File: engine_steamaudio.c

package info (click to toggle)
miniaudio 0.11.23%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,116 kB
  • sloc: ansic: 164,988; makefile: 4
file content (448 lines) | stat: -rw-r--r-- 17,911 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
/*
Demonstrates integration of Steam Audio with miniaudio's engine API.

In this example a HRTF effect from Steam Audio will be applied. To do this a custom node will be
implemented which uses Steam Audio's IPLBinauralEffect and IPLHRTF objects.

By implementing this as a node, it can be plugged into any position within the graph. The output
channel count of this node is always stereo.

Steam Audio requires fixed sized processing, the size of which must be specified at initialization
time of the IPLBinauralEffect and IPLHRTF objects. To ensure miniaudio and Steam Audio are
consistent, you must set the period size in the engine config to be consistent with the frame size
you specify in your IPLAudioSettings object. If for some reason you want the period size of the
engine to be different to that of your Steam Audio configuration, you'll need to implement a sort
of buffering solution to your node.
*/
#include "../miniaudio.c"

#include <stdint.h> /* Required for uint32_t which is used by STEAMAUDIO_VERSION, and a random use of uint8_t. If there's a Steam Audio maintainer reading this, that needs to be fixed to use IPLuint32 and IPLuint8. */

/* Need to silence some warnings from the Steam Audio headers. */
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
    #pragma GCC diagnostic push
    #pragma GCC diagnostic ignored "-Wlong-long"
    #pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <phonon.h> /* Steam Audio */
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
    #pragma GCC diagnostic pop
#endif

#define FORMAT      ma_format_f32   /* Must be floating point. */
#define CHANNELS    2               /* Must be stereo for this example. */
#define SAMPLE_RATE 48000


static ma_result ma_result_from_IPLerror(IPLerror error)
{
    switch (error)
    {
        case IPL_STATUS_SUCCESS:     return MA_SUCCESS;
        case IPL_STATUS_OUTOFMEMORY: return MA_OUT_OF_MEMORY;
        case IPL_STATUS_INITIALIZATION:
        case IPL_STATUS_FAILURE:
        default: return MA_ERROR;
    }
}


typedef struct
{
    ma_node_config nodeConfig;
    ma_uint32 channelsIn;
    IPLAudioSettings iplAudioSettings;
    IPLContext iplContext;
    IPLHRTF iplHRTF;   /* There is one HRTF object to many binaural effect objects. */
} ma_steamaudio_binaural_node_config;

MA_API ma_steamaudio_binaural_node_config ma_steamaudio_binaural_node_config_init(ma_uint32 channelsIn, IPLAudioSettings iplAudioSettings, IPLContext iplContext, IPLHRTF iplHRTF);


typedef struct
{
    ma_node_base baseNode;
    IPLAudioSettings iplAudioSettings;
    IPLContext iplContext;
    IPLHRTF iplHRTF;
    IPLBinauralEffect iplEffect;
    ma_vec3f direction;
    float* ppBuffersIn[2];      /* Each buffer is an offset of _pHeap. */
    float* ppBuffersOut[2];     /* Each buffer is an offset of _pHeap. */
    void* _pHeap;
} ma_steamaudio_binaural_node;

MA_API ma_result ma_steamaudio_binaural_node_init(ma_node_graph* pNodeGraph, const ma_steamaudio_binaural_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_steamaudio_binaural_node* pBinauralNode);
MA_API void ma_steamaudio_binaural_node_uninit(ma_steamaudio_binaural_node* pBinauralNode, const ma_allocation_callbacks* pAllocationCallbacks);
MA_API ma_result ma_steamaudio_binaural_node_set_direction(ma_steamaudio_binaural_node* pBinauralNode, float x, float y, float z);


MA_API ma_steamaudio_binaural_node_config ma_steamaudio_binaural_node_config_init(ma_uint32 channelsIn, IPLAudioSettings iplAudioSettings, IPLContext iplContext, IPLHRTF iplHRTF)
{
    ma_steamaudio_binaural_node_config config;

    MA_ZERO_OBJECT(&config);
    config.nodeConfig       = ma_node_config_init();
    config.channelsIn       = channelsIn;
    config.iplAudioSettings = iplAudioSettings;
    config.iplContext       = iplContext;
    config.iplHRTF          = iplHRTF;

    return config;
}


static void ma_steamaudio_binaural_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut)
{
    ma_steamaudio_binaural_node* pBinauralNode = (ma_steamaudio_binaural_node*)pNode;
    IPLBinauralEffectParams binauralParams;
    IPLAudioBuffer inputBufferDesc;
    IPLAudioBuffer outputBufferDesc;
    ma_uint32 totalFramesToProcess = *pFrameCountOut;
    ma_uint32 totalFramesProcessed = 0;

    MA_ZERO_OBJECT(&binauralParams);
    binauralParams.direction.x   = pBinauralNode->direction.x;
    binauralParams.direction.y   = pBinauralNode->direction.y;
    binauralParams.direction.z   = pBinauralNode->direction.z;
    binauralParams.interpolation = IPL_HRTFINTERPOLATION_NEAREST;
    binauralParams.spatialBlend  = 1.0f;
    binauralParams.hrtf          = pBinauralNode->iplHRTF;

    inputBufferDesc.numChannels = (IPLint32)ma_node_get_input_channels(pNode, 0);

    /* We'll run this in a loop just in case our deinterleaved buffers are too small. */
    outputBufferDesc.numSamples  = pBinauralNode->iplAudioSettings.frameSize;
    outputBufferDesc.numChannels = 2;
    outputBufferDesc.data        = pBinauralNode->ppBuffersOut;

    while (totalFramesProcessed < totalFramesToProcess) {
        ma_uint32 framesToProcessThisIteration = totalFramesToProcess - totalFramesProcessed;
        if (framesToProcessThisIteration > (ma_uint32)pBinauralNode->iplAudioSettings.frameSize) {
            framesToProcessThisIteration = (ma_uint32)pBinauralNode->iplAudioSettings.frameSize;
        }

        if (inputBufferDesc.numChannels == 1) {
            /* Fast path. No need for deinterleaving since it's a mono stream. */
            pBinauralNode->ppBuffersIn[0] = (float*)ma_offset_pcm_frames_const_ptr_f32(ppFramesIn[0], totalFramesProcessed, 1);
        } else {
            /* Slow path. Need to deinterleave the input data. */
            ma_deinterleave_pcm_frames(ma_format_f32, inputBufferDesc.numChannels, framesToProcessThisIteration, ma_offset_pcm_frames_const_ptr_f32(ppFramesIn[0], totalFramesProcessed, inputBufferDesc.numChannels), (void**)&pBinauralNode->ppBuffersIn[0]);
        }

        inputBufferDesc.data       = pBinauralNode->ppBuffersIn;
        inputBufferDesc.numSamples = (IPLint32)framesToProcessThisIteration;

        /* Apply the effect. */
        iplBinauralEffectApply(pBinauralNode->iplEffect, &binauralParams, &inputBufferDesc, &outputBufferDesc);

        /* Interleave straight into the output buffer. */
        ma_interleave_pcm_frames(ma_format_f32, 2, framesToProcessThisIteration, (const void**)&pBinauralNode->ppBuffersOut[0], ma_offset_pcm_frames_ptr_f32(ppFramesOut[0], totalFramesProcessed, 2));

        /* Advance. */
        totalFramesProcessed += framesToProcessThisIteration;
    }

    (void)pFrameCountIn;    /* Unused. */
}

static ma_node_vtable g_ma_steamaudio_binaural_node_vtable =
{
    ma_steamaudio_binaural_node_process_pcm_frames,
    NULL,
    1,  /* 1 input channel. */
    1,  /* 1 output channel. */
    0
};

MA_API ma_result ma_steamaudio_binaural_node_init(ma_node_graph* pNodeGraph, const ma_steamaudio_binaural_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_steamaudio_binaural_node* pBinauralNode)
{
    ma_result result;
    ma_node_config baseConfig;
    ma_uint32 channelsIn;
    ma_uint32 channelsOut;
    IPLBinauralEffectSettings iplBinauralEffectSettings;
    size_t heapSizeInBytes;

    if (pBinauralNode == NULL) {
        return MA_INVALID_ARGS;
    }

    MA_ZERO_OBJECT(pBinauralNode);

    if (pConfig == NULL || pConfig->iplAudioSettings.frameSize == 0 || pConfig->iplContext == NULL || pConfig->iplHRTF == NULL) {
        return MA_INVALID_ARGS;
    }

    /* Steam Audio only supports mono and stereo input. */
    if (pConfig->channelsIn < 1 || pConfig->channelsIn > 2) {
        return MA_INVALID_ARGS;
    }

    channelsIn  = pConfig->channelsIn;
    channelsOut = 2;    /* Always stereo output. */

    baseConfig = ma_node_config_init();
    baseConfig.vtable          = &g_ma_steamaudio_binaural_node_vtable;
    baseConfig.pInputChannels  = &channelsIn;
    baseConfig.pOutputChannels = &channelsOut;
    result = ma_node_init(pNodeGraph, &baseConfig, pAllocationCallbacks, &pBinauralNode->baseNode);
    if (result != MA_SUCCESS) {
        return result;
    }

    pBinauralNode->iplAudioSettings = pConfig->iplAudioSettings;
    pBinauralNode->iplContext       = pConfig->iplContext;
    pBinauralNode->iplHRTF          = pConfig->iplHRTF;

    MA_ZERO_OBJECT(&iplBinauralEffectSettings);
    iplBinauralEffectSettings.hrtf = pBinauralNode->iplHRTF;

    result = ma_result_from_IPLerror(iplBinauralEffectCreate(pBinauralNode->iplContext, &pBinauralNode->iplAudioSettings, &iplBinauralEffectSettings, &pBinauralNode->iplEffect));
    if (result != MA_SUCCESS) {
        ma_node_uninit(&pBinauralNode->baseNode, pAllocationCallbacks);
        return result;
    }

    heapSizeInBytes = 0;

    /*
    Unfortunately Steam Audio uses deinterleaved buffers for everything so we'll need to use some
    intermediary buffers. We'll allocate one big buffer on the heap and then use offsets. We'll
    use the frame size from the IPLAudioSettings structure as a basis for the size of the buffer.
    */
    heapSizeInBytes += sizeof(float) * channelsOut * pBinauralNode->iplAudioSettings.frameSize; /* Output buffer. */
    heapSizeInBytes += sizeof(float) * channelsIn  * pBinauralNode->iplAudioSettings.frameSize; /* Input buffer. */

    pBinauralNode->_pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks);
    if (pBinauralNode->_pHeap == NULL) {
        iplBinauralEffectRelease(&pBinauralNode->iplEffect);
        ma_node_uninit(&pBinauralNode->baseNode, pAllocationCallbacks);
        return MA_OUT_OF_MEMORY;
    }

    pBinauralNode->ppBuffersOut[0] = (float*)pBinauralNode->_pHeap;
    pBinauralNode->ppBuffersOut[1] = (float*)ma_offset_ptr(pBinauralNode->_pHeap, sizeof(float) * pBinauralNode->iplAudioSettings.frameSize);

    {
        ma_uint32 iChannelIn;
        for (iChannelIn = 0; iChannelIn < channelsIn; iChannelIn += 1) {
            pBinauralNode->ppBuffersIn[iChannelIn] = (float*)ma_offset_ptr(pBinauralNode->_pHeap, sizeof(float) * pBinauralNode->iplAudioSettings.frameSize * (channelsOut + iChannelIn));
        }
    }

    return MA_SUCCESS;
}

MA_API void ma_steamaudio_binaural_node_uninit(ma_steamaudio_binaural_node* pBinauralNode, const ma_allocation_callbacks* pAllocationCallbacks)
{
    if (pBinauralNode == NULL) {
        return;
    }

    /* The base node is always uninitialized first. */
    ma_node_uninit(&pBinauralNode->baseNode, pAllocationCallbacks);

    /*
    The Steam Audio objects are deleted after the base node. This ensures the base node is removed from the graph
    first to ensure these objects aren't getting used by the audio thread.
    */
    iplBinauralEffectRelease(&pBinauralNode->iplEffect);
    ma_free(pBinauralNode->_pHeap, pAllocationCallbacks);
}

MA_API ma_result ma_steamaudio_binaural_node_set_direction(ma_steamaudio_binaural_node* pBinauralNode, float x, float y, float z)
{
    if (pBinauralNode == NULL) {
        return MA_INVALID_ARGS;
    }

    pBinauralNode->direction.x = x;
    pBinauralNode->direction.y = y;
    pBinauralNode->direction.z = z;

    return MA_SUCCESS;
}




static ma_engine g_engine;
static ma_sound g_sound;            /* This example will play only a single sound at once, so we only need one `ma_sound` object. */
static ma_steamaudio_binaural_node g_binauralNode;   /* The echo effect is achieved using a delay node. */

int main(int argc, char** argv)
{
    ma_result result;
    ma_engine_config engineConfig;
    IPLAudioSettings iplAudioSettings;
    IPLContextSettings iplContextSettings;
    IPLContext iplContext;
    IPLHRTFSettings iplHRTFSettings;
    IPLHRTF iplHRTF;

    if (argc < 2) {
        printf("No input file.");
        return -1;
    }

    /* The engine needs to be initialized first. */
    engineConfig = ma_engine_config_init();
    engineConfig.channels   = CHANNELS;
    engineConfig.sampleRate = SAMPLE_RATE;

    /*
    Steam Audio requires processing in fixed sized chunks. Setting the period size in the engine config will
    ensure our updates happen in predicably sized chunks as required by Steam Audio.

    Note that the configuration of Steam Audio below (IPLAudioSettings) will use this variable to specify the
    update size to ensure it remains consistent.
    */
    engineConfig.periodSizeInFrames = 256;

    result = ma_engine_init(&engineConfig, &g_engine);
    if (result != MA_SUCCESS) {
        printf("Failed to initialize audio engine.");
        return -1;
    }

    /*
    Now that we have the engine we can initialize the Steam Audio objects.
    */
    MA_ZERO_OBJECT(&iplAudioSettings);
    iplAudioSettings.samplingRate = ma_engine_get_sample_rate(&g_engine);

    /*
    If there's any Steam Audio developers reading this, why is the frame size needed? This needs to
    be documented. If this is for some kind of buffer management with FFT or something, then this
    need not be exposed to the public API. There should be no need for the public API to require a
    fixed sized update.

    It's important that this be set to the periodSizeInFrames specified in the engine config above.
    This ensures updates on both the miniaudio side and the Steam Audio side are consistent.
    */
    iplAudioSettings.frameSize = engineConfig.periodSizeInFrames;


    /* IPLContext */
    MA_ZERO_OBJECT(&iplContextSettings);
    iplContextSettings.version = STEAMAUDIO_VERSION;
    
    result = ma_result_from_IPLerror(iplContextCreate(&iplContextSettings, &iplContext));
    if (result != MA_SUCCESS) {
        ma_engine_uninit(&g_engine);
        return result;
    }


    /* IPLHRTF */
    MA_ZERO_OBJECT(&iplHRTFSettings);
    iplHRTFSettings.type   = IPL_HRTFTYPE_DEFAULT;
    iplHRTFSettings.volume = 1;

    result = ma_result_from_IPLerror(iplHRTFCreate(iplContext, &iplAudioSettings, &iplHRTFSettings, &iplHRTF));
    if (result != MA_SUCCESS) {
        iplContextRelease(&iplContext);
        ma_engine_uninit(&g_engine);
        return result;
    }


    /*
    The binaural node will need to know the input channel count of the sound so we'll need to load
    the sound first. We'll initialize this such that it'll be initially detached from the graph.
    It will be attached to the graph after the binaural node is initialized.
    */
    {
        ma_sound_config soundConfig;

        soundConfig = ma_sound_config_init();
        soundConfig.pFilePath   = argv[1];
        soundConfig.flags       = MA_SOUND_FLAG_NO_DEFAULT_ATTACHMENT;  /* We'll attach this to the graph later. */

        result = ma_sound_init_ex(&g_engine, &soundConfig, &g_sound);
        if (result != MA_SUCCESS) {
            return result;
        }

        /* We'll let the Steam Audio binaural effect do the directional attenuation for us. */
        ma_sound_set_directional_attenuation_factor(&g_sound, 0);

        /* Loop the sound so we can get a continuous sound. */
        ma_sound_set_looping(&g_sound, MA_TRUE);
    }


    /*
    We'll build our graph starting from the end so initialize the binaural node now. The output of
    this node will be connected straight to the output. You could also attach it to a sound group
    or any other node that accepts an input.

    Creating a node requires a pointer to the node graph that owns it. The engine itself is a node
    graph. In the code below we can get a pointer to the node graph with `ma_engine_get_node_graph()`
    or we could simple cast the engine to a ma_node_graph* like so:
    
        (ma_node_graph*)&g_engine

    The endpoint of the graph can be retrieved with `ma_engine_get_endpoint()`.
    */
    {
        ma_steamaudio_binaural_node_config binauralNodeConfig;

        /*
        For this example we're just using the engine's channel count, but a more optimal solution
        might be to set this to mono if the source data is also mono.
        */
        binauralNodeConfig = ma_steamaudio_binaural_node_config_init(CHANNELS, iplAudioSettings, iplContext, iplHRTF);

        result = ma_steamaudio_binaural_node_init(ma_engine_get_node_graph(&g_engine), &binauralNodeConfig, NULL, &g_binauralNode);
        if (result != MA_SUCCESS) {
            printf("Failed to initialize binaural node.");
            return -1;
        }

        /* Connect the output of the delay node to the input of the endpoint. */
        ma_node_attach_output_bus(&g_binauralNode, 0, ma_engine_get_endpoint(&g_engine), 0);
    }


    /* We can now wire up the sound to the binaural node and start it. */
    ma_node_attach_output_bus(&g_sound, 0, &g_binauralNode, 0);
    ma_sound_start(&g_sound);

#if 1
    {
        /*
        We'll move the sound around the listener which we'll leave at the origin. We'll then get
        the direction to the listener and update the binaural node appropriately.
        */
        float stepAngle = 0.002f;
        float angle = 0;
        float distance = 2;

        for (;;) {
            double x = ma_cosd(angle) - ma_sind(angle);
            double y = ma_sind(angle) + ma_cosd(angle);
            ma_vec3f direction;

            ma_sound_set_position(&g_sound, (float)x * distance, 0, (float)y * distance);
            direction = ma_sound_get_direction_to_listener(&g_sound);

            /* Update the direction of the sound. */
            ma_steamaudio_binaural_node_set_direction(&g_binauralNode, direction.x, direction.y, direction.z);
            angle += stepAngle;

            ma_sleep(1);
        }
    }
#else
    printf("Press Enter to quit...");
    getchar();
#endif

    ma_sound_uninit(&g_sound);
    ma_steamaudio_binaural_node_uninit(&g_binauralNode, NULL);
    ma_engine_uninit(&g_engine);

    return 0;
}