1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "bseq.h"
#include "kvec.h"
#include "minimap.h"
#include "sdust.h"
void mm_mapopt_init(mm_mapopt_t *opt)
{
opt->radius = 500;
opt->max_gap = 10000;
opt->min_cnt = 4;
opt->min_match = 40;
opt->sdust_thres = 0;
opt->flag = MM_F_WITH_REP;
opt->merge_frac = .5;
}
/****************************
* Find approxiate mappings *
****************************/
struct mm_tbuf_s { // per-thread buffer
mm128_v mini; // query minimizers
mm128_v coef; // Hough transform coefficient
mm128_v intv; // intervals on sorted coef
uint32_v reg2mini;
uint32_v rep_aux;
sdust_buf_t *sdb;
// the following are for computing LIS
uint32_t n, m;
uint64_t *a;
size_t *b, *p;
// final output
kvec_t(mm_reg1_t) reg;
};
mm_tbuf_t *mm_tbuf_init()
{
mm_tbuf_t *b;
b = (mm_tbuf_t*)calloc(1, sizeof(mm_tbuf_t));
b->sdb = sdust_buf_init();
return b;
}
void mm_tbuf_destroy(mm_tbuf_t *b)
{
if (b == 0) return;
free(b->mini.a); free(b->coef.a); free(b->intv.a); free(b->reg.a); free(b->reg2mini.a); free(b->rep_aux.a);
free(b->a); free(b->b); free(b->p);
sdust_buf_destroy(b->sdb);
free(b);
}
#include "ksort.h"
#define sort_key_64(a) (a)
KRADIX_SORT_INIT(64, uint64_t, sort_key_64, 8)
#define lt_low32(a, b) ((uint32_t)(a) < (uint32_t)(b))
KSORT_INIT(low32lt, uint64_t, lt_low32)
#define gt_low32(a, b) ((uint32_t)(a) > (uint32_t)(b))
KSORT_INIT(low32gt, uint64_t, gt_low32)
/* TODO: drop_rep() is not robust. For all-vs-all mapping but without the -S
* flag, all minimizers have at least one hit. The _thres_ computed below will
* be highly skewed. Some improvements need to be made. */
static void drop_rep(mm_tbuf_t *b, int min_cnt)
{
int i, j, n, m;
uint32_t thres;
b->rep_aux.n = 0;
for (i = 0; i < b->mini.n; ++i)
if (b->mini.a[i].y>>32)
kv_push(uint32_t, b->rep_aux, b->mini.a[i].y>>32);
if (b->rep_aux.n < 3) return;
thres = (uint32_t)(ks_ksmall_uint32_t(b->rep_aux.n, b->rep_aux.a, b->rep_aux.n>>1) * MM_DEREP_Q50 + .499);
for (i = n = m = 0; i < b->reg.n; ++i) {
int cnt = 0, all_cnt = b->reg.a[i].cnt;
for (j = 0; j < all_cnt; ++j)
if (b->mini.a[b->reg2mini.a[m + j]].y>>32 <= thres)
++cnt;
if (cnt >= min_cnt)
b->reg.a[n++] = b->reg.a[i];
m += all_cnt;
}
// printf("%ld=>%d\t%d\n", b->reg.n, n, thres);
b->reg.n = n;
}
static void proc_intv(mm_tbuf_t *b, int which, int k, int min_cnt, int max_gap)
{
int i, j, l_lis, rid = -1, rev = 0, start = b->intv.a[which].y, end = start + b->intv.a[which].x;
// make room for arrays needed by LIS (longest increasing sequence)
if (end - start > b->m) {
b->m = end - start;
kv_roundup32(b->m);
b->a = (uint64_t*)realloc(b->a, b->m * 8);
b->b = (size_t*)realloc(b->b, b->m * sizeof(size_t));
b->p = (size_t*)realloc(b->p, b->m * sizeof(size_t));
}
// prepare the input array _a_ for LIS
b->n = 0;
for (i = start; i < end; ++i)
if (b->coef.a[i].x != UINT64_MAX)
b->a[b->n++] = b->coef.a[i].y, rid = b->coef.a[i].x << 1 >> 33, rev = b->coef.a[i].x >> 63;
if (b->n < min_cnt) return;
radix_sort_64(b->a, b->a + b->n);
// find the longest increasing sequence
l_lis = rev? ks_lis_low32gt(b->n, b->a, b->b, b->p) : ks_lis_low32lt(b->n, b->a, b->b, b->p); // LIS
if (l_lis < min_cnt) return;
for (i = 1, j = 1; i < l_lis; ++i) // squeeze out minimizaers reused in the LIS sequence
if (b->a[b->b[i]]>>32 != b->a[b->b[i-1]]>>32)
b->a[b->b[j++]] = b->a[b->b[i]];
l_lis = j;
if (l_lis < min_cnt) return;
// convert LISes to regions; possibly break an LIS at a long gaps
for (i = 1, start = 0; i <= l_lis; ++i) {
int32_t qgap = i == l_lis? 0 : ((uint32_t)b->mini.a[b->a[b->b[i]]>>32].y>>1) - ((uint32_t)b->mini.a[b->a[b->b[i-1]]>>32].y>>1);
if (i == l_lis || (qgap > max_gap && abs((int32_t)b->a[b->b[i]] - (int32_t)b->a[b->b[i-1]]) > max_gap)) {
if (i - start >= min_cnt) {
uint32_t lq = 0, lr = 0, eq = 0, er = 0, sq = 0, sr = 0;
mm_reg1_t *r;
kv_pushp(mm_reg1_t, b->reg, &r);
r->rid = rid, r->rev = rev, r->cnt = i - start, r->rep = 0;
r->qs = ((uint32_t)b->mini.a[b->a[b->b[start]]>>32].y>>1) - (k - 1);
r->qe = ((uint32_t)b->mini.a[b->a[b->b[i-1]]>>32].y>>1) + 1;
r->rs = rev? (uint32_t)b->a[b->b[i-1]] : (uint32_t)b->a[b->b[start]];
r->re = rev? (uint32_t)b->a[b->b[start]] : (uint32_t)b->a[b->b[i-1]];
r->rs -= k - 1;
r->re += 1;
for (j = start; j < i; ++j) { // count the number of times each minimizer is used
int jj = b->a[b->b[j]]>>32;
b->mini.a[jj].y += 1ULL<<32;
kv_push(uint32_t, b->reg2mini, jj); // keep minimizer<=>reg mapping for derep
}
for (j = start; j < i; ++j) { // compute ->len
uint32_t q = ((uint32_t)b->mini.a[b->a[b->b[j]]>>32].y>>1) - (k - 1);
uint32_t r = (uint32_t)b->a[b->b[j]];
r = !rev? r - (k - 1) : (0x80000000U - r);
if (r > er) lr += er - sr, sr = r, er = sr + k;
else er = r + k;
if (q > eq) lq += eq - sq, sq = q, eq = sq + k;
else eq = q + k;
}
lr += er - sr, lq += eq - sq;
r->len = lr < lq? lr : lq;
}
start = i;
}
}
}
// merge or add a Hough interval; only used by get_reg()
static inline void push_intv(mm128_v *intv, int start, int end, float merge_frac)
{
mm128_t *p;
if (intv->n > 0) { // test overlap
int last_start, last_end, min;
p = &intv->a[intv->n-1];
last_start = p->y, last_end = p->x + last_start;
min = end - start < last_end - last_start? end - start : last_end - last_start;
if (last_end > start && last_end - start > min * merge_frac) { // large overlap; then merge
p->x = end - last_start;
return;
}
}
kv_pushp(mm128_t, *intv, &p); // a new interval
p->x = end - start, p->y = start;
}
// find mapping regions from a list of minimizer hits
static void get_reg(mm_tbuf_t *b, int radius, int k, int min_cnt, int max_gap, float merge_frac, int flag)
{
const uint64_t v_kept = ~(1ULL<<31), v_dropped = 1ULL<<31;
mm128_v *c = &b->coef;
int i, j, start = 0, iso_dist = radius * 2;
if (c->n < min_cnt) return;
// drop isolated minimizer hits
if (flag&MM_F_NO_ISO) {
for (i = 0; i < c->n; ++i) c->a[i].y |= v_dropped;
for (i = 1; i < c->n; ++i) {
uint64_t x = c->a[i].x;
int32_t rpos = (uint32_t)c->a[i].y;
for (j = i - 1; j >= 0 && x - c->a[j].x < radius; --j) {
int32_t y = c->a[j].y;
if (abs(y - rpos) < iso_dist) {
c->a[i].y &= v_kept, c->a[j].y &= v_kept;
break;
}
}
}
for (i = j = 0; i < c->n; ++i) // squeeze out hits still marked as v_dropped
if ((c->a[i].y&v_dropped) == 0)
c->a[j++] = c->a[i];
c->n = j;
}
// identify (possibly overlapping) intervals within _radius_; an interval is a cluster of hits
b->intv.n = 0;
for (i = 1; i < c->n; ++i) {
if (c->a[i].x - c->a[start].x > radius) {
if (i - start >= min_cnt) push_intv(&b->intv, start, i, merge_frac);
for (++start; start < i && c->a[i].x - c->a[start].x > radius; ++start);
}
}
if (i - start >= min_cnt) push_intv(&b->intv, start, i, merge_frac);
// sort by the size of the interval
radix_sort_128x(b->intv.a, b->intv.a + b->intv.n);
// generate hits, starting from the largest interval
b->reg2mini.n = 0;
for (i = b->intv.n - 1; i >= 0; --i) proc_intv(b, i, k, min_cnt, max_gap);
// post repeat removal
if (!(flag&MM_F_WITH_REP)) drop_rep(b, min_cnt);
}
const mm_reg1_t *mm_map(const mm_idx_t *mi, int l_seq, const char *seq, int *n_regs, mm_tbuf_t *b, const mm_mapopt_t *opt, const char *name)
{
int j, n_dreg = 0, u = 0;
const uint64_t *dreg = 0;
b->mini.n = b->coef.n = 0;
mm_sketch(seq, l_seq, mi->w, mi->k, 0, &b->mini);
if (opt->sdust_thres > 0)
dreg = sdust_core((const uint8_t*)seq, l_seq, opt->sdust_thres, 64, &n_dreg, b->sdb);
for (j = 0; j < b->mini.n; ++j) {
int k, n;
const uint64_t *r;
int32_t qpos = (uint32_t)b->mini.a[j].y>>1, strand = b->mini.a[j].y&1;
b->mini.a[j].y = b->mini.a[j].y<<32>>32; // clear the rid field
if (dreg && n_dreg) { // test complexity
int s = qpos - (mi->k - 1), e = s + mi->k;
while (u < n_dreg && (uint32_t)dreg[u] <= s) ++u;
if (u < n_dreg && dreg[u]>>32 < e) {
int v, l = 0;
for (v = u; v < n_dreg && dreg[v]>>32 < e; ++v) { // iterate over LCRs overlapping this minimizer
int ss = s > dreg[v]>>32? s : dreg[v]>>32;
int ee = e < (uint32_t)dreg[v]? e : (uint32_t)dreg[v];
l += ee - ss;
}
if (l > mi->k>>1) continue;
}
}
r = mm_idx_get(mi, b->mini.a[j].x, &n);
if (n > mi->max_occ) continue;
for (k = 0; k < n; ++k) {
int32_t rpos = (uint32_t)r[k] >> 1;
mm128_t *p;
if (name && (opt->flag&MM_F_NO_SELF) && mi->name && strcmp(name, mi->name[r[k]>>32]) == 0 && rpos == qpos)
continue;
if (name && (opt->flag&MM_F_AVA) && mi->name && strcmp(name, mi->name[r[k]>>32]) > 0)
continue;
kv_pushp(mm128_t, b->coef, &p);
if ((r[k]&1) == strand) { // forward strand
p->x = (uint64_t)r[k] >> 32 << 32 | (0x80000000U + rpos - qpos);
p->y = (uint64_t)j << 32 | rpos;
} else { // reverse strand
p->x = (uint64_t)r[k] >> 32 << 32 | (rpos + qpos) | 1ULL<<63;
p->y = (uint64_t)j << 32 | rpos;
}
}
}
radix_sort_128x(b->coef.a, b->coef.a + b->coef.n);
b->reg.n = 0;
get_reg(b, opt->radius, mi->k, opt->min_cnt, opt->max_gap, opt->merge_frac, opt->flag);
*n_regs = b->reg.n;
return b->reg.a;
}
/**************************
* Multi-threaded mapping *
**************************/
void kt_for(int n_threads, void (*func)(void*,long,int), void *data, long n);
void kt_pipeline(int n_threads, void *(*func)(void*, int, void*), void *shared_data, int n_steps);
typedef struct {
int batch_size, n_processed, n_threads;
const mm_mapopt_t *opt;
bseq_file_t *fp;
const mm_idx_t *mi;
} pipeline_t;
typedef struct {
const pipeline_t *p;
int n_seq;
bseq1_t *seq;
int *n_reg;
mm_reg1_t **reg;
mm_tbuf_t **buf;
} step_t;
static void worker_for(void *_data, long i, int tid) // kt_for() callback
{
step_t *step = (step_t*)_data;
const mm_reg1_t *regs;
int n_regs;
regs = mm_map(step->p->mi, step->seq[i].l_seq, step->seq[i].seq, &n_regs, step->buf[tid], step->p->opt, step->seq[i].name);
step->n_reg[i] = n_regs;
if (n_regs > 0) {
step->reg[i] = (mm_reg1_t*)malloc(n_regs * sizeof(mm_reg1_t));
memcpy(step->reg[i], regs, n_regs * sizeof(mm_reg1_t));
}
}
static void *worker_pipeline(void *shared, int step, void *in)
{
int i, j;
pipeline_t *p = (pipeline_t*)shared;
if (step == 0) { // step 0: read sequences
step_t *s;
s = (step_t*)calloc(1, sizeof(step_t));
s->seq = bseq_read(p->fp, p->batch_size, &s->n_seq);
if (s->seq) {
s->p = p;
for (i = 0; i < s->n_seq; ++i)
s->seq[i].rid = p->n_processed++;
s->buf = (mm_tbuf_t**)calloc(p->n_threads, sizeof(mm_tbuf_t*));
for (i = 0; i < p->n_threads; ++i)
s->buf[i] = mm_tbuf_init();
s->n_reg = (int*)calloc(s->n_seq, sizeof(int));
s->reg = (mm_reg1_t**)calloc(s->n_seq, sizeof(mm_reg1_t**));
return s;
} else free(s);
} else if (step == 1) { // step 1: map
kt_for(p->n_threads, worker_for, in, ((step_t*)in)->n_seq);
return in;
} else if (step == 2) { // step 2: output
step_t *s = (step_t*)in;
const mm_idx_t *mi = p->mi;
for (i = 0; i < p->n_threads; ++i) mm_tbuf_destroy(s->buf[i]);
free(s->buf);
for (i = 0; i < s->n_seq; ++i) {
bseq1_t *t = &s->seq[i];
for (j = 0; j < s->n_reg[i]; ++j) {
mm_reg1_t *r = &s->reg[i][j];
if (r->len < p->opt->min_match) continue;
printf("%s\t%d\t%d\t%d\t%c\t", t->name, t->l_seq, r->qs, r->qe, "+-"[r->rev]);
if (mi->name) fputs(mi->name[r->rid], stdout);
else printf("%d", r->rid + 1);
printf("\t%d\t%d\t%d\t%d\t%d\t255\tcm:i:%d\n", mi->len[r->rid], r->rs, r->re, r->len,
r->re - r->rs > r->qe - r->qs? r->re - r->rs : r->qe - r->qs, r->cnt);
}
free(s->reg[i]);
free(s->seq[i].seq); free(s->seq[i].name);
}
free(s->reg); free(s->n_reg); free(s->seq);
free(s);
}
return 0;
}
int mm_map_file(const mm_idx_t *idx, const char *fn, const mm_mapopt_t *opt, int n_threads, int tbatch_size)
{
pipeline_t pl;
memset(&pl, 0, sizeof(pipeline_t));
pl.fp = bseq_open(fn);
if (pl.fp == 0) return -1;
pl.opt = opt, pl.mi = idx;
pl.n_threads = n_threads, pl.batch_size = tbatch_size;
kt_pipeline(n_threads == 1? 1 : 2, worker_pipeline, &pl, 3);
bseq_close(pl.fp);
return 0;
}
|