 1
dy2 = m << 1
dz2 = n << 1
if l >= m and l >= n:
err_1 = dy2 - l
err_2 = dz2 - l
for i in range(0,l-1):
line.append(V3(point[0],point[1],point[2]))
if err_1 > 0:
point[1] += y_inc
err_1 -= dx2
if err_2 > 0:
point[2] += z_inc
err_2 -= dx2
err_1 += dy2
err_2 += dz2
point[0] += x_inc
elif m >= l and m >= n:
err_1 = dx2 - m;
err_2 = dz2 - m;
for i in range(0,m-1):
line.append(V3(point[0],point[1],point[2]))
if err_1 > 0:
point[0] += x_inc
err_1 -= dy2
if err_2 > 0:
point[2] += z_inc
err_2 -= dy2
err_1 += dx2
err_2 += dz2
point[1] += y_inc
else:
err_1 = dy2 - n;
err_2 = dx2 - n;
for i in range(0, n-1):
line.append(V3(point[0],point[1],point[2]))
if err_1 > 0:
point[1] += y_inc
err_1 -= dz2
if err_2 > 0:
point[0] += x_inc
err_2 -= dz2
err_1 += dy2
err_2 += dx2
point[2] += z_inc
line.append(V3(point[0],point[1],point[2]))
if point[0] != x2 or point[1] != y2 or point[2] != z2:
line.append(V3(x2,y2,z2))
return line
class Drawing:
TO_RADIANS = pi / 180.
TO_DEGREES = 180. / pi
def __init__(self,mc=None):
if mc:
self.mc = mc
else:
self.mc = minecraft.Minecraft()
self.width = 1
self.nib = [(0,0,0)]
def penwidth(self,w):
self.width = int(w)
if self.width == 0:
self.nib = []
elif self.width == 1:
self.nib = [(0,0,0)]
elif self.width == 2:
self.nib = []
for x in range(-1,1):
for y in range(0,2):
for z in range(-1,1):
self.nib.append((x,y,z))
else:
self.nib = []
r2 = self.width * self.width / 4.
for x in range(-self.width//2 - 1,self.width//2 + 1):
for y in range(-self.width//2 - 1, self.width//2 + 1):
for z in range(-self.width//2 -1, self.width//2 + 1):
if x*x + y*y + z*z <= r2:
self.nib.append((x,y,z))
def point(self, x, y, z, block):
for p in self.nib:
self.mc.setBlock(x+p[0],y+p[1],z+p[2],block)
def face(self, vertices, block):
self.drawPoints(getFace(vertices), block)
def line(self, x1,y1,z1, x2,y2,z2, block):
self.drawPoints(getLine(x1,y1,z1, x2,y2,z2), block)
def drawPoints(self, points, block):
if self.width == 1:
done = set()
for p in points:
if p not in done:
self.mc.setBlock(p, block)
done.add(p)
else:
done = set()
for p in points:
for point in self.nib:
x0 = p[0]+point[0]
y0 = p[1]+point[1]
z0 = p[2]+point[2]
if (x0,y0,z0) not in done:
self.mc.setBlock(x0,y0,z0,block)
done.add((x0,y0,z0))
if __name__ == "__main__":
d = Drawing()
pos = d.mc.player.getPos()
d.face([(pos.x,pos.y,pos.z),(pos.x+20,pos.y+20,pos.z),(pos.x+20,pos.y+20,pos.z+20),
(pos.x,pos.y,pos.z+20)], GLASS)
n = 20
for t in range(0,n):
(x1,z1) = (100*cos(t*2*pi/n),80*sin(t*2*pi/n))
for p in traverse(V3(pos.x,pos.y-1,pos.z),V3(pos.x+x1,pos.y-1,pos.z+z1)):
d.mc.setBlock(p,OBSIDIAN)
n = 40
vertices = []
for t in range(0,n):
(x1,z1) = (100*cos(t*2*pi/n),80*sin(t*2*pi/n))
vertices.append((pos.x+x1,pos.y,pos.z+z1))
d.face(vertices, STAINED_GLASS_BLUE)
|