1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
|
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "minimap.h"
#include "mmpriv.h"
#include "ksw2.h"
static void ksw_gen_simple_mat(int m, int8_t *mat, int8_t a, int8_t b, int8_t sc_ambi)
{
int i, j;
a = a < 0? -a : a;
b = b > 0? -b : b;
sc_ambi = sc_ambi > 0? -sc_ambi : sc_ambi;
for (i = 0; i < m - 1; ++i) {
for (j = 0; j < m - 1; ++j)
mat[i * m + j] = i == j? a : b;
mat[i * m + m - 1] = sc_ambi;
}
for (j = 0; j < m; ++j)
mat[(m - 1) * m + j] = sc_ambi;
}
static inline void mm_seq_rev(uint32_t len, uint8_t *seq)
{
uint32_t i;
uint8_t t;
for (i = 0; i < len>>1; ++i)
t = seq[i], seq[i] = seq[len - 1 - i], seq[len - 1 - i] = t;
}
static inline void update_max_zdrop(int32_t score, int i, int j, int32_t *max, int *max_i, int *max_j, int e, int *max_zdrop, int pos[2][2])
{
if (score < *max) {
int li = i - *max_i;
int lj = j - *max_j;
int diff = li > lj? li - lj : lj - li;
int z = *max - score - diff * e;
if (z > *max_zdrop) {
*max_zdrop = z;
pos[0][0] = *max_i, pos[0][1] = i + 1;
pos[1][0] = *max_j, pos[1][1] = j + 1;
}
} else *max = score, *max_i = i, *max_j = j;
}
static int mm_test_zdrop(void *km, const mm_mapopt_t *opt, const uint8_t *qseq, const uint8_t *tseq, uint32_t n_cigar, uint32_t *cigar, const int8_t *mat)
{
uint32_t k;
int32_t score = 0, max = INT32_MIN, max_i = -1, max_j = -1, i = 0, j = 0, max_zdrop = 0;
int pos[2][2] = {{-1, -1}, {-1, -1}}, q_len, t_len;
// find the score and the region where score drops most along diagonal
for (k = 0, score = 0; k < n_cigar; ++k) {
uint32_t l, op = cigar[k]&0xf, len = cigar[k]>>4;
if (op == 0) {
for (l = 0; l < len; ++l) {
score += mat[tseq[i + l] * 5 + qseq[j + l]];
update_max_zdrop(score, i+l, j+l, &max, &max_i, &max_j, opt->e, &max_zdrop, pos);
}
i += len, j += len;
} else if (op == 1 || op == 2 || op == 3) {
score -= opt->q + opt->e * len;
if (op == 1) j += len; // insertion
else i += len; // deletion
update_max_zdrop(score, i, j, &max, &max_i, &max_j, opt->e, &max_zdrop, pos);
}
}
// test if there is an inversion in the most dropped region
q_len = pos[1][1] - pos[1][0], t_len = pos[0][1] - pos[0][0];
if (!(opt->flag&(MM_F_SPLICE|MM_F_SR|MM_F_FOR_ONLY|MM_F_REV_ONLY)) && max_zdrop > opt->zdrop_inv && q_len < opt->max_gap && t_len < opt->max_gap) {
uint8_t *qseq2;
void *qp;
int q_off, t_off;
qseq2 = (uint8_t*)kmalloc(km, q_len);
for (i = 0; i < q_len; ++i) {
int c = qseq[pos[1][1] - i - 1];
qseq2[i] = c >= 4? 4 : 3 - c;
}
qp = ksw_ll_qinit(km, 2, q_len, qseq2, 5, mat);
score = ksw_ll_i16(qp, t_len, tseq + pos[0][0], opt->q, opt->e, &q_off, &t_off);
kfree(km, qseq2);
kfree(km, qp);
if (score >= opt->min_chain_score * opt->a && score >= opt->min_dp_max)
return 2; // there is a potential inversion
}
return max_zdrop > opt->zdrop? 1 : 0;
}
static void mm_fix_cigar(mm_reg1_t *r, const uint8_t *qseq, const uint8_t *tseq, int *qshift, int *tshift)
{
mm_extra_t *p = r->p;
int32_t toff = 0, qoff = 0, to_shrink = 0;
uint32_t k;
*qshift = *tshift = 0;
if (p->n_cigar <= 1) return;
for (k = 0; k < p->n_cigar; ++k) { // indel left alignment
uint32_t op = p->cigar[k]&0xf, len = p->cigar[k]>>4;
if (len == 0) to_shrink = 1;
if (op == 0) {
toff += len, qoff += len;
} else if (op == 1 || op == 2) { // insertion or deletion
if (k > 0 && k < p->n_cigar - 1 && (p->cigar[k-1]&0xf) == 0 && (p->cigar[k+1]&0xf) == 0) {
int l, prev_len = p->cigar[k-1] >> 4;
if (op == 1) {
for (l = 0; l < prev_len; ++l)
if (qseq[qoff - 1 - l] != qseq[qoff + len - 1 - l])
break;
} else {
for (l = 0; l < prev_len; ++l)
if (tseq[toff - 1 - l] != tseq[toff + len - 1 - l])
break;
}
if (l > 0)
p->cigar[k-1] -= l<<4, p->cigar[k+1] += l<<4, qoff -= l, toff -= l;
if (l == prev_len) to_shrink = 1;
}
if (op == 1) qoff += len;
else toff += len;
} else if (op == 3) {
toff += len;
}
}
assert(qoff == r->qe - r->qs && toff == r->re - r->rs);
for (k = 0; k < p->n_cigar - 2; ++k) { // fix CIGAR like 5I6D7I
if ((p->cigar[k]&0xf) > 0 && (p->cigar[k]&0xf) + (p->cigar[k+1]&0xf) == 3) {
uint32_t l, s[3] = {0,0,0};
for (l = k; l < p->n_cigar; ++l) { // count number of adjacent I and D
uint32_t op = p->cigar[l]&0xf;
if (op == 1 || op == 2 || p->cigar[l]>>4 == 0)
s[op] += p->cigar[l] >> 4;
else break;
}
if (s[1] > 0 && s[2] > 0 && l - k > 2) { // turn to a single I and a single D
p->cigar[k] = s[1]<<4|1;
p->cigar[k+1] = s[2]<<4|2;
for (k += 2; k < l; ++k)
p->cigar[k] &= 0xf;
to_shrink = 1;
}
k = l;
}
}
if (to_shrink) { // squeeze out zero-length operations
int32_t l = 0;
for (k = 0; k < p->n_cigar; ++k) // squeeze out zero-length operations
if (p->cigar[k]>>4 != 0)
p->cigar[l++] = p->cigar[k];
p->n_cigar = l;
for (k = l = 0; k < p->n_cigar; ++k) // merge two adjacent operations if they are the same
if (k == p->n_cigar - 1 || (p->cigar[k]&0xf) != (p->cigar[k+1]&0xf))
p->cigar[l++] = p->cigar[k];
else p->cigar[k+1] += p->cigar[k]>>4<<4; // add length to the next CIGAR operator
p->n_cigar = l;
}
if ((p->cigar[0]&0xf) == 1 || (p->cigar[0]&0xf) == 2) { // get rid of leading I or D
int32_t l = p->cigar[0] >> 4;
if ((p->cigar[0]&0xf) == 1) {
if (r->rev) r->qe -= l;
else r->qs += l;
*qshift = l;
} else r->rs += l, *tshift = l;
--p->n_cigar;
memmove(p->cigar, p->cigar + 1, p->n_cigar * 4);
}
}
static void mm_update_cigar_eqx(mm_reg1_t *r, const uint8_t *qseq, const uint8_t *tseq) // written by @armintoepfer
{
uint32_t n_EQX = 0;
uint32_t k, l, m, cap, toff = 0, qoff = 0, n_M = 0;
mm_extra_t *p;
if (r->p == 0) return;
for (k = 0; k < r->p->n_cigar; ++k) {
uint32_t op = r->p->cigar[k]&0xf, len = r->p->cigar[k]>>4;
if (op == 0) {
while (len > 0) {
for (l = 0; l < len && qseq[qoff + l] == tseq[toff + l]; ++l) {} // run of "="; TODO: N<=>N is converted to "="
if (l > 0) { ++n_EQX; len -= l; toff += l; qoff += l; }
for (l = 0; l < len && qseq[qoff + l] != tseq[toff + l]; ++l) {} // run of "X"
if (l > 0) { ++n_EQX; len -= l; toff += l; qoff += l; }
}
++n_M;
} else if (op == 1) { // insertion
qoff += len;
} else if (op == 2) { // deletion
toff += len;
} else if (op == 3) { // intron
toff += len;
}
}
// update in-place if we can
if (n_EQX == n_M) {
for (k = 0; k < r->p->n_cigar; ++k) {
uint32_t op = r->p->cigar[k]&0xf, len = r->p->cigar[k]>>4;
if (op == 0) r->p->cigar[k] = len << 4 | 7;
}
return;
}
// allocate new storage
cap = r->p->n_cigar + (n_EQX - n_M) + sizeof(mm_extra_t);
kroundup32(cap);
p = (mm_extra_t*)calloc(cap, 4);
memcpy(p, r->p, sizeof(mm_extra_t));
p->capacity = cap;
// update cigar while copying
toff = qoff = m = 0;
for (k = 0; k < r->p->n_cigar; ++k) {
uint32_t op = r->p->cigar[k]&0xf, len = r->p->cigar[k]>>4;
if (op == 0) { // match/mismatch
while (len > 0) {
// match
for (l = 0; l < len && qseq[qoff + l] == tseq[toff + l]; ++l) {}
if (l > 0) p->cigar[m++] = l << 4 | 7;
len -= l;
toff += l, qoff += l;
// mismatch
for (l = 0; l < len && qseq[qoff + l] != tseq[toff + l]; ++l) {}
if (l > 0) p->cigar[m++] = l << 4 | 8;
len -= l;
toff += l, qoff += l;
}
continue;
} else if (op == 1) { // insertion
qoff += len;
} else if (op == 2) { // deletion
toff += len;
} else if (op == 3) { // intron
toff += len;
}
p->cigar[m++] = r->p->cigar[k];
}
p->n_cigar = m;
free(r->p);
r->p = p;
}
static void mm_update_extra(mm_reg1_t *r, const uint8_t *qseq, const uint8_t *tseq, const int8_t *mat, int8_t q, int8_t e, int is_eqx)
{
uint32_t k, l;
int32_t s = 0, max = 0, qshift, tshift, toff = 0, qoff = 0;
mm_extra_t *p = r->p;
if (p == 0) return;
mm_fix_cigar(r, qseq, tseq, &qshift, &tshift);
qseq += qshift, tseq += tshift; // qseq and tseq may be shifted due to the removal of leading I/D
r->blen = r->mlen = 0;
for (k = 0; k < p->n_cigar; ++k) {
uint32_t op = p->cigar[k]&0xf, len = p->cigar[k]>>4;
if (op == 0) { // match/mismatch
int n_ambi = 0, n_diff = 0;
for (l = 0; l < len; ++l) {
int cq = qseq[qoff + l], ct = tseq[toff + l];
if (ct > 3 || cq > 3) ++n_ambi;
else if (ct != cq) ++n_diff;
s += mat[ct * 5 + cq];
if (s < 0) s = 0;
else max = max > s? max : s;
}
r->blen += len - n_ambi, r->mlen += len - (n_ambi + n_diff), p->n_ambi += n_ambi;
toff += len, qoff += len;
} else if (op == 1) { // insertion
int n_ambi = 0;
for (l = 0; l < len; ++l)
if (qseq[qoff + l] > 3) ++n_ambi;
r->blen += len - n_ambi, p->n_ambi += n_ambi;
s -= q + e * len;
if (s < 0) s = 0;
qoff += len;
} else if (op == 2) { // deletion
int n_ambi = 0;
for (l = 0; l < len; ++l)
if (tseq[toff + l] > 3) ++n_ambi;
r->blen += len - n_ambi, p->n_ambi += n_ambi;
s -= q + e * len;
if (s < 0) s = 0;
toff += len;
} else if (op == 3) { // intron
toff += len;
}
}
p->dp_max = max;
assert(qoff == r->qe - r->qs && toff == r->re - r->rs);
if (is_eqx) mm_update_cigar_eqx(r, qseq, tseq); // NB: it has to be called here as changes to qseq and tseq are not returned
}
static void mm_append_cigar(mm_reg1_t *r, uint32_t n_cigar, uint32_t *cigar) // TODO: this calls the libc realloc()
{
mm_extra_t *p;
if (n_cigar == 0) return;
if (r->p == 0) {
uint32_t capacity = n_cigar + sizeof(mm_extra_t)/4;
kroundup32(capacity);
r->p = (mm_extra_t*)calloc(capacity, 4);
r->p->capacity = capacity;
} else if (r->p->n_cigar + n_cigar + sizeof(mm_extra_t)/4 > r->p->capacity) {
r->p->capacity = r->p->n_cigar + n_cigar + sizeof(mm_extra_t)/4;
kroundup32(r->p->capacity);
r->p = (mm_extra_t*)realloc(r->p, r->p->capacity * 4);
}
p = r->p;
if (p->n_cigar > 0 && (p->cigar[p->n_cigar-1]&0xf) == (cigar[0]&0xf)) { // same CIGAR op at the boundary
p->cigar[p->n_cigar-1] += cigar[0]>>4<<4;
if (n_cigar > 1) memcpy(p->cigar + p->n_cigar, cigar + 1, (n_cigar - 1) * 4);
p->n_cigar += n_cigar - 1;
} else {
memcpy(p->cigar + p->n_cigar, cigar, n_cigar * 4);
p->n_cigar += n_cigar;
}
}
static void mm_align_pair(void *km, const mm_mapopt_t *opt, int qlen, const uint8_t *qseq, int tlen, const uint8_t *tseq, const uint8_t *junc, const int8_t *mat, int w, int end_bonus, int zdrop, int flag, ksw_extz_t *ez)
{
if (mm_dbg_flag & MM_DBG_PRINT_ALN_SEQ) {
int i;
fprintf(stderr, "===> q=(%d,%d), e=(%d,%d), bw=%d, flag=%d, zdrop=%d <===\n", opt->q, opt->q2, opt->e, opt->e2, w, flag, opt->zdrop);
for (i = 0; i < tlen; ++i) fputc("ACGTN"[tseq[i]], stderr);
fputc('\n', stderr);
for (i = 0; i < qlen; ++i) fputc("ACGTN"[qseq[i]], stderr);
fputc('\n', stderr);
}
if (opt->max_sw_mat > 0 && (int64_t)tlen * qlen > opt->max_sw_mat) {
ksw_reset_extz(ez);
ez->zdropped = 1;
} else if (opt->flag & MM_F_SPLICE)
ksw_exts2_sse(km, qlen, qseq, tlen, tseq, 5, mat, opt->q, opt->e, opt->q2, opt->noncan, zdrop, opt->junc_bonus, flag, junc, ez);
else if (opt->q == opt->q2 && opt->e == opt->e2)
ksw_extz2_sse(km, qlen, qseq, tlen, tseq, 5, mat, opt->q, opt->e, w, zdrop, end_bonus, flag, ez);
else
ksw_extd2_sse(km, qlen, qseq, tlen, tseq, 5, mat, opt->q, opt->e, opt->q2, opt->e2, w, zdrop, end_bonus, flag, ez);
if (mm_dbg_flag & MM_DBG_PRINT_ALN_SEQ) {
int i;
fprintf(stderr, "score=%d, cigar=", ez->score);
for (i = 0; i < ez->n_cigar; ++i)
fprintf(stderr, "%d%c", ez->cigar[i]>>4, "MIDN"[ez->cigar[i]&0xf]);
fprintf(stderr, "\n");
}
}
static inline int mm_get_hplen_back(const mm_idx_t *mi, uint32_t rid, uint32_t x)
{
int64_t i, off0 = mi->seq[rid].offset, off = off0 + x;
int c = mm_seq4_get(mi->S, off);
for (i = off - 1; i >= off0; --i)
if (mm_seq4_get(mi->S, i) != c) break;
return (int)(off - i);
}
static inline void mm_adjust_minier(const mm_idx_t *mi, uint8_t *const qseq0[2], mm128_t *a, int32_t *r, int32_t *q)
{
if (mi->flag & MM_I_HPC) {
const uint8_t *qseq = qseq0[a->x>>63];
int i, c;
*q = (int32_t)a->y;
for (i = *q - 1, c = qseq[*q]; i > 0; --i)
if (qseq[i] != c) break;
*q = i + 1;
c = mm_get_hplen_back(mi, a->x<<1>>33, (int32_t)a->x);
*r = (int32_t)a->x + 1 - c;
} else {
*r = (int32_t)a->x - (mi->k>>1);
*q = (int32_t)a->y - (mi->k>>1);
}
}
static int *collect_long_gaps(void *km, int as1, int cnt1, mm128_t *a, int min_gap, int *n_)
{
int i, n, *K;
*n_ = 0;
for (i = 1, n = 0; i < cnt1; ++i) { // count the number of gaps longer than min_gap
int gap = ((int32_t)a[as1 + i].y - a[as1 + i - 1].y) - ((int32_t)a[as1 + i].x - a[as1 + i - 1].x);
if (gap < -min_gap || gap > min_gap) ++n;
}
if (n <= 1) return 0;
K = (int*)kmalloc(km, n * sizeof(int));
for (i = 1, n = 0; i < cnt1; ++i) { // store the positions of long gaps
int gap = ((int32_t)a[as1 + i].y - a[as1 + i - 1].y) - ((int32_t)a[as1 + i].x - a[as1 + i - 1].x);
if (gap < -min_gap || gap > min_gap)
K[n++] = i;
}
*n_ = n;
return K;
}
static void mm_filter_bad_seeds(void *km, int as1, int cnt1, mm128_t *a, int min_gap, int diff_thres, int max_ext_len, int max_ext_cnt)
{
int max_st, max_en, n, i, k, max, *K;
K = collect_long_gaps(km, as1, cnt1, a, min_gap, &n);
if (K == 0) return;
max = 0, max_st = max_en = -1;
for (k = 0;; ++k) { // traverse long gaps
int gap, l, n_ins = 0, n_del = 0, qs, rs, max_diff = 0, max_diff_l = -1;
if (k == n || k >= max_en) {
if (max_en > 0)
for (i = K[max_st]; i < K[max_en]; ++i)
a[as1 + i].y |= MM_SEED_IGNORE;
max = 0, max_st = max_en = -1;
if (k == n) break;
}
i = K[k];
gap = ((int32_t)a[as1 + i].y - (int32_t)a[as1 + i - 1].y) - (int32_t)(a[as1 + i].x - a[as1 + i - 1].x);
if (gap > 0) n_ins += gap;
else n_del += -gap;
qs = (int32_t)a[as1 + i - 1].y;
rs = (int32_t)a[as1 + i - 1].x;
for (l = k + 1; l < n && l <= k + max_ext_cnt; ++l) {
int j = K[l], diff;
if ((int32_t)a[as1 + j].y - qs > max_ext_len || (int32_t)a[as1 + j].x - rs > max_ext_len) break;
gap = ((int32_t)a[as1 + j].y - (int32_t)a[as1 + j - 1].y) - (int32_t)(a[as1 + j].x - a[as1 + j - 1].x);
if (gap > 0) n_ins += gap;
else n_del += -gap;
diff = n_ins + n_del - abs(n_ins - n_del);
if (max_diff < diff)
max_diff = diff, max_diff_l = l;
}
if (max_diff > diff_thres && max_diff > max)
max = max_diff, max_st = k, max_en = max_diff_l;
}
kfree(km, K);
}
static void mm_filter_bad_seeds_alt(void *km, int as1, int cnt1, mm128_t *a, int min_gap, int max_ext)
{
int n, k, *K;
K = collect_long_gaps(km, as1, cnt1, a, min_gap, &n);
if (K == 0) return;
for (k = 0; k < n;) {
int i = K[k], l;
int gap1 = ((int32_t)a[as1 + i].y - (int32_t)a[as1 + i - 1].y) - ((int32_t)a[as1 + i].x - (int32_t)a[as1 + i - 1].x);
int re1 = (int32_t)a[as1 + i].x;
int qe1 = (int32_t)a[as1 + i].y;
gap1 = gap1 > 0? gap1 : -gap1;
for (l = k + 1; l < n; ++l) {
int j = K[l], gap2, q_span_pre, rs2, qs2, m;
if ((int32_t)a[as1 + j].y - qe1 > max_ext || (int32_t)a[as1 + j].x - re1 > max_ext) break;
gap2 = ((int32_t)a[as1 + j].y - (int32_t)a[as1 + j - 1].y) - (int32_t)(a[as1 + j].x - a[as1 + j - 1].x);
q_span_pre = a[as1 + j - 1].y >> 32 & 0xff;
rs2 = (int32_t)a[as1 + j - 1].x + q_span_pre;
qs2 = (int32_t)a[as1 + j - 1].y + q_span_pre;
m = rs2 - re1 < qs2 - qe1? rs2 - re1 : qs2 - qe1;
gap2 = gap2 > 0? gap2 : -gap2;
if (m > gap1 + gap2) break;
re1 = (int32_t)a[as1 + j].x;
qe1 = (int32_t)a[as1 + j].y;
gap1 = gap2;
}
if (l > k + 1) {
int j, end = K[l - 1];
for (j = K[k]; j < end; ++j)
a[as1 + j].y |= MM_SEED_IGNORE;
a[as1 + end].y |= MM_SEED_LONG_JOIN;
}
k = l;
}
kfree(km, K);
}
static void mm_fix_bad_ends(const mm_reg1_t *r, const mm128_t *a, int bw, int min_match, int32_t *as, int32_t *cnt)
{
int32_t i, l, m;
*as = r->as, *cnt = r->cnt;
if (r->cnt < 3) return;
m = l = a[r->as].y >> 32 & 0xff;
for (i = r->as + 1; i < r->as + r->cnt - 1; ++i) {
int32_t lq, lr, min, max;
int32_t q_span = a[i].y >> 32 & 0xff;
if (a[i].y & MM_SEED_LONG_JOIN) break;
lr = (int32_t)a[i].x - (int32_t)a[i-1].x;
lq = (int32_t)a[i].y - (int32_t)a[i-1].y;
min = lr < lq? lr : lq;
max = lr > lq? lr : lq;
if (max - min > l >> 1) *as = i;
l += min;
m += min < q_span? min : q_span;
if (l >= bw << 1 || (m >= min_match && m >= bw) || m >= r->mlen >> 1) break;
}
*cnt = r->as + r->cnt - *as;
m = l = a[r->as + r->cnt - 1].y >> 32 & 0xff;
for (i = r->as + r->cnt - 2; i > *as; --i) {
int32_t lq, lr, min, max;
int32_t q_span = a[i+1].y >> 32 & 0xff;
if (a[i+1].y & MM_SEED_LONG_JOIN) break;
lr = (int32_t)a[i+1].x - (int32_t)a[i].x;
lq = (int32_t)a[i+1].y - (int32_t)a[i].y;
min = lr < lq? lr : lq;
max = lr > lq? lr : lq;
if (max - min > l >> 1) *cnt = i + 1 - *as;
l += min;
m += min < q_span? min : q_span;
if (l >= bw << 1 || (m >= min_match && m >= bw) || m >= r->mlen >> 1) break;
}
}
static void mm_max_stretch(const mm_reg1_t *r, const mm128_t *a, int32_t *as, int32_t *cnt)
{
int32_t i, score, max_score, len, max_i, max_len;
*as = r->as, *cnt = r->cnt;
if (r->cnt < 2) return;
max_score = -1, max_i = -1, max_len = 0;
score = a[r->as].y >> 32 & 0xff, len = 1;
for (i = r->as + 1; i < r->as + r->cnt; ++i) {
int32_t lq, lr, q_span;
q_span = a[i].y >> 32 & 0xff;
lr = (int32_t)a[i].x - (int32_t)a[i-1].x;
lq = (int32_t)a[i].y - (int32_t)a[i-1].y;
if (lq == lr) {
score += lq < q_span? lq : q_span;
++len;
} else {
if (score > max_score)
max_score = score, max_len = len, max_i = i - len;
score = q_span, len = 1;
}
}
if (score > max_score)
max_score = score, max_len = len, max_i = i - len;
*as = max_i, *cnt = max_len;
}
static int mm_seed_ext_score(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, const int8_t mat[25], int qlen, uint8_t *qseq0[2], const mm128_t *a)
{
uint8_t *qseq, *tseq;
int q_span = a->y>>32&0xff, qs, qe, rs, re, rid, score, q_off, t_off, ext_len = opt->anchor_ext_len;
void *qp;
rid = a->x<<1>>33;
re = (uint32_t)a->x + 1, rs = re - q_span;
qe = (uint32_t)a->y + 1, qs = qe - q_span;
rs = rs - ext_len > 0? rs - ext_len : 0;
qs = qs - ext_len > 0? qs - ext_len : 0;
re = re + ext_len < (int32_t)mi->seq[rid].len? re + ext_len : mi->seq[rid].len;
qe = qe + ext_len < qlen? qe + ext_len : qlen;
tseq = (uint8_t*)kmalloc(km, re - rs);
mm_idx_getseq(mi, rid, rs, re, tseq);
qseq = qseq0[a->x>>63] + qs;
qp = ksw_ll_qinit(km, 2, qe - qs, qseq, 5, mat);
score = ksw_ll_i16(qp, re - rs, tseq, opt->q, opt->e, &q_off, &t_off);
kfree(km, tseq);
kfree(km, qp);
return score;
}
static void mm_fix_bad_ends_splice(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, const mm_reg1_t *r, const int8_t mat[25], int qlen, uint8_t *qseq0[2], const mm128_t *a, int *as1, int *cnt1)
{ // this assumes a very crude k-mer based mode; it is not necessary to use a good model just for filtering bounary exons
int score;
double log_gap;
*as1 = r->as, *cnt1 = r->cnt;
if (r->cnt < 3) return;
log_gap = log((int32_t)a[r->as + 1].x - (int32_t)a[r->as].x);
if ((a[r->as].y>>32&0xff) < log_gap + opt->anchor_ext_shift) {
score = mm_seed_ext_score(km, opt, mi, mat, qlen, qseq0, &a[r->as]);
if ((double)score / mat[0] < log_gap + opt->anchor_ext_shift) // a more exact format is "score < log_4(gap) + shift"
++(*as1), --(*cnt1);
}
log_gap = log((int32_t)a[r->as + r->cnt - 1].x - (int32_t)a[r->as + r->cnt - 2].x);
if ((a[r->as + r->cnt - 1].y>>32&0xff) < log_gap + opt->anchor_ext_shift) {
score = mm_seed_ext_score(km, opt, mi, mat, qlen, qseq0, &a[r->as + r->cnt - 1]);
if ((double)score / mat[0] < log_gap + opt->anchor_ext_shift)
--(*cnt1);
}
}
static void mm_align1(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, int qlen, uint8_t *qseq0[2], mm_reg1_t *r, mm_reg1_t *r2, int n_a, mm128_t *a, ksw_extz_t *ez, int splice_flag)
{
int is_sr = !!(opt->flag & MM_F_SR), is_splice = !!(opt->flag & MM_F_SPLICE);
int32_t rid = a[r->as].x<<1>>33, rev = a[r->as].x>>63, as1, cnt1;
uint8_t *tseq, *qseq, *junc;
int32_t i, l, bw, dropped = 0, extra_flag = 0, rs0, re0, qs0, qe0;
int32_t rs, re, qs, qe;
int32_t rs1, qs1, re1, qe1;
int8_t mat[25];
if (is_sr) assert(!(mi->flag & MM_I_HPC)); // HPC won't work with SR because with HPC we can't easily tell if there is a gap
r2->cnt = 0;
if (r->cnt == 0) return;
ksw_gen_simple_mat(5, mat, opt->a, opt->b, opt->sc_ambi);
bw = (int)(opt->bw * 1.5 + 1.);
if (is_sr && !(mi->flag & MM_I_HPC)) {
mm_max_stretch(r, a, &as1, &cnt1);
rs = (int32_t)a[as1].x + 1 - (int32_t)(a[as1].y>>32&0xff);
qs = (int32_t)a[as1].y + 1 - (int32_t)(a[as1].y>>32&0xff);
re = (int32_t)a[as1+cnt1-1].x + 1;
qe = (int32_t)a[as1+cnt1-1].y + 1;
} else {
if (!(opt->flag & MM_F_NO_END_FLT)) {
if (is_splice)
mm_fix_bad_ends_splice(km, opt, mi, r, mat, qlen, qseq0, a, &as1, &cnt1);
else
mm_fix_bad_ends(r, a, opt->bw, opt->min_chain_score * 2, &as1, &cnt1);
} else as1 = r->as, cnt1 = r->cnt;
mm_filter_bad_seeds(km, as1, cnt1, a, 10, 40, opt->max_gap>>1, 10);
mm_filter_bad_seeds_alt(km, as1, cnt1, a, 30, opt->max_gap>>1);
mm_adjust_minier(mi, qseq0, &a[as1], &rs, &qs);
mm_adjust_minier(mi, qseq0, &a[as1 + cnt1 - 1], &re, &qe);
}
assert(cnt1 > 0);
if (is_splice) {
if (splice_flag & MM_F_SPLICE_FOR) extra_flag |= rev? KSW_EZ_SPLICE_REV : KSW_EZ_SPLICE_FOR;
if (splice_flag & MM_F_SPLICE_REV) extra_flag |= rev? KSW_EZ_SPLICE_FOR : KSW_EZ_SPLICE_REV;
if (opt->flag & MM_F_SPLICE_FLANK) extra_flag |= KSW_EZ_SPLICE_FLANK;
}
/* Look for the start and end of regions to perform DP. This sounds easy
* but is in fact tricky. Excessively small regions lead to unnecessary
* clippings and lose alignable sequences. Excessively large regions
* occasionally lead to large overlaps between two chains and may cause
* loss of alignments in corner cases. */
if (is_sr) {
qs0 = 0, qe0 = qlen;
l = qs;
l += l * opt->a + opt->end_bonus > opt->q? (l * opt->a + opt->end_bonus - opt->q) / opt->e : 0;
rs0 = rs - l > 0? rs - l : 0;
l = qlen - qe;
l += l * opt->a + opt->end_bonus > opt->q? (l * opt->a + opt->end_bonus - opt->q) / opt->e : 0;
re0 = re + l < (int32_t)mi->seq[rid].len? re + l : mi->seq[rid].len;
} else {
// compute rs0 and qs0
rs0 = (int32_t)a[r->as].x + 1 - (int32_t)(a[r->as].y>>32&0xff);
qs0 = (int32_t)a[r->as].y + 1 - (int32_t)(a[r->as].y>>32&0xff);
if (rs0 < 0) rs0 = 0; // this may happen when HPC is in use
assert(qs0 >= 0); // this should never happen, or it is logic error
rs1 = qs1 = 0;
for (i = r->as - 1, l = 0; i >= 0 && a[i].x>>32 == a[r->as].x>>32; --i) { // inspect nearby seeds
int32_t x = (int32_t)a[i].x + 1 - (int32_t)(a[i].y>>32&0xff);
int32_t y = (int32_t)a[i].y + 1 - (int32_t)(a[i].y>>32&0xff);
if (x < rs0 && y < qs0) {
if (++l > opt->min_cnt) {
l = rs0 - x > qs0 - y? rs0 - x : qs0 - y;
rs1 = rs0 - l, qs1 = qs0 - l;
if (rs1 < 0) rs1 = 0; // not strictly necessary; better have this guard for explicit
break;
}
}
}
if (qs > 0 && rs > 0) {
l = qs < opt->max_gap? qs : opt->max_gap;
qs1 = qs1 > qs - l? qs1 : qs - l;
qs0 = qs0 < qs1? qs0 : qs1; // at least include qs0
l += l * opt->a > opt->q? (l * opt->a - opt->q) / opt->e : 0;
l = l < opt->max_gap? l : opt->max_gap;
l = l < rs? l : rs;
rs1 = rs1 > rs - l? rs1 : rs - l;
rs0 = rs0 < rs1? rs0 : rs1;
rs0 = rs0 < rs? rs0 : rs;
} else rs0 = rs, qs0 = qs;
// compute re0 and qe0
re0 = (int32_t)a[r->as + r->cnt - 1].x + 1;
qe0 = (int32_t)a[r->as + r->cnt - 1].y + 1;
re1 = mi->seq[rid].len, qe1 = qlen;
for (i = r->as + r->cnt, l = 0; i < n_a && a[i].x>>32 == a[r->as].x>>32; ++i) { // inspect nearby seeds
int32_t x = (int32_t)a[i].x + 1;
int32_t y = (int32_t)a[i].y + 1;
if (x > re0 && y > qe0) {
if (++l > opt->min_cnt) {
l = x - re0 > y - qe0? x - re0 : y - qe0;
re1 = re0 + l, qe1 = qe0 + l;
break;
}
}
}
if (qe < qlen && re < (int32_t)mi->seq[rid].len) {
l = qlen - qe < opt->max_gap? qlen - qe : opt->max_gap;
qe1 = qe1 < qe + l? qe1 : qe + l;
qe0 = qe0 > qe1? qe0 : qe1; // at least include qe0
l += l * opt->a > opt->q? (l * opt->a - opt->q) / opt->e : 0;
l = l < opt->max_gap? l : opt->max_gap;
l = l < (int32_t)mi->seq[rid].len - re? l : mi->seq[rid].len - re;
re1 = re1 < re + l? re1 : re + l;
re0 = re0 > re1? re0 : re1;
} else re0 = re, qe0 = qe;
}
if (a[r->as].y & MM_SEED_SELF) {
int max_ext = r->qs > r->rs? r->qs - r->rs : r->rs - r->qs;
if (r->rs - rs0 > max_ext) rs0 = r->rs - max_ext;
if (r->qs - qs0 > max_ext) qs0 = r->qs - max_ext;
max_ext = r->qe > r->re? r->qe - r->re : r->re - r->qe;
if (re0 - r->re > max_ext) re0 = r->re + max_ext;
if (qe0 - r->qe > max_ext) qe0 = r->qe + max_ext;
}
assert(re0 > rs0);
tseq = (uint8_t*)kmalloc(km, re0 - rs0);
junc = (uint8_t*)kmalloc(km, re0 - rs0);
if (qs > 0 && rs > 0) { // left extension; probably the condition can be changed to "qs > qs0 && rs > rs0"
qseq = &qseq0[rev][qs0];
mm_idx_getseq(mi, rid, rs0, rs, tseq);
mm_idx_bed_junc(mi, rid, rs0, rs, junc);
mm_seq_rev(qs - qs0, qseq);
mm_seq_rev(rs - rs0, tseq);
mm_seq_rev(rs - rs0, junc);
mm_align_pair(km, opt, qs - qs0, qseq, rs - rs0, tseq, junc, mat, bw, opt->end_bonus, r->split_inv? opt->zdrop_inv : opt->zdrop, extra_flag|KSW_EZ_EXTZ_ONLY|KSW_EZ_RIGHT|KSW_EZ_REV_CIGAR, ez);
if (ez->n_cigar > 0) {
mm_append_cigar(r, ez->n_cigar, ez->cigar);
r->p->dp_score += ez->max;
}
rs1 = rs - (ez->reach_end? ez->mqe_t + 1 : ez->max_t + 1);
qs1 = qs - (ez->reach_end? qs - qs0 : ez->max_q + 1);
mm_seq_rev(qs - qs0, qseq);
} else rs1 = rs, qs1 = qs;
re1 = rs, qe1 = qs;
assert(qs1 >= 0 && rs1 >= 0);
for (i = is_sr? cnt1 - 1 : 1; i < cnt1; ++i) { // gap filling
if ((a[as1+i].y & (MM_SEED_IGNORE|MM_SEED_TANDEM)) && i != cnt1 - 1) continue;
if (is_sr && !(mi->flag & MM_I_HPC)) {
re = (int32_t)a[as1 + i].x + 1;
qe = (int32_t)a[as1 + i].y + 1;
} else mm_adjust_minier(mi, qseq0, &a[as1 + i], &re, &qe);
re1 = re, qe1 = qe;
if (i == cnt1 - 1 || (a[as1+i].y&MM_SEED_LONG_JOIN) || (qe - qs >= opt->min_ksw_len && re - rs >= opt->min_ksw_len)) {
int j, bw1 = bw, zdrop_code;
if (a[as1+i].y & MM_SEED_LONG_JOIN)
bw1 = qe - qs > re - rs? qe - qs : re - rs;
// perform alignment
qseq = &qseq0[rev][qs];
mm_idx_getseq(mi, rid, rs, re, tseq);
mm_idx_bed_junc(mi, rid, rs, re, junc);
if (is_sr) { // perform ungapped alignment
assert(qe - qs == re - rs);
ksw_reset_extz(ez);
for (j = 0, ez->score = 0; j < qe - qs; ++j) {
if (qseq[j] >= 4 || tseq[j] >= 4) ez->score += opt->e2;
else ez->score += qseq[j] == tseq[j]? opt->a : -opt->b;
}
ez->cigar = ksw_push_cigar(km, &ez->n_cigar, &ez->m_cigar, ez->cigar, 0, qe - qs);
} else { // perform normal gapped alignment
mm_align_pair(km, opt, qe - qs, qseq, re - rs, tseq, junc, mat, bw1, -1, opt->zdrop, extra_flag|KSW_EZ_APPROX_MAX, ez); // first pass: with approximate Z-drop
}
// test Z-drop and inversion Z-drop
if ((zdrop_code = mm_test_zdrop(km, opt, qseq, tseq, ez->n_cigar, ez->cigar, mat)) != 0)
mm_align_pair(km, opt, qe - qs, qseq, re - rs, tseq, junc, mat, bw1, -1, zdrop_code == 2? opt->zdrop_inv : opt->zdrop, extra_flag, ez); // second pass: lift approximate
// update CIGAR
if (ez->n_cigar > 0)
mm_append_cigar(r, ez->n_cigar, ez->cigar);
if (ez->zdropped) { // truncated by Z-drop; TODO: sometimes Z-drop kicks in because the next seed placement is wrong. This can be fixed in principle.
for (j = i - 1; j >= 0; --j)
if ((int32_t)a[as1 + j].x <= rs + ez->max_t)
break;
dropped = 1;
if (j < 0) j = 0;
r->p->dp_score += ez->max;
re1 = rs + (ez->max_t + 1);
qe1 = qs + (ez->max_q + 1);
if (cnt1 - (j + 1) >= opt->min_cnt) {
mm_split_reg(r, r2, as1 + j + 1 - r->as, qlen, a);
if (zdrop_code == 2) r2->split_inv = 1;
}
break;
} else r->p->dp_score += ez->score;
rs = re, qs = qe;
}
}
if (!dropped && qe < qe0 && re < re0) { // right extension
qseq = &qseq0[rev][qe];
mm_idx_getseq(mi, rid, re, re0, tseq);
mm_idx_bed_junc(mi, rid, re, re0, junc);
mm_align_pair(km, opt, qe0 - qe, qseq, re0 - re, tseq, junc, mat, bw, opt->end_bonus, opt->zdrop, extra_flag|KSW_EZ_EXTZ_ONLY, ez);
if (ez->n_cigar > 0) {
mm_append_cigar(r, ez->n_cigar, ez->cigar);
r->p->dp_score += ez->max;
}
re1 = re + (ez->reach_end? ez->mqe_t + 1 : ez->max_t + 1);
qe1 = qe + (ez->reach_end? qe0 - qe : ez->max_q + 1);
}
assert(qe1 <= qlen);
r->rs = rs1, r->re = re1;
if (rev) r->qs = qlen - qe1, r->qe = qlen - qs1;
else r->qs = qs1, r->qe = qe1;
assert(re1 - rs1 <= re0 - rs0);
if (r->p) {
mm_idx_getseq(mi, rid, rs1, re1, tseq);
mm_update_extra(r, &qseq0[r->rev][qs1], tseq, mat, opt->q, opt->e, opt->flag & MM_F_EQX);
if (rev && r->p->trans_strand)
r->p->trans_strand ^= 3; // flip to the read strand
}
kfree(km, tseq);
kfree(km, junc);
}
static int mm_align1_inv(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, int qlen, uint8_t *qseq0[2], const mm_reg1_t *r1, const mm_reg1_t *r2, mm_reg1_t *r_inv, ksw_extz_t *ez)
{
int tl, ql, score, ret = 0, q_off, t_off;
uint8_t *tseq, *qseq;
int8_t mat[25];
void *qp;
memset(r_inv, 0, sizeof(mm_reg1_t));
if (!(r1->split&1) || !(r2->split&2)) return 0;
if (r1->id != r1->parent && r1->parent != MM_PARENT_TMP_PRI) return 0;
if (r2->id != r2->parent && r2->parent != MM_PARENT_TMP_PRI) return 0;
if (r1->rid != r2->rid || r1->rev != r2->rev) return 0;
ql = r1->rev? r1->qs - r2->qe : r2->qs - r1->qe;
tl = r2->rs - r1->re;
if (ql < opt->min_chain_score || ql > opt->max_gap) return 0;
if (tl < opt->min_chain_score || tl > opt->max_gap) return 0;
ksw_gen_simple_mat(5, mat, opt->a, opt->b, opt->sc_ambi);
tseq = (uint8_t*)kmalloc(km, tl);
mm_idx_getseq(mi, r1->rid, r1->re, r2->rs, tseq);
qseq = r1->rev? &qseq0[0][r2->qe] : &qseq0[1][qlen - r2->qs];
mm_seq_rev(ql, qseq);
mm_seq_rev(tl, tseq);
qp = ksw_ll_qinit(km, 2, ql, qseq, 5, mat);
score = ksw_ll_i16(qp, tl, tseq, opt->q, opt->e, &q_off, &t_off);
kfree(km, qp);
mm_seq_rev(ql, qseq);
mm_seq_rev(tl, tseq);
if (score < opt->min_dp_max) goto end_align1_inv;
q_off = ql - (q_off + 1), t_off = tl - (t_off + 1);
mm_align_pair(km, opt, ql - q_off, qseq + q_off, tl - t_off, tseq + t_off, 0, mat, (int)(opt->bw * 1.5), -1, opt->zdrop, KSW_EZ_EXTZ_ONLY, ez);
if (ez->n_cigar == 0) goto end_align1_inv; // should never be here
mm_append_cigar(r_inv, ez->n_cigar, ez->cigar);
r_inv->p->dp_score = ez->max;
r_inv->id = -1;
r_inv->parent = MM_PARENT_UNSET;
r_inv->inv = 1;
r_inv->rev = !r1->rev;
r_inv->rid = r1->rid;
r_inv->div = -1.0f;
if (r_inv->rev == 0) {
r_inv->qs = r2->qe + q_off;
r_inv->qe = r_inv->qs + ez->max_q + 1;
} else {
r_inv->qe = r2->qs - q_off;
r_inv->qs = r_inv->qe - (ez->max_q + 1);
}
r_inv->rs = r1->re + t_off;
r_inv->re = r_inv->rs + ez->max_t + 1;
mm_update_extra(r_inv, &qseq[q_off], &tseq[t_off], mat, opt->q, opt->e, opt->flag & MM_F_EQX);
ret = 1;
end_align1_inv:
kfree(km, tseq);
return ret;
}
static inline mm_reg1_t *mm_insert_reg(const mm_reg1_t *r, int i, int *n_regs, mm_reg1_t *regs)
{
regs = (mm_reg1_t*)realloc(regs, (*n_regs + 1) * sizeof(mm_reg1_t));
if (i + 1 != *n_regs)
memmove(®s[i + 2], ®s[i + 1], sizeof(mm_reg1_t) * (*n_regs - i - 1));
regs[i + 1] = *r;
++*n_regs;
return regs;
}
mm_reg1_t *mm_align_skeleton(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, int qlen, const char *qstr, int *n_regs_, mm_reg1_t *regs, mm128_t *a)
{
extern unsigned char seq_nt4_table[256];
int32_t i, n_regs = *n_regs_, n_a;
uint8_t *qseq0[2];
ksw_extz_t ez;
// encode the query sequence
qseq0[0] = (uint8_t*)kmalloc(km, qlen * 2);
qseq0[1] = qseq0[0] + qlen;
for (i = 0; i < qlen; ++i) {
qseq0[0][i] = seq_nt4_table[(uint8_t)qstr[i]];
qseq0[1][qlen - 1 - i] = qseq0[0][i] < 4? 3 - qseq0[0][i] : 4;
}
// align through seed hits
n_a = mm_squeeze_a(km, n_regs, regs, a);
memset(&ez, 0, sizeof(ksw_extz_t));
for (i = 0; i < n_regs; ++i) {
mm_reg1_t r2;
if ((opt->flag&MM_F_SPLICE) && (opt->flag&MM_F_SPLICE_FOR) && (opt->flag&MM_F_SPLICE_REV)) { // then do two rounds of alignments for both strands
mm_reg1_t s[2], s2[2];
int which, trans_strand;
s[0] = s[1] = regs[i];
mm_align1(km, opt, mi, qlen, qseq0, &s[0], &s2[0], n_a, a, &ez, MM_F_SPLICE_FOR);
mm_align1(km, opt, mi, qlen, qseq0, &s[1], &s2[1], n_a, a, &ez, MM_F_SPLICE_REV);
if (s[0].p->dp_score > s[1].p->dp_score) which = 0, trans_strand = 1;
else if (s[0].p->dp_score < s[1].p->dp_score) which = 1, trans_strand = 2;
else trans_strand = 3, which = (qlen + s[0].p->dp_score) & 1; // randomly choose a strand, effectively
if (which == 0) {
regs[i] = s[0], r2 = s2[0];
free(s[1].p);
} else {
regs[i] = s[1], r2 = s2[1];
free(s[0].p);
}
regs[i].p->trans_strand = trans_strand;
} else { // one round of alignment
mm_align1(km, opt, mi, qlen, qseq0, ®s[i], &r2, n_a, a, &ez, opt->flag);
if (opt->flag&MM_F_SPLICE)
regs[i].p->trans_strand = opt->flag&MM_F_SPLICE_FOR? 1 : 2;
}
if (r2.cnt > 0) regs = mm_insert_reg(&r2, i, &n_regs, regs);
if (i > 0 && regs[i].split_inv) {
if (mm_align1_inv(km, opt, mi, qlen, qseq0, ®s[i-1], ®s[i], &r2, &ez)) {
regs = mm_insert_reg(&r2, i, &n_regs, regs);
++i; // skip the inserted INV alignment
}
}
}
*n_regs_ = n_regs;
kfree(km, qseq0[0]);
kfree(km, ez.cigar);
mm_filter_regs(opt, qlen, n_regs_, regs);
mm_hit_sort(km, n_regs_, regs);
return regs;
}
|