1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include "minimap.h"
#include "kvec.h"
#include "khash.h"
#define idx_hash(a) ((a)>>1)
#define idx_eq(a, b) ((a)>>1 == (b)>>1)
KHASH_INIT(idx, uint64_t, uint64_t, 1, idx_hash, idx_eq)
typedef khash_t(idx) idxhash_t;
void kt_for(int n_threads, void (*func)(void*,long,int), void *data, long n);
mm_idx_t *mm_idx_init(int w, int k, int b)
{
mm_idx_t *mi;
if (k*2 < b) b = k * 2;
if (w < 1) w = 1;
mi = (mm_idx_t*)calloc(1, sizeof(mm_idx_t));
mi->w = w, mi->k = k, mi->b = b;
mi->max_occ = UINT32_MAX;
mi->B = (mm_idx_bucket_t*)calloc(1<<b, sizeof(mm_idx_bucket_t));
return mi;
}
void mm_idx_destroy(mm_idx_t *mi)
{
int i;
if (mi == 0) return;
for (i = 0; i < 1<<mi->b; ++i) {
free(mi->B[i].p);
free(mi->B[i].a.a);
kh_destroy(idx, (idxhash_t*)mi->B[i].h);
}
free(mi->B);
if (mi->name)
for (i = 0; i < mi->n; ++i) free(mi->name[i]);
free(mi->len); free(mi->name);
free(mi);
}
const uint64_t *mm_idx_get(const mm_idx_t *mi, uint64_t minier, int *n)
{
int mask = (1<<mi->b) - 1;
khint_t k;
mm_idx_bucket_t *b = &mi->B[minier&mask];
idxhash_t *h = (idxhash_t*)b->h;
*n = 0;
if (h == 0) return 0;
k = kh_get(idx, h, minier>>mi->b<<1);
if (k == kh_end(h)) return 0;
if (kh_key(h, k)&1) {
*n = 1;
return &kh_val(h, k);
} else {
*n = (uint32_t)kh_val(h, k);
return &b->p[kh_val(h, k)>>32];
}
}
uint32_t mm_idx_cal_max_occ(const mm_idx_t *mi, float f)
{
int i;
size_t n = 0;
uint32_t thres;
khint_t *a, k;
if (f <= 0.) return UINT32_MAX;
for (i = 0; i < 1<<mi->b; ++i)
if (mi->B[i].h) n += kh_size((idxhash_t*)mi->B[i].h);
a = (uint32_t*)malloc(n * 4);
for (i = n = 0; i < 1<<mi->b; ++i) {
idxhash_t *h = (idxhash_t*)mi->B[i].h;
if (h == 0) continue;
for (k = 0; k < kh_end(h); ++k) {
if (!kh_exist(h, k)) continue;
a[n++] = kh_key(h, k)&1? 1 : (uint32_t)kh_val(h, k);
}
}
thres = ks_ksmall_uint32_t(n, a, (uint32_t)((1. - f) * n)) + 1;
free(a);
return thres;
}
void mm_idx_set_max_occ(mm_idx_t *mi, float f)
{
mi->freq_thres = f;
mi->max_occ = mm_idx_cal_max_occ(mi, f);
}
/*********************************
* Sort and generate hash tables *
*********************************/
static void worker_post(void *g, long i, int tid)
{
int j, start_a, start_p, n, n_keys;
idxhash_t *h;
mm_idx_t *mi = (mm_idx_t*)g;
mm_idx_bucket_t *b = &mi->B[i];
if (b->a.n == 0) return;
// sort by minimizer
radix_sort_128x(b->a.a, b->a.a + b->a.n);
// count and preallocate
for (j = 1, n = 1, n_keys = 0, b->n = 0; j <= b->a.n; ++j) {
if (j == b->a.n || b->a.a[j].x != b->a.a[j-1].x) {
++n_keys;
if (n > 1) b->n += n;
n = 1;
} else ++n;
}
h = kh_init(idx);
kh_resize(idx, h, n_keys);
b->p = (uint64_t*)calloc(b->n, 8);
// create the hash table
for (j = 1, n = 1, start_a = start_p = 0; j <= b->a.n; ++j) {
if (j == b->a.n || b->a.a[j].x != b->a.a[j-1].x) {
khint_t itr;
int absent;
mm128_t *p = &b->a.a[j-1];
itr = kh_put(idx, h, p->x>>mi->b<<1, &absent);
assert(absent && j - start_a == n);
if (n == 1) {
kh_key(h, itr) |= 1;
kh_val(h, itr) = p->y;
} else {
int k;
for (k = 0; k < n; ++k)
b->p[start_p + k] = b->a.a[start_a + k].y;
kh_val(h, itr) = (uint64_t)start_p<<32 | n;
start_p += n;
}
start_a = j, n = 1;
} else ++n;
}
b->h = h;
assert(b->n == start_p);
// deallocate and clear b->a
free(b->a.a);
b->a.n = b->a.m = 0, b->a.a = 0;
}
static void mm_idx_post(mm_idx_t *mi, int n_threads)
{
kt_for(n_threads, worker_post, mi, 1<<mi->b);
}
/******************
* Generate index *
******************/
#include <string.h>
#include <zlib.h>
#include "bseq.h"
void kt_pipeline(int n_threads, void *(*func)(void*, int, void*), void *shared_data, int n_steps);
typedef struct {
int tbatch_size, n_processed, keep_name;
bseq_file_t *fp;
uint64_t ibatch_size, n_read;
mm_idx_t *mi;
} pipeline_t;
typedef struct {
int n_seq;
bseq1_t *seq;
mm128_v a;
} step_t;
static void mm_idx_add(mm_idx_t *mi, int n, const mm128_t *a)
{
int i, mask = (1<<mi->b) - 1;
for (i = 0; i < n; ++i) {
mm128_v *p = &mi->B[a[i].x&mask].a;
kv_push(mm128_t, *p, a[i]);
}
}
static void *worker_pipeline(void *shared, int step, void *in)
{
int i;
pipeline_t *p = (pipeline_t*)shared;
if (step == 0) { // step 0: read sequences
step_t *s;
if (p->n_read > p->ibatch_size) return 0;
s = (step_t*)calloc(1, sizeof(step_t));
s->seq = bseq_read(p->fp, p->tbatch_size, &s->n_seq);
if (s->seq) {
uint32_t old_m = p->mi->n, m, n;
assert((uint64_t)p->n_processed + s->n_seq <= INT32_MAX);
m = n = p->mi->n + s->n_seq;
kroundup32(m); kroundup32(old_m);
if (old_m != m) {
if (p->keep_name)
p->mi->name = (char**)realloc(p->mi->name, m * sizeof(char*));
p->mi->len = (int*)realloc(p->mi->len, m * sizeof(int));
}
for (i = 0; i < s->n_seq; ++i) {
if (p->keep_name) {
assert(strlen(s->seq[i].name) <= 254);
p->mi->name[p->mi->n] = strdup(s->seq[i].name);
}
p->mi->len[p->mi->n++] = s->seq[i].l_seq;
s->seq[i].rid = p->n_processed++;
p->n_read += s->seq[i].l_seq;
}
return s;
} else free(s);
} else if (step == 1) { // step 1: compute sketch
step_t *s = (step_t*)in;
for (i = 0; i < s->n_seq; ++i) {
bseq1_t *t = &s->seq[i];
mm_sketch(t->seq, t->l_seq, p->mi->w, p->mi->k, t->rid, &s->a);
free(t->seq); free(t->name);
}
free(s->seq); s->seq = 0;
return s;
} else if (step == 2) { // dispatch sketch to buckets
step_t *s = (step_t*)in;
mm_idx_add(p->mi, s->a.n, s->a.a);
free(s->a.a); free(s);
}
return 0;
}
mm_idx_t *mm_idx_gen(bseq_file_t *fp, int w, int k, int b, int tbatch_size, int n_threads, uint64_t ibatch_size, int keep_name)
{
pipeline_t pl;
memset(&pl, 0, sizeof(pipeline_t));
pl.tbatch_size = tbatch_size;
pl.keep_name = keep_name;
pl.ibatch_size = ibatch_size;
pl.fp = fp;
if (pl.fp == 0) return 0;
pl.mi = mm_idx_init(w, k, b);
kt_pipeline(n_threads < 3? n_threads : 3, worker_pipeline, &pl, 3);
if (mm_verbose >= 3)
fprintf(stderr, "[M::%s::%.3f*%.2f] collected minimizers\n", __func__, realtime() - mm_realtime0, cputime() / (realtime() - mm_realtime0));
mm_idx_post(pl.mi, n_threads);
if (mm_verbose >= 3)
fprintf(stderr, "[M::%s::%.3f*%.2f] sorted minimizers\n", __func__, realtime() - mm_realtime0, cputime() / (realtime() - mm_realtime0));
return pl.mi;
}
mm_idx_t *mm_idx_build(const char *fn, int w, int k, int n_threads) // a simpler interface
{
bseq_file_t *fp;
mm_idx_t *mi;
fp = bseq_open(fn);
if (fp == 0) return 0;
mi = mm_idx_gen(fp, w, k, MM_IDX_DEF_B, 1<<18, n_threads, UINT64_MAX, 1);
mm_idx_set_max_occ(mi, 0.001);
bseq_close(fp);
return mi;
}
/*************
* index I/O *
*************/
#define MM_IDX_MAGIC "MMI\1"
void mm_idx_dump(FILE *fp, const mm_idx_t *mi)
{
uint32_t x[6];
int i;
x[0] = mi->w, x[1] = mi->k, x[2] = mi->b, x[3] = mi->n, x[4] = mi->name? 1 : 0, x[5] = mi->max_occ;
fwrite(MM_IDX_MAGIC, 1, 4, fp);
fwrite(x, 4, 6, fp);
fwrite(&mi->freq_thres, sizeof(float), 1, fp);
fwrite(mi->len, 4, mi->n, fp);
if (mi->name) {
for (i = 0; i < mi->n; ++i) {
uint8_t l;
l = strlen(mi->name[i]);
fwrite(&l, 1, 1, fp);
fwrite(mi->name[i], 1, l, fp);
}
}
for (i = 0; i < 1<<mi->b; ++i) {
mm_idx_bucket_t *b = &mi->B[i];
khint_t k;
idxhash_t *h = (idxhash_t*)b->h;
uint32_t size = h? h->size : 0;
fwrite(&b->n, 4, 1, fp);
fwrite(b->p, 8, b->n, fp);
fwrite(&size, 4, 1, fp);
if (size == 0) continue;
for (k = 0; k < kh_end(h); ++k) {
uint64_t x[2];
if (!kh_exist(h, k)) continue;
x[0] = kh_key(h, k), x[1] = kh_val(h, k);
fwrite(x, 8, 2, fp);
}
}
}
mm_idx_t *mm_idx_load(FILE *fp)
{
int i;
char magic[4];
uint32_t x[6];
mm_idx_t *mi;
if (fread(magic, 1, 4, fp) != 4) return 0;
if (strncmp(magic, MM_IDX_MAGIC, 4) != 0) return 0;
if (fread(x, 4, 6, fp) != 6) return 0;
mi = mm_idx_init(x[0], x[1], x[2]);
mi->n = x[3], mi->max_occ = x[5];
fread(&mi->freq_thres, sizeof(float), 1, fp);
mi->len = (int32_t*)malloc(mi->n * 4);
fread(mi->len, 4, mi->n, fp);
if (x[4]) { // has names
mi->name = (char**)calloc(mi->n, sizeof(char*));
for (i = 0; i < mi->n; ++i) {
uint8_t l;
fread(&l, 1, 1, fp);
mi->name[i] = (char*)malloc(l + 1);
fread(mi->name[i], 1, l, fp);
mi->name[i][l] = 0;
}
}
for (i = 0; i < 1<<mi->b; ++i) {
mm_idx_bucket_t *b = &mi->B[i];
uint32_t j, size;
khint_t k;
idxhash_t *h;
fread(&b->n, 4, 1, fp);
b->p = (uint64_t*)malloc(b->n * 8);
fread(b->p, 8, b->n, fp);
fread(&size, 4, 1, fp);
if (size == 0) continue;
b->h = h = kh_init(idx);
kh_resize(idx, h, size);
for (j = 0; j < size; ++j) {
uint64_t x[2];
int absent;
fread(x, 8, 2, fp);
k = kh_put(idx, h, x[0], &absent);
assert(absent);
kh_val(h, k) = x[1];
}
}
return mi;
}
|