File: asg.c

package info (click to toggle)
miniasm 0.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 632 kB
  • sloc: ansic: 2,528; perl: 120; sh: 66; makefile: 29
file content (433 lines) | stat: -rw-r--r-- 11,823 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include "asg.h"
#include "kvec.h"

#include "ksort.h"
#define asg_arc_key(a) ((a).ul)
KRADIX_SORT_INIT(asg, asg_arc_t, asg_arc_key, 8)

asg_t *asg_init(void)
{
	return (asg_t*)calloc(1, sizeof(asg_t));
}

void asg_destroy(asg_t *g)
{
	if (g == 0) return;
	free(g->seq); free(g->idx); free(g->arc); free(g);
}

void asg_arc_sort(asg_t *g)
{
	radix_sort_asg(g->arc, g->arc + g->n_arc);
}

uint64_t *asg_arc_index_core(size_t max_seq, size_t n, const asg_arc_t *a)
{
	size_t i, last;
	uint64_t *idx;
	idx = (uint64_t*)calloc(max_seq * 2, 8);
	for (i = 1, last = 0; i <= n; ++i)
		if (i == n || a[i-1].ul>>32 != a[i].ul>>32)
			idx[a[i-1].ul>>32] = (uint64_t)last<<32 | (i - last), last = i;
	return idx;
}

void asg_arc_index(asg_t *g)
{
	if (g->idx) free(g->idx);
	g->idx = asg_arc_index_core(g->n_seq, g->n_arc, g->arc);
}

void asg_seq_set(asg_t *g, int sid, int len, int del)
{
	if (sid >= g->m_seq) {
		g->m_seq = sid + 1;
		kv_roundup32(g->m_seq);
		g->seq = (asg_seq_t*)realloc(g->seq, g->m_seq * sizeof(asg_seq_t));
	}
	if (sid >= g->n_seq) g->n_seq = sid + 1;
	g->seq[sid].len = len;
	g->seq[sid].del = !!del;
}

// hard remove arcs marked as "del"
void asg_arc_rm(asg_t *g)
{
	uint32_t e, n;
	for (e = n = 0; e < g->n_arc; ++e) {
		uint32_t u = g->arc[e].ul>>32, v = g->arc[e].v;
		if (!g->arc[e].del && !g->seq[u>>1].del && !g->seq[v>>1].del)
			g->arc[n++] = g->arc[e];
	}
	if (n < g->n_arc) { // arc index is out of sync
		if (g->idx) free(g->idx);
		g->idx = 0;
	}
	g->n_arc = n;
}

void asg_cleanup(asg_t *g)
{
	asg_arc_rm(g);
	if (!g->is_srt) {
		asg_arc_sort(g);
		g->is_srt = 1;
	}
	if (g->idx == 0) asg_arc_index(g);
}

// delete short arcs
int asg_arc_del_short(asg_t *g, float drop_ratio)
{
	uint32_t v, n_vtx = g->n_seq * 2, n_short = 0;
	for (v = 0; v < n_vtx; ++v) {
		asg_arc_t *av = asg_arc_a(g, v);
		uint32_t i, thres, nv = asg_arc_n(g, v);
		if (nv < 2) continue;
		thres = (uint32_t)(av[0].ol * drop_ratio + .499);
		for (i = nv - 1; i >= 1 && av[i].ol < thres; --i);
		for (i = i + 1; i < nv; ++i)
			av[i].del = 1, ++n_short;
	}
	if (n_short) {
		asg_cleanup(g);
		asg_symm(g);
	}
	fprintf(stderr, "[M::%s] removed %d short overlaps\n", __func__, n_short);
	return n_short;
}

// delete multi-arcs
int asg_arc_del_multi(asg_t *g)
{
	uint32_t *cnt, n_vtx = g->n_seq * 2, n_multi = 0, v;
	cnt = (uint32_t*)calloc(n_vtx, 4);
	for (v = 0; v < n_vtx; ++v) {
		asg_arc_t *av = asg_arc_a(g, v);
		int32_t i, nv = asg_arc_n(g, v);
		if (nv < 2) continue;
		for (i = nv - 1; i >= 0; --i) ++cnt[av[i].v];
		for (i = nv - 1; i >= 0; --i)
			if (--cnt[av[i].v] != 0)
				av[i].del = 1, ++n_multi;
	}
	free(cnt);
	if (n_multi) asg_cleanup(g);
	fprintf(stderr, "[M::%s] removed %d multi-arcs\n", __func__, n_multi);
	return n_multi;
}

// remove asymmetric arcs: u->v is present, but v'->u' not
int asg_arc_del_asymm(asg_t *g)
{
	uint32_t e, n_asymm = 0;
	for (e = 0; e < g->n_arc; ++e) {
		uint32_t v = g->arc[e].v^1, u = g->arc[e].ul>>32^1;
		uint32_t i, nv = asg_arc_n(g, v);
		asg_arc_t *av = asg_arc_a(g, v);
		for (i = 0; i < nv; ++i)
			if (av[i].v == u) break;
		if (i == nv) g->arc[e].del = 1, ++n_asymm;
	}
	if (n_asymm) asg_cleanup(g);
	fprintf(stderr, "[M::%s] removed %d asymmetric arcs\n", __func__, n_asymm);
	return n_asymm;
}

void asg_symm(asg_t *g)
{
	asg_arc_del_multi(g);
	asg_arc_del_asymm(g);
	g->is_symm = 1;
}

// transitive reduction; see Myers, 2005
int asg_arc_del_trans(asg_t *g, int fuzz)
{
	uint8_t *mark;
	uint32_t v, n_vtx = g->n_seq * 2, n_reduced = 0;

	mark = (uint8_t*)calloc(n_vtx, 1);
	for (v = 0; v < n_vtx; ++v) {
		uint32_t L, i, nv = asg_arc_n(g, v);
		asg_arc_t *av = asg_arc_a(g, v);
		if (nv == 0) continue; // no hits
		if (g->seq[v>>1].del) {
			for (i = 0; i < nv; ++i) av[i].del = 1, ++n_reduced;
			continue;
		}
		for (i = 0; i < nv; ++i) mark[av[i].v] = 1;
		L = asg_arc_len(av[nv-1]) + fuzz;
		for (i = 0; i < nv; ++i) {
			uint32_t w = av[i].v;
			uint32_t j, nw = asg_arc_n(g, w);
			asg_arc_t *aw = asg_arc_a(g, w);
			if (mark[av[i].v] != 1) continue;
			for (j = 0; j < nw && asg_arc_len(aw[j]) + asg_arc_len(av[i]) <= L; ++j)
				if (mark[aw[j].v]) mark[aw[j].v] = 2;
		}
		#if 0
		for (i = 0; i < nv; ++i) {
			uint32_t w = av[i].v;
			uint32_t j, nw = asg_arc_n(g, w);
			asg_arc_t *aw = asg_arc_a(g, w);
			for (j = 0; j < nw && (j == 0 || asg_arc_len(aw[j]) < fuzz); ++j)
				if (mark[aw[j].v]) mark[aw[j].v] = 2;
		}
		#endif
		for (i = 0; i < nv; ++i) {
			if (mark[av[i].v] == 2) av[i].del = 1, ++n_reduced;
			mark[av[i].v] = 0;
		}
	}
	free(mark);
	fprintf(stderr, "[M::%s] transitively reduced %d arcs\n", __func__, n_reduced);
	if (n_reduced) {
		asg_cleanup(g);
		asg_symm(g);
	}
	return n_reduced;
}

/**********************************
 * Filter short potential unitigs *
 **********************************/

#define ASG_ET_MERGEABLE 0
#define ASG_ET_TIP       1
#define ASG_ET_MULTI_OUT 2
#define ASG_ET_MULTI_NEI 3

static inline int asg_is_utg_end(const asg_t *g, uint32_t v, uint64_t *lw)
{
	uint32_t w, nv, nw, nw0, nv0 = asg_arc_n(g, v^1);
	int i, i0 = -1;
	asg_arc_t *aw, *av = asg_arc_a(g, v^1);
	for (i = nv = 0; i < nv0; ++i)
		if (!av[i].del) i0 = i, ++nv;
	if (nv == 0) return ASG_ET_TIP; // tip
	if (nv > 1) return ASG_ET_MULTI_OUT; // multiple outgoing arcs
	if (lw) *lw = av[i0].ul<<32 | av[i0].v;
	w = av[i0].v ^ 1;
	nw0 = asg_arc_n(g, w);
	aw = asg_arc_a(g, w);
	for (i = nw = 0; i < nw0; ++i)
		if (!aw[i].del) ++nw;
	if (nw != 1) return ASG_ET_MULTI_NEI;
	return ASG_ET_MERGEABLE;
}

int asg_extend(const asg_t *g, uint32_t v, int max_ext, asg64_v *a)
{
	int ret;
	uint64_t lw;
	a->n = 0;
	kv_push(uint64_t, *a, v);
	do {
		ret = asg_is_utg_end(g, v^1, &lw);
		if (ret != 0) break;
		kv_push(uint64_t, *a, lw);
		v = (uint32_t)lw;
	} while (--max_ext > 0);
	return ret;
}

int asg_cut_tip(asg_t *g, int max_ext)
{
	asg64_v a = {0,0,0};
	uint32_t n_vtx = g->n_seq * 2, v, i, cnt = 0;
	for (v = 0; v < n_vtx; ++v) {
		if (g->seq[v>>1].del) continue;
		if (asg_is_utg_end(g, v, 0) != ASG_ET_TIP) continue; // not a tip
		if (asg_extend(g, v, max_ext, &a) == ASG_ET_MERGEABLE) continue; // not a short unitig
		for (i = 0; i < a.n; ++i)
			asg_seq_del(g, (uint32_t)a.a[i]>>1);
		++cnt;
	}
	free(a.a);
	if (cnt > 0) asg_cleanup(g);
	fprintf(stderr, "[M::%s] cut %d tips\n", __func__, cnt);
	return cnt;
}

int asg_cut_internal(asg_t *g, int max_ext)
{
	asg64_v a = {0,0,0};
	uint32_t n_vtx = g->n_seq * 2, v, i, cnt = 0;
	for (v = 0; v < n_vtx; ++v) {
		if (g->seq[v>>1].del) continue;
		if (asg_is_utg_end(g, v, 0) != ASG_ET_MULTI_NEI) continue;
		if (asg_extend(g, v, max_ext, &a) != ASG_ET_MULTI_NEI) continue;
		for (i = 0; i < a.n; ++i)
			asg_seq_del(g, (uint32_t)a.a[i]>>1);
		++cnt;
	}
	free(a.a);
	if (cnt > 0) asg_cleanup(g);
	fprintf(stderr, "[M::%s] cut %d internal sequences\n", __func__, cnt);
	return cnt;
}

int asg_cut_biloop(asg_t *g, int max_ext)
{
	asg64_v a = {0,0,0};
	uint32_t n_vtx = g->n_seq * 2, v, i, cnt = 0;
	for (v = 0; v < n_vtx; ++v) {
		uint32_t nv, nw, w = UINT32_MAX, x, ov = 0, ox = 0;
		asg_arc_t *av, *aw;
		if (g->seq[v>>1].del) continue;
		if (asg_is_utg_end(g, v, 0) != ASG_ET_MULTI_NEI) continue;
		if (asg_extend(g, v, max_ext, &a) != ASG_ET_MULTI_OUT) continue;
		x = (uint32_t)a.a[a.n - 1] ^ 1;
		nv = asg_arc_n(g, v ^ 1), av = asg_arc_a(g, v ^ 1);
		for (i = 0; i < nv; ++i)
			if (!av[i].del) w = av[i].v ^ 1;
		assert(w != UINT32_MAX);
		nw = asg_arc_n(g, w), aw = asg_arc_a(g, w);
		for (i = 0; i < nw; ++i) { // we are looking for: v->...->x', w->v and w->x
			if (aw[i].del) continue;
			if (aw[i].v == x) ox = aw[i].ol;
			if (aw[i].v == v) ov = aw[i].ol;
		}
		if (ov == 0 && ox == 0) continue;
		if (ov > ox) {
			asg_arc_del(g, w, x, 1);
			asg_arc_del(g, x^1, w^1, 1);
			++cnt;
		}
	}
	free(a.a);
	if (cnt > 0) asg_cleanup(g);
	fprintf(stderr, "[M::%s] cut %d small bi-loops\n", __func__, cnt);
	return cnt;
}

/******************
 * Bubble popping *
 ******************/

typedef struct {
	uint32_t p; // the optimal parent vertex
	uint32_t d; // the shortest distance from the initial vertex
	uint32_t c; // max count of reads
	uint32_t r:31, s:1; // r: the number of remaining incoming arc; s: state
} binfo_t;

typedef struct {
	binfo_t *a;
	kvec_t(uint32_t) S; // set of vertices without parents
	kvec_t(uint32_t) T; // set of tips
	kvec_t(uint32_t) b; // visited vertices
	kvec_t(uint32_t) e; // visited edges/arcs
} buf_t;

// count the number of outgoing arcs, excluding reduced arcs
static inline int count_out(const asg_t *g, uint32_t v)
{
	uint32_t i, n, nv = asg_arc_n(g, v);
	const asg_arc_t *av = asg_arc_a(g, v);
	for (i = n = 0; i < nv; ++i)
		if (!av[i].del) ++n;
	return n;
}

// in a resolved bubble, mark unused vertices and arcs as "reduced"
static void asg_bub_backtrack(asg_t *g, uint32_t v0, buf_t *b)
{
	uint32_t i, v;
	assert(b->S.n == 1);
	for (i = 0; i < b->b.n; ++i)
		g->seq[b->b.a[i]>>1].del = 1;
	for (i = 0; i < b->e.n; ++i) {
		asg_arc_t *a = &g->arc[b->e.a[i]];
		a->del = 1;
		asg_arc_del(g, a->v^1, a->ul>>32^1, 1);
	}
	v = b->S.a[0];
	do {
		uint32_t u = b->a[v].p; // u->v
		g->seq[v>>1].del = 0;
		asg_arc_del(g, u, v, 0);
		asg_arc_del(g, v^1, u^1, 0);
		v = u;
	} while (v != v0);
}

// pop bubbles from vertex v0; the graph MJUST BE symmetric: if u->v present, v'->u' must be present as well
static uint64_t asg_bub_pop1(asg_t *g, uint32_t v0, int max_dist, buf_t *b)
{
	uint32_t i, n_pending = 0;
	uint64_t n_pop = 0;
	if (g->seq[v0>>1].del) return 0; // already deleted
	if ((uint32_t)g->idx[v0] < 2) return 0; // no bubbles
	b->S.n = b->T.n = b->b.n = b->e.n = 0;
	b->a[v0].c = b->a[v0].d = 0;
	kv_push(uint32_t, b->S, v0);
	do {
		uint32_t v = kv_pop(b->S), d = b->a[v].d, c = b->a[v].c;
		uint32_t nv = asg_arc_n(g, v);
		asg_arc_t *av = asg_arc_a(g, v);
		assert(nv > 0);
		for (i = 0; i < nv; ++i) { // loop through v's neighbors
			uint32_t w = av[i].v, l = (uint32_t)av[i].ul; // u->w with length l
			binfo_t *t = &b->a[w];
			if (w == v0) goto pop_reset;
			if (av[i].del) continue;
			kv_push(uint32_t, b->e, (g->idx[v]>>32) + i);
			if (d + l > max_dist) break; // too far
			if (t->s == 0) { // this vertex has never been visited
				kv_push(uint32_t, b->b, w); // save it for revert
				t->p = v, t->s = 1, t->d = d + l;
				t->r = count_out(g, w^1);
				++n_pending;
			} else { // visited before
				if (c + 1 > t->c || (c + 1 == t->c && d + l > t->d)) t->p = v;
				if (c + 1 > t->c) t->c = c + 1;
				if (d + l < t->d) t->d = d + l; // update dist
			}
			assert(t->r > 0);
			if (--(t->r) == 0) {
				uint32_t x = asg_arc_n(g, w);
				if (x) kv_push(uint32_t, b->S, w);
				else kv_push(uint32_t, b->T, w); // a tip
				--n_pending;
			}
		}
		if (i < nv || b->S.n == 0) goto pop_reset;
	} while (b->S.n > 1 || n_pending);
	asg_bub_backtrack(g, v0, b);
	n_pop = 1 | (uint64_t)b->T.n<<32;
pop_reset:
	for (i = 0; i < b->b.n; ++i) { // clear the states of visited vertices
		binfo_t *t = &b->a[b->b.a[i]];
		t->s = t->c = t->d = 0;
	}
	return n_pop;
}

// pop bubbles
int asg_pop_bubble(asg_t *g, int max_dist)
{
	uint32_t v, n_vtx = g->n_seq * 2;
	uint64_t n_pop = 0;
	buf_t b;
	if (!g->is_symm) asg_symm(g);
	memset(&b, 0, sizeof(buf_t));
	b.a = (binfo_t*)calloc(n_vtx, sizeof(binfo_t));
	for (v = 0; v < n_vtx; ++v) {
		uint32_t i, n_arc = 0, nv = asg_arc_n(g, v);
		asg_arc_t *av = asg_arc_a(g, v);
		if (nv < 2 || g->seq[v>>1].del) continue;
		for (i = 0; i < nv; ++i) // asg_bub_pop1() may delete some edges/arcs
			if (!av[i].del) ++n_arc;
		if (n_arc > 1)
			n_pop += asg_bub_pop1(g, v, max_dist, &b);
	}
	free(b.a); free(b.S.a); free(b.T.a); free(b.b.a); free(b.e.a);
	if (n_pop) asg_cleanup(g);
	fprintf(stderr, "[M::%s] popped %d bubbles and trimmed %d tips\n", __func__, (uint32_t)n_pop, (uint32_t)(n_pop>>32));
	return n_pop;
}