1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
/*
Demonstrates integration of Steam Audio with miniaudio's engine API.
In this example a HRTF effect from Steam Audio will be applied. To do this a custom node will be
implemented which uses Steam Audio's IPLBinauralEffect and IPLHRTF objects.
By implementing this as a node, it can be plugged into any position within the graph. The output
channel count of this node is always stereo.
Steam Audio requires fixed sized processing, the size of which must be specified at initialization
time of the IPLBinauralEffect and IPLHRTF objects. To ensure miniaudio and Steam Audio are
consistent, you must set the period size in the engine config to be consistent with the frame size
you specify in your IPLAudioSettings object. If for some reason you want the period size of the
engine to be different to that of your Steam Audio configuration, you'll need to implement a sort
of buffering solution to your node.
*/
#include "../miniaudio.c"
#include <stdint.h> /* Required for uint32_t which is used by STEAMAUDIO_VERSION, and a random use of uint8_t. If there's a Steam Audio maintainer reading this, that needs to be fixed to use IPLuint32 and IPLuint8. */
/* Need to silence some warnings from the Steam Audio headers. */
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wlong-long"
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <phonon.h> /* Steam Audio */
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
#pragma GCC diagnostic pop
#endif
#define FORMAT ma_format_f32 /* Must be floating point. */
#define CHANNELS 2 /* Must be stereo for this example. */
#define SAMPLE_RATE 48000
static ma_result ma_result_from_IPLerror(IPLerror error)
{
switch (error)
{
case IPL_STATUS_SUCCESS: return MA_SUCCESS;
case IPL_STATUS_OUTOFMEMORY: return MA_OUT_OF_MEMORY;
case IPL_STATUS_INITIALIZATION:
case IPL_STATUS_FAILURE:
default: return MA_ERROR;
}
}
typedef struct
{
ma_node_config nodeConfig;
ma_uint32 channelsIn;
IPLAudioSettings iplAudioSettings;
IPLContext iplContext;
IPLHRTF iplHRTF; /* There is one HRTF object to many binaural effect objects. */
} ma_steamaudio_binaural_node_config;
MA_API ma_steamaudio_binaural_node_config ma_steamaudio_binaural_node_config_init(ma_uint32 channelsIn, IPLAudioSettings iplAudioSettings, IPLContext iplContext, IPLHRTF iplHRTF);
typedef struct
{
ma_node_base baseNode;
IPLAudioSettings iplAudioSettings;
IPLContext iplContext;
IPLHRTF iplHRTF;
IPLBinauralEffect iplEffect;
ma_vec3f direction;
float* ppBuffersIn[2]; /* Each buffer is an offset of _pHeap. */
float* ppBuffersOut[2]; /* Each buffer is an offset of _pHeap. */
void* _pHeap;
} ma_steamaudio_binaural_node;
MA_API ma_result ma_steamaudio_binaural_node_init(ma_node_graph* pNodeGraph, const ma_steamaudio_binaural_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_steamaudio_binaural_node* pBinauralNode);
MA_API void ma_steamaudio_binaural_node_uninit(ma_steamaudio_binaural_node* pBinauralNode, const ma_allocation_callbacks* pAllocationCallbacks);
MA_API ma_result ma_steamaudio_binaural_node_set_direction(ma_steamaudio_binaural_node* pBinauralNode, float x, float y, float z);
MA_API ma_steamaudio_binaural_node_config ma_steamaudio_binaural_node_config_init(ma_uint32 channelsIn, IPLAudioSettings iplAudioSettings, IPLContext iplContext, IPLHRTF iplHRTF)
{
ma_steamaudio_binaural_node_config config;
MA_ZERO_OBJECT(&config);
config.nodeConfig = ma_node_config_init();
config.channelsIn = channelsIn;
config.iplAudioSettings = iplAudioSettings;
config.iplContext = iplContext;
config.iplHRTF = iplHRTF;
return config;
}
static void ma_steamaudio_binaural_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut)
{
ma_steamaudio_binaural_node* pBinauralNode = (ma_steamaudio_binaural_node*)pNode;
IPLBinauralEffectParams binauralParams;
IPLAudioBuffer inputBufferDesc;
IPLAudioBuffer outputBufferDesc;
ma_uint32 totalFramesToProcess = *pFrameCountOut;
ma_uint32 totalFramesProcessed = 0;
MA_ZERO_OBJECT(&binauralParams);
binauralParams.direction.x = pBinauralNode->direction.x;
binauralParams.direction.y = pBinauralNode->direction.y;
binauralParams.direction.z = pBinauralNode->direction.z;
binauralParams.interpolation = IPL_HRTFINTERPOLATION_NEAREST;
binauralParams.spatialBlend = 1.0f;
binauralParams.hrtf = pBinauralNode->iplHRTF;
inputBufferDesc.numChannels = (IPLint32)ma_node_get_input_channels(pNode, 0);
/* We'll run this in a loop just in case our deinterleaved buffers are too small. */
outputBufferDesc.numSamples = pBinauralNode->iplAudioSettings.frameSize;
outputBufferDesc.numChannels = 2;
outputBufferDesc.data = pBinauralNode->ppBuffersOut;
while (totalFramesProcessed < totalFramesToProcess) {
ma_uint32 framesToProcessThisIteration = totalFramesToProcess - totalFramesProcessed;
if (framesToProcessThisIteration > (ma_uint32)pBinauralNode->iplAudioSettings.frameSize) {
framesToProcessThisIteration = (ma_uint32)pBinauralNode->iplAudioSettings.frameSize;
}
if (inputBufferDesc.numChannels == 1) {
/* Fast path. No need for deinterleaving since it's a mono stream. */
pBinauralNode->ppBuffersIn[0] = (float*)ma_offset_pcm_frames_const_ptr_f32(ppFramesIn[0], totalFramesProcessed, 1);
} else {
/* Slow path. Need to deinterleave the input data. */
ma_deinterleave_pcm_frames(ma_format_f32, inputBufferDesc.numChannels, framesToProcessThisIteration, ma_offset_pcm_frames_const_ptr_f32(ppFramesIn[0], totalFramesProcessed, inputBufferDesc.numChannels), (void**)&pBinauralNode->ppBuffersIn[0]);
}
inputBufferDesc.data = pBinauralNode->ppBuffersIn;
inputBufferDesc.numSamples = (IPLint32)framesToProcessThisIteration;
/* Apply the effect. */
iplBinauralEffectApply(pBinauralNode->iplEffect, &binauralParams, &inputBufferDesc, &outputBufferDesc);
/* Interleave straight into the output buffer. */
ma_interleave_pcm_frames(ma_format_f32, 2, framesToProcessThisIteration, (const void**)&pBinauralNode->ppBuffersOut[0], ma_offset_pcm_frames_ptr_f32(ppFramesOut[0], totalFramesProcessed, 2));
/* Advance. */
totalFramesProcessed += framesToProcessThisIteration;
}
(void)pFrameCountIn; /* Unused. */
}
static ma_node_vtable g_ma_steamaudio_binaural_node_vtable =
{
ma_steamaudio_binaural_node_process_pcm_frames,
NULL,
1, /* 1 input channel. */
1, /* 1 output channel. */
0
};
MA_API ma_result ma_steamaudio_binaural_node_init(ma_node_graph* pNodeGraph, const ma_steamaudio_binaural_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_steamaudio_binaural_node* pBinauralNode)
{
ma_result result;
ma_node_config baseConfig;
ma_uint32 channelsIn;
ma_uint32 channelsOut;
IPLBinauralEffectSettings iplBinauralEffectSettings;
size_t heapSizeInBytes;
if (pBinauralNode == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pBinauralNode);
if (pConfig == NULL || pConfig->iplAudioSettings.frameSize == 0 || pConfig->iplContext == NULL || pConfig->iplHRTF == NULL) {
return MA_INVALID_ARGS;
}
/* Steam Audio only supports mono and stereo input. */
if (pConfig->channelsIn < 1 || pConfig->channelsIn > 2) {
return MA_INVALID_ARGS;
}
channelsIn = pConfig->channelsIn;
channelsOut = 2; /* Always stereo output. */
baseConfig = ma_node_config_init();
baseConfig.vtable = &g_ma_steamaudio_binaural_node_vtable;
baseConfig.pInputChannels = &channelsIn;
baseConfig.pOutputChannels = &channelsOut;
result = ma_node_init(pNodeGraph, &baseConfig, pAllocationCallbacks, &pBinauralNode->baseNode);
if (result != MA_SUCCESS) {
return result;
}
pBinauralNode->iplAudioSettings = pConfig->iplAudioSettings;
pBinauralNode->iplContext = pConfig->iplContext;
pBinauralNode->iplHRTF = pConfig->iplHRTF;
MA_ZERO_OBJECT(&iplBinauralEffectSettings);
iplBinauralEffectSettings.hrtf = pBinauralNode->iplHRTF;
result = ma_result_from_IPLerror(iplBinauralEffectCreate(pBinauralNode->iplContext, &pBinauralNode->iplAudioSettings, &iplBinauralEffectSettings, &pBinauralNode->iplEffect));
if (result != MA_SUCCESS) {
ma_node_uninit(&pBinauralNode->baseNode, pAllocationCallbacks);
return result;
}
heapSizeInBytes = 0;
/*
Unfortunately Steam Audio uses deinterleaved buffers for everything so we'll need to use some
intermediary buffers. We'll allocate one big buffer on the heap and then use offsets. We'll
use the frame size from the IPLAudioSettings structure as a basis for the size of the buffer.
*/
heapSizeInBytes += sizeof(float) * channelsOut * pBinauralNode->iplAudioSettings.frameSize; /* Output buffer. */
heapSizeInBytes += sizeof(float) * channelsIn * pBinauralNode->iplAudioSettings.frameSize; /* Input buffer. */
pBinauralNode->_pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks);
if (pBinauralNode->_pHeap == NULL) {
iplBinauralEffectRelease(&pBinauralNode->iplEffect);
ma_node_uninit(&pBinauralNode->baseNode, pAllocationCallbacks);
return MA_OUT_OF_MEMORY;
}
pBinauralNode->ppBuffersOut[0] = (float*)pBinauralNode->_pHeap;
pBinauralNode->ppBuffersOut[1] = (float*)ma_offset_ptr(pBinauralNode->_pHeap, sizeof(float) * pBinauralNode->iplAudioSettings.frameSize);
{
ma_uint32 iChannelIn;
for (iChannelIn = 0; iChannelIn < channelsIn; iChannelIn += 1) {
pBinauralNode->ppBuffersIn[iChannelIn] = (float*)ma_offset_ptr(pBinauralNode->_pHeap, sizeof(float) * pBinauralNode->iplAudioSettings.frameSize * (channelsOut + iChannelIn));
}
}
return MA_SUCCESS;
}
MA_API void ma_steamaudio_binaural_node_uninit(ma_steamaudio_binaural_node* pBinauralNode, const ma_allocation_callbacks* pAllocationCallbacks)
{
if (pBinauralNode == NULL) {
return;
}
/* The base node is always uninitialized first. */
ma_node_uninit(&pBinauralNode->baseNode, pAllocationCallbacks);
/*
The Steam Audio objects are deleted after the base node. This ensures the base node is removed from the graph
first to ensure these objects aren't getting used by the audio thread.
*/
iplBinauralEffectRelease(&pBinauralNode->iplEffect);
ma_free(pBinauralNode->_pHeap, pAllocationCallbacks);
}
MA_API ma_result ma_steamaudio_binaural_node_set_direction(ma_steamaudio_binaural_node* pBinauralNode, float x, float y, float z)
{
if (pBinauralNode == NULL) {
return MA_INVALID_ARGS;
}
pBinauralNode->direction.x = x;
pBinauralNode->direction.y = y;
pBinauralNode->direction.z = z;
return MA_SUCCESS;
}
static ma_engine g_engine;
static ma_sound g_sound; /* This example will play only a single sound at once, so we only need one `ma_sound` object. */
static ma_steamaudio_binaural_node g_binauralNode; /* The echo effect is achieved using a delay node. */
int main(int argc, char** argv)
{
ma_result result;
ma_engine_config engineConfig;
IPLAudioSettings iplAudioSettings;
IPLContextSettings iplContextSettings;
IPLContext iplContext;
IPLHRTFSettings iplHRTFSettings;
IPLHRTF iplHRTF;
if (argc < 2) {
printf("No input file.");
return -1;
}
/* The engine needs to be initialized first. */
engineConfig = ma_engine_config_init();
engineConfig.channels = CHANNELS;
engineConfig.sampleRate = SAMPLE_RATE;
/*
Steam Audio requires processing in fixed sized chunks. Setting the period size in the engine config will
ensure our updates happen in predicably sized chunks as required by Steam Audio.
Note that the configuration of Steam Audio below (IPLAudioSettings) will use this variable to specify the
update size to ensure it remains consistent.
*/
engineConfig.periodSizeInFrames = 256;
result = ma_engine_init(&engineConfig, &g_engine);
if (result != MA_SUCCESS) {
printf("Failed to initialize audio engine.");
return -1;
}
/*
Now that we have the engine we can initialize the Steam Audio objects.
*/
MA_ZERO_OBJECT(&iplAudioSettings);
iplAudioSettings.samplingRate = ma_engine_get_sample_rate(&g_engine);
/*
If there's any Steam Audio developers reading this, why is the frame size needed? This needs to
be documented. If this is for some kind of buffer management with FFT or something, then this
need not be exposed to the public API. There should be no need for the public API to require a
fixed sized update.
It's important that this be set to the periodSizeInFrames specified in the engine config above.
This ensures updates on both the miniaudio side and the Steam Audio side are consistent.
*/
iplAudioSettings.frameSize = engineConfig.periodSizeInFrames;
/* IPLContext */
MA_ZERO_OBJECT(&iplContextSettings);
iplContextSettings.version = STEAMAUDIO_VERSION;
result = ma_result_from_IPLerror(iplContextCreate(&iplContextSettings, &iplContext));
if (result != MA_SUCCESS) {
ma_engine_uninit(&g_engine);
return result;
}
/* IPLHRTF */
MA_ZERO_OBJECT(&iplHRTFSettings);
iplHRTFSettings.type = IPL_HRTFTYPE_DEFAULT;
iplHRTFSettings.volume = 1;
result = ma_result_from_IPLerror(iplHRTFCreate(iplContext, &iplAudioSettings, &iplHRTFSettings, &iplHRTF));
if (result != MA_SUCCESS) {
iplContextRelease(&iplContext);
ma_engine_uninit(&g_engine);
return result;
}
/*
The binaural node will need to know the input channel count of the sound so we'll need to load
the sound first. We'll initialize this such that it'll be initially detached from the graph.
It will be attached to the graph after the binaural node is initialized.
*/
{
ma_sound_config soundConfig;
soundConfig = ma_sound_config_init();
soundConfig.pFilePath = argv[1];
soundConfig.flags = MA_SOUND_FLAG_NO_DEFAULT_ATTACHMENT; /* We'll attach this to the graph later. */
result = ma_sound_init_ex(&g_engine, &soundConfig, &g_sound);
if (result != MA_SUCCESS) {
return result;
}
/* We'll let the Steam Audio binaural effect do the directional attenuation for us. */
ma_sound_set_directional_attenuation_factor(&g_sound, 0);
/* Loop the sound so we can get a continuous sound. */
ma_sound_set_looping(&g_sound, MA_TRUE);
}
/*
We'll build our graph starting from the end so initialize the binaural node now. The output of
this node will be connected straight to the output. You could also attach it to a sound group
or any other node that accepts an input.
Creating a node requires a pointer to the node graph that owns it. The engine itself is a node
graph. In the code below we can get a pointer to the node graph with `ma_engine_get_node_graph()`
or we could simple cast the engine to a ma_node_graph* like so:
(ma_node_graph*)&g_engine
The endpoint of the graph can be retrieved with `ma_engine_get_endpoint()`.
*/
{
ma_steamaudio_binaural_node_config binauralNodeConfig;
/*
For this example we're just using the engine's channel count, but a more optimal solution
might be to set this to mono if the source data is also mono.
*/
binauralNodeConfig = ma_steamaudio_binaural_node_config_init(CHANNELS, iplAudioSettings, iplContext, iplHRTF);
result = ma_steamaudio_binaural_node_init(ma_engine_get_node_graph(&g_engine), &binauralNodeConfig, NULL, &g_binauralNode);
if (result != MA_SUCCESS) {
printf("Failed to initialize binaural node.");
return -1;
}
/* Connect the output of the delay node to the input of the endpoint. */
ma_node_attach_output_bus(&g_binauralNode, 0, ma_engine_get_endpoint(&g_engine), 0);
}
/* We can now wire up the sound to the binaural node and start it. */
ma_node_attach_output_bus(&g_sound, 0, &g_binauralNode, 0);
ma_sound_start(&g_sound);
#if 1
{
/*
We'll move the sound around the listener which we'll leave at the origin. We'll then get
the direction to the listener and update the binaural node appropriately.
*/
float stepAngle = 0.002f;
float angle = 0;
float distance = 2;
for (;;) {
double x = ma_cosd(angle) - ma_sind(angle);
double y = ma_sind(angle) + ma_cosd(angle);
ma_vec3f direction;
ma_sound_set_position(&g_sound, (float)x * distance, 0, (float)y * distance);
direction = ma_sound_get_direction_to_listener(&g_sound);
/* Update the direction of the sound. */
ma_steamaudio_binaural_node_set_direction(&g_binauralNode, direction.x, direction.y, direction.z);
angle += stepAngle;
ma_sleep(1);
}
}
#else
printf("Press Enter to quit...");
getchar();
#endif
ma_sound_uninit(&g_sound);
ma_steamaudio_binaural_node_uninit(&g_binauralNode, NULL);
ma_engine_uninit(&g_engine);
return 0;
}
|