1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
|
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "kthread.h"
#include "kvec.h"
#include "kalloc.h"
#include "sdust.h"
#include "mmpriv.h"
#include "bseq.h"
#include "khash.h"
struct mm_tbuf_s {
void *km;
int rep_len, frag_gap;
};
mm_tbuf_t *mm_tbuf_init(void)
{
mm_tbuf_t *b;
b = (mm_tbuf_t*)calloc(1, sizeof(mm_tbuf_t));
if (!(mm_dbg_flag & 1)) b->km = km_init();
return b;
}
void mm_tbuf_destroy(mm_tbuf_t *b)
{
if (b == 0) return;
km_destroy(b->km);
free(b);
}
void *mm_tbuf_get_km(mm_tbuf_t *b)
{
return b->km;
}
static int mm_dust_minier(void *km, int n, mm128_t *a, int l_seq, const char *seq, int sdust_thres)
{
int n_dreg, j, k, u = 0;
const uint64_t *dreg;
sdust_buf_t *sdb;
if (sdust_thres <= 0) return n;
sdb = sdust_buf_init(km);
dreg = sdust_core((const uint8_t*)seq, l_seq, sdust_thres, 64, &n_dreg, sdb);
for (j = k = 0; j < n; ++j) { // squeeze out minimizers that significantly overlap with LCRs
int32_t qpos = (uint32_t)a[j].y>>1, span = a[j].x&0xff;
int32_t s = qpos - (span - 1), e = s + span;
while (u < n_dreg && (int32_t)dreg[u] <= s) ++u;
if (u < n_dreg && (int32_t)(dreg[u]>>32) < e) {
int v, l = 0;
for (v = u; v < n_dreg && (int32_t)(dreg[v]>>32) < e; ++v) { // iterate over LCRs overlapping this minimizer
int ss = s > (int32_t)(dreg[v]>>32)? s : dreg[v]>>32;
int ee = e < (int32_t)dreg[v]? e : (uint32_t)dreg[v];
l += ee - ss;
}
if (l <= span>>1) a[k++] = a[j]; // keep the minimizer if less than half of it falls in masked region
} else a[k++] = a[j];
}
sdust_buf_destroy(sdb);
return k; // the new size
}
static void collect_minimizers(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, int n_segs, const int *qlens, const char **seqs, mm128_v *mv)
{
int i, n, sum = 0;
mv->n = 0;
for (i = n = 0; i < n_segs; ++i) {
size_t j;
mm_sketch(km, seqs[i], qlens[i], mi->w, mi->k, i, mi->flag&MM_I_HPC, mv);
for (j = n; j < mv->n; ++j)
mv->a[j].y += sum << 1;
if (opt->sdust_thres > 0) // mask low-complexity minimizers
mv->n = n + mm_dust_minier(km, mv->n - n, mv->a + n, qlens[i], seqs[i], opt->sdust_thres);
sum += qlens[i], n = mv->n;
}
}
#include "ksort.h"
#define heap_lt(a, b) ((a).x > (b).x)
KSORT_INIT(heap, mm128_t, heap_lt)
typedef struct {
uint32_t n;
uint32_t q_pos, q_span;
uint32_t seg_id:31, is_tandem:1;
const uint64_t *cr;
} mm_match_t;
static mm_match_t *collect_matches(void *km, int *_n_m, int max_occ, const mm_idx_t *mi, const mm128_v *mv, int64_t *n_a, int *rep_len, int *n_mini_pos, uint64_t **mini_pos)
{
int rep_st = 0, rep_en = 0, n_m;
size_t i;
mm_match_t *m;
*n_mini_pos = 0;
*mini_pos = (uint64_t*)kmalloc(km, mv->n * sizeof(uint64_t));
m = (mm_match_t*)kmalloc(km, mv->n * sizeof(mm_match_t));
for (i = 0, n_m = 0, *rep_len = 0, *n_a = 0; i < mv->n; ++i) {
const uint64_t *cr;
mm128_t *p = &mv->a[i];
uint32_t q_pos = (uint32_t)p->y, q_span = p->x & 0xff;
int t;
cr = mm_idx_get(mi, p->x>>8, &t);
if (t >= max_occ) {
int en = (q_pos >> 1) + 1, st = en - q_span;
if (st > rep_en) {
*rep_len += rep_en - rep_st;
rep_st = st, rep_en = en;
} else rep_en = en;
} else {
mm_match_t *q = &m[n_m++];
q->q_pos = q_pos, q->q_span = q_span, q->cr = cr, q->n = t, q->seg_id = p->y >> 32;
q->is_tandem = 0;
if (i > 0 && p->x>>8 == mv->a[i - 1].x>>8) q->is_tandem = 1;
if (i < mv->n - 1 && p->x>>8 == mv->a[i + 1].x>>8) q->is_tandem = 1;
*n_a += q->n;
(*mini_pos)[(*n_mini_pos)++] = (uint64_t)q_span<<32 | q_pos>>1;
}
}
*rep_len += rep_en - rep_st;
*_n_m = n_m;
return m;
}
static inline int skip_seed(int flag, uint64_t r, const mm_match_t *q, const char *qname, int qlen, const mm_idx_t *mi, int *is_self)
{
*is_self = 0;
if (qname && (flag & (MM_F_NO_DIAG|MM_F_NO_DUAL))) {
const mm_idx_seq_t *s = &mi->seq[r>>32];
int cmp;
cmp = strcmp(qname, s->name);
if ((flag&MM_F_NO_DIAG) && cmp == 0 && (int)s->len == qlen) {
if ((uint32_t)r>>1 == (q->q_pos>>1)) return 1; // avoid the diagnonal anchors
if ((r&1) == (q->q_pos&1)) *is_self = 1; // this flag is used to avoid spurious extension on self chain
}
if ((flag&MM_F_NO_DUAL) && cmp > 0) // all-vs-all mode: map once
return 1;
}
if (flag & (MM_F_FOR_ONLY|MM_F_REV_ONLY)) {
if ((r&1) == (q->q_pos&1)) { // forward strand
if (flag & MM_F_REV_ONLY) return 1;
} else {
if (flag & MM_F_FOR_ONLY) return 1;
}
}
return 0;
}
static mm128_t *collect_seed_hits_heap(void *km, const mm_mapopt_t *opt, int max_occ, const mm_idx_t *mi, const char *qname, const mm128_v *mv, int qlen, int64_t *n_a, int *rep_len,
int *n_mini_pos, uint64_t **mini_pos)
{
int i, n_m, heap_size = 0;
int64_t j, n_for = 0, n_rev = 0;
mm_match_t *m;
mm128_t *a, *heap;
m = collect_matches(km, &n_m, max_occ, mi, mv, n_a, rep_len, n_mini_pos, mini_pos);
heap = (mm128_t*)kmalloc(km, n_m * sizeof(mm128_t));
a = (mm128_t*)kmalloc(km, *n_a * sizeof(mm128_t));
for (i = 0, heap_size = 0; i < n_m; ++i) {
if (m[i].n > 0) {
heap[heap_size].x = m[i].cr[0];
heap[heap_size].y = (uint64_t)i<<32;
++heap_size;
}
}
ks_heapmake_heap(heap_size, heap);
while (heap_size > 0) {
mm_match_t *q = &m[heap->y>>32];
mm128_t *p;
uint64_t r = heap->x;
int32_t is_self, rpos = (uint32_t)r >> 1;
if (!skip_seed(opt->flag, r, q, qname, qlen, mi, &is_self)) {
if ((r&1) == (q->q_pos&1)) { // forward strand
p = &a[n_for++];
p->x = (r&0xffffffff00000000ULL) | rpos;
p->y = (uint64_t)q->q_span << 32 | q->q_pos >> 1;
} else { // reverse strand
p = &a[(*n_a) - (++n_rev)];
p->x = 1ULL<<63 | (r&0xffffffff00000000ULL) | rpos;
p->y = (uint64_t)q->q_span << 32 | (qlen - ((q->q_pos>>1) + 1 - q->q_span) - 1);
}
p->y |= (uint64_t)q->seg_id << MM_SEED_SEG_SHIFT;
if (q->is_tandem) p->y |= MM_SEED_TANDEM;
if (is_self) p->y |= MM_SEED_SELF;
}
// update the heap
if ((uint32_t)heap->y < q->n - 1) {
++heap[0].y;
heap[0].x = m[heap[0].y>>32].cr[(uint32_t)heap[0].y];
} else {
heap[0] = heap[heap_size - 1];
--heap_size;
}
ks_heapdown_heap(0, heap_size, heap);
}
kfree(km, m);
kfree(km, heap);
// reverse anchors on the reverse strand, as they are in the descending order
for (j = 0; j < n_rev>>1; ++j) {
mm128_t t = a[(*n_a) - 1 - j];
a[(*n_a) - 1 - j] = a[(*n_a) - (n_rev - j)];
a[(*n_a) - (n_rev - j)] = t;
}
if (*n_a > n_for + n_rev) {
memmove(a + n_for, a + (*n_a) - n_rev, n_rev * sizeof(mm128_t));
*n_a = n_for + n_rev;
}
return a;
}
static mm128_t *collect_seed_hits(void *km, const mm_mapopt_t *opt, int max_occ, const mm_idx_t *mi, const char *qname, const mm128_v *mv, int qlen, int64_t *n_a, int *rep_len,
int *n_mini_pos, uint64_t **mini_pos)
{
int i, n_m;
mm_match_t *m;
mm128_t *a;
m = collect_matches(km, &n_m, max_occ, mi, mv, n_a, rep_len, n_mini_pos, mini_pos);
a = (mm128_t*)kmalloc(km, *n_a * sizeof(mm128_t));
for (i = 0, *n_a = 0; i < n_m; ++i) {
mm_match_t *q = &m[i];
const uint64_t *r = q->cr;
uint32_t k;
for (k = 0; k < q->n; ++k) {
int32_t is_self, rpos = (uint32_t)r[k] >> 1;
mm128_t *p;
if (skip_seed(opt->flag, r[k], q, qname, qlen, mi, &is_self)) continue;
p = &a[(*n_a)++];
if ((r[k]&1) == (q->q_pos&1)) { // forward strand
p->x = (r[k]&0xffffffff00000000ULL) | rpos;
p->y = (uint64_t)q->q_span << 32 | q->q_pos >> 1;
} else { // reverse strand
p->x = 1ULL<<63 | (r[k]&0xffffffff00000000ULL) | rpos;
p->y = (uint64_t)q->q_span << 32 | (qlen - ((q->q_pos>>1) + 1 - q->q_span) - 1);
}
p->y |= (uint64_t)q->seg_id << MM_SEED_SEG_SHIFT;
if (q->is_tandem) p->y |= MM_SEED_TANDEM;
if (is_self) p->y |= MM_SEED_SELF;
}
}
kfree(km, m);
radix_sort_128x(a, a + (*n_a));
return a;
}
static void chain_post(const mm_mapopt_t *opt, int max_chain_gap_ref, const mm_idx_t *mi, void *km, int qlen, int n_segs, const int *qlens, int *n_regs, mm_reg1_t *regs, mm128_t *a)
{
if (!(opt->flag & MM_F_ALL_CHAINS)) { // don't choose primary mapping(s)
mm_set_parent(km, opt->mask_level, *n_regs, regs, opt->a * 2 + opt->b, opt->flag&MM_F_HARD_MLEVEL);
if (n_segs <= 1) mm_select_sub(km, opt->pri_ratio, mi->k*2, opt->best_n, n_regs, regs);
else mm_select_sub_multi(km, opt->pri_ratio, 0.2f, 0.7f, max_chain_gap_ref, mi->k*2, opt->best_n, n_segs, qlens, n_regs, regs);
if (!(opt->flag & (MM_F_SPLICE|MM_F_SR|MM_F_NO_LJOIN))) // long join not working well without primary chains
mm_join_long(km, opt, qlen, n_regs, regs, a);
}
}
static mm_reg1_t *align_regs(const mm_mapopt_t *opt, const mm_idx_t *mi, void *km, int qlen, const char *seq, int *n_regs, mm_reg1_t *regs, mm128_t *a)
{
if (!(opt->flag & MM_F_CIGAR)) return regs;
regs = mm_align_skeleton(km, opt, mi, qlen, seq, n_regs, regs, a); // this calls mm_filter_regs()
if (!(opt->flag & MM_F_ALL_CHAINS)) { // don't choose primary mapping(s)
mm_set_parent(km, opt->mask_level, *n_regs, regs, opt->a * 2 + opt->b, opt->flag&MM_F_HARD_MLEVEL);
mm_select_sub(km, opt->pri_ratio, mi->k*2, opt->best_n, n_regs, regs);
mm_set_sam_pri(*n_regs, regs);
}
return regs;
}
void mm_map_frag(const mm_idx_t *mi, int n_segs, const int *qlens, const char **seqs, int *n_regs, mm_reg1_t **regs, mm_tbuf_t *b, const mm_mapopt_t *opt, const char *qname)
{
int i, j, rep_len, qlen_sum, n_regs0, n_mini_pos;
int max_chain_gap_qry, max_chain_gap_ref, is_splice = !!(opt->flag & MM_F_SPLICE), is_sr = !!(opt->flag & MM_F_SR);
uint32_t hash;
int64_t n_a;
uint64_t *u, *mini_pos;
mm128_t *a;
mm128_v mv = {0,0,0};
mm_reg1_t *regs0;
km_stat_t kmst;
for (i = 0, qlen_sum = 0; i < n_segs; ++i)
qlen_sum += qlens[i], n_regs[i] = 0, regs[i] = 0;
if (qlen_sum == 0 || n_segs <= 0 || n_segs > MM_MAX_SEG) return;
if (opt->max_qlen > 0 && qlen_sum > opt->max_qlen) return;
hash = qname? __ac_X31_hash_string(qname) : 0;
hash ^= __ac_Wang_hash(qlen_sum) + __ac_Wang_hash(opt->seed);
hash = __ac_Wang_hash(hash);
collect_minimizers(b->km, opt, mi, n_segs, qlens, seqs, &mv);
if (opt->flag & MM_F_HEAP_SORT) a = collect_seed_hits_heap(b->km, opt, opt->mid_occ, mi, qname, &mv, qlen_sum, &n_a, &rep_len, &n_mini_pos, &mini_pos);
else a = collect_seed_hits(b->km, opt, opt->mid_occ, mi, qname, &mv, qlen_sum, &n_a, &rep_len, &n_mini_pos, &mini_pos);
if (mm_dbg_flag & MM_DBG_PRINT_SEED) {
fprintf(stderr, "RS\t%d\n", rep_len);
for (i = 0; i < n_a; ++i)
fprintf(stderr, "SD\t%s\t%d\t%c\t%d\t%d\t%d\n", mi->seq[a[i].x<<1>>33].name, (int32_t)a[i].x, "+-"[a[i].x>>63], (int32_t)a[i].y, (int32_t)(a[i].y>>32&0xff),
i == 0? 0 : ((int32_t)a[i].y - (int32_t)a[i-1].y) - ((int32_t)a[i].x - (int32_t)a[i-1].x));
}
// set max chaining gap on the query and the reference sequence
if (is_sr)
max_chain_gap_qry = qlen_sum > opt->max_gap? qlen_sum : opt->max_gap;
else max_chain_gap_qry = opt->max_gap;
if (opt->max_gap_ref > 0) {
max_chain_gap_ref = opt->max_gap_ref; // always honor mm_mapopt_t::max_gap_ref if set
} else if (opt->max_frag_len > 0) {
max_chain_gap_ref = opt->max_frag_len - qlen_sum;
if (max_chain_gap_ref < opt->max_gap) max_chain_gap_ref = opt->max_gap;
} else max_chain_gap_ref = opt->max_gap;
a = mm_chain_dp(max_chain_gap_ref, max_chain_gap_qry, opt->bw, opt->max_chain_skip, opt->max_chain_iter, opt->min_cnt, opt->min_chain_score, is_splice, n_segs, n_a, a, &n_regs0, &u, b->km);
if (opt->max_occ > opt->mid_occ && rep_len > 0) {
int rechain = 0;
if (n_regs0 > 0) { // test if the best chain has all the segments
int n_chained_segs = 1, max = 0, max_i = -1, max_off = -1, off = 0;
for (i = 0; i < n_regs0; ++i) { // find the best chain
if (max < (int)(u[i]>>32)) max = u[i]>>32, max_i = i, max_off = off;
off += (uint32_t)u[i];
}
for (i = 1; i < (int32_t)u[max_i]; ++i) // count the number of segments in the best chain
if ((a[max_off+i].y&MM_SEED_SEG_MASK) != (a[max_off+i-1].y&MM_SEED_SEG_MASK))
++n_chained_segs;
if (n_chained_segs < n_segs)
rechain = 1;
} else rechain = 1;
if (rechain) { // redo chaining with a higher max_occ threshold
kfree(b->km, a);
kfree(b->km, u);
kfree(b->km, mini_pos);
if (opt->flag & MM_F_HEAP_SORT) a = collect_seed_hits_heap(b->km, opt, opt->max_occ, mi, qname, &mv, qlen_sum, &n_a, &rep_len, &n_mini_pos, &mini_pos);
else a = collect_seed_hits(b->km, opt, opt->max_occ, mi, qname, &mv, qlen_sum, &n_a, &rep_len, &n_mini_pos, &mini_pos);
a = mm_chain_dp(max_chain_gap_ref, max_chain_gap_qry, opt->bw, opt->max_chain_skip, opt->max_chain_iter, opt->min_cnt, opt->min_chain_score, is_splice, n_segs, n_a, a, &n_regs0, &u, b->km);
}
}
b->frag_gap = max_chain_gap_ref;
b->rep_len = rep_len;
regs0 = mm_gen_regs(b->km, hash, qlen_sum, n_regs0, u, a);
if (mm_dbg_flag & MM_DBG_PRINT_SEED)
for (j = 0; j < n_regs0; ++j)
for (i = regs0[j].as; i < regs0[j].as + regs0[j].cnt; ++i)
fprintf(stderr, "CN\t%d\t%s\t%d\t%c\t%d\t%d\t%d\n", j, mi->seq[a[i].x<<1>>33].name, (int32_t)a[i].x, "+-"[a[i].x>>63], (int32_t)a[i].y, (int32_t)(a[i].y>>32&0xff),
i == regs0[j].as? 0 : ((int32_t)a[i].y - (int32_t)a[i-1].y) - ((int32_t)a[i].x - (int32_t)a[i-1].x));
chain_post(opt, max_chain_gap_ref, mi, b->km, qlen_sum, n_segs, qlens, &n_regs0, regs0, a);
if (!is_sr) mm_est_err(mi, qlen_sum, n_regs0, regs0, a, n_mini_pos, mini_pos);
if (n_segs == 1) { // uni-segment
regs0 = align_regs(opt, mi, b->km, qlens[0], seqs[0], &n_regs0, regs0, a);
mm_set_mapq(b->km, n_regs0, regs0, opt->min_chain_score, opt->a, rep_len, is_sr);
n_regs[0] = n_regs0, regs[0] = regs0;
} else { // multi-segment
mm_seg_t *seg;
seg = mm_seg_gen(b->km, hash, n_segs, qlens, n_regs0, regs0, n_regs, regs, a); // split fragment chain to separate segment chains
free(regs0);
for (i = 0; i < n_segs; ++i) {
mm_set_parent(b->km, opt->mask_level, n_regs[i], regs[i], opt->a * 2 + opt->b, opt->flag&MM_F_HARD_MLEVEL); // update mm_reg1_t::parent
regs[i] = align_regs(opt, mi, b->km, qlens[i], seqs[i], &n_regs[i], regs[i], seg[i].a);
mm_set_mapq(b->km, n_regs[i], regs[i], opt->min_chain_score, opt->a, rep_len, is_sr);
}
mm_seg_free(b->km, n_segs, seg);
if (n_segs == 2 && opt->pe_ori >= 0 && (opt->flag&MM_F_CIGAR))
mm_pair(b->km, max_chain_gap_ref, opt->pe_bonus, opt->a * 2 + opt->b, opt->a, qlens, n_regs, regs); // pairing
}
kfree(b->km, mv.a);
kfree(b->km, a);
kfree(b->km, u);
kfree(b->km, mini_pos);
if (b->km) {
km_stat(b->km, &kmst);
if (mm_dbg_flag & MM_DBG_PRINT_QNAME)
fprintf(stderr, "QM\t%s\t%d\tcap=%ld,nCore=%ld,largest=%ld\n", qname, qlen_sum, kmst.capacity, kmst.n_cores, kmst.largest);
assert(kmst.n_blocks == kmst.n_cores); // otherwise, there is a memory leak
if (kmst.largest > 1U<<28) {
km_destroy(b->km);
b->km = km_init();
}
}
}
mm_reg1_t *mm_map(const mm_idx_t *mi, int qlen, const char *seq, int *n_regs, mm_tbuf_t *b, const mm_mapopt_t *opt, const char *qname)
{
mm_reg1_t *regs;
mm_map_frag(mi, 1, &qlen, &seq, n_regs, ®s, b, opt, qname);
return regs;
}
/**************************
* Multi-threaded mapping *
**************************/
typedef struct {
int mini_batch_size, n_processed, n_threads, n_fp;
const mm_mapopt_t *opt;
mm_bseq_file_t **fp;
const mm_idx_t *mi;
kstring_t str;
int n_parts;
uint32_t *rid_shift;
FILE *fp_split, **fp_parts;
} pipeline_t;
typedef struct {
const pipeline_t *p;
int n_seq, n_frag;
mm_bseq1_t *seq;
int *n_reg, *seg_off, *n_seg, *rep_len, *frag_gap;
mm_reg1_t **reg;
mm_tbuf_t **buf;
} step_t;
static void worker_for(void *_data, long i, int tid) // kt_for() callback
{
step_t *s = (step_t*)_data;
int qlens[MM_MAX_SEG], j, off = s->seg_off[i], pe_ori = s->p->opt->pe_ori;
const char *qseqs[MM_MAX_SEG];
mm_tbuf_t *b = s->buf[tid];
assert(s->n_seg[i] <= MM_MAX_SEG);
if (mm_dbg_flag & MM_DBG_PRINT_QNAME)
fprintf(stderr, "QR\t%s\t%d\t%d\n", s->seq[off].name, tid, s->seq[off].l_seq);
for (j = 0; j < s->n_seg[i]; ++j) {
if (s->n_seg[i] == 2 && ((j == 0 && (pe_ori>>1&1)) || (j == 1 && (pe_ori&1))))
mm_revcomp_bseq(&s->seq[off + j]);
qlens[j] = s->seq[off + j].l_seq;
qseqs[j] = s->seq[off + j].seq;
}
if (s->p->opt->flag & MM_F_INDEPEND_SEG) {
for (j = 0; j < s->n_seg[i]; ++j) {
mm_map_frag(s->p->mi, 1, &qlens[j], &qseqs[j], &s->n_reg[off+j], &s->reg[off+j], b, s->p->opt, s->seq[off+j].name);
s->rep_len[off + j] = b->rep_len;
s->frag_gap[off + j] = b->frag_gap;
}
} else {
mm_map_frag(s->p->mi, s->n_seg[i], qlens, qseqs, &s->n_reg[off], &s->reg[off], b, s->p->opt, s->seq[off].name);
for (j = 0; j < s->n_seg[i]; ++j) {
s->rep_len[off + j] = b->rep_len;
s->frag_gap[off + j] = b->frag_gap;
}
}
for (j = 0; j < s->n_seg[i]; ++j) // flip the query strand and coordinate to the original read strand
if (s->n_seg[i] == 2 && ((j == 0 && (pe_ori>>1&1)) || (j == 1 && (pe_ori&1)))) {
int k, t;
mm_revcomp_bseq(&s->seq[off + j]);
for (k = 0; k < s->n_reg[off + j]; ++k) {
mm_reg1_t *r = &s->reg[off + j][k];
t = r->qs;
r->qs = qlens[j] - r->qe;
r->qe = qlens[j] - t;
r->rev = !r->rev;
}
}
}
static void merge_hits(step_t *s)
{
int f, i, k0, k, max_seg = 0, *n_reg_part, *rep_len_part, *frag_gap_part, *qlens;
void *km;
FILE **fp = s->p->fp_parts;
const mm_mapopt_t *opt = s->p->opt;
km = km_init();
for (f = 0; f < s->n_frag; ++f)
max_seg = max_seg > s->n_seg[f]? max_seg : s->n_seg[f];
qlens = CALLOC(int, max_seg + s->p->n_parts * 3);
n_reg_part = qlens + max_seg;
rep_len_part = n_reg_part + s->p->n_parts;
frag_gap_part = rep_len_part + s->p->n_parts;
for (f = 0, k = k0 = 0; f < s->n_frag; ++f) {
k0 = k;
for (i = 0; i < s->n_seg[f]; ++i, ++k) {
int j, l, t, rep_len = 0;
qlens[i] = s->seq[k].l_seq;
for (j = 0, s->n_reg[k] = 0; j < s->p->n_parts; ++j) {
mm_err_fread(&n_reg_part[j], sizeof(int), 1, fp[j]);
mm_err_fread(&rep_len_part[j], sizeof(int), 1, fp[j]);
mm_err_fread(&frag_gap_part[j], sizeof(int), 1, fp[j]);
s->n_reg[k] += n_reg_part[j];
if (rep_len < rep_len_part[j])
rep_len = rep_len_part[j];
}
s->reg[k] = CALLOC(mm_reg1_t, s->n_reg[k]);
for (j = 0, l = 0; j < s->p->n_parts; ++j) {
for (t = 0; t < n_reg_part[j]; ++t, ++l) {
mm_reg1_t *r = &s->reg[k][l];
uint32_t capacity;
mm_err_fread(r, sizeof(mm_reg1_t), 1, fp[j]);
r->rid += s->p->rid_shift[j];
if (opt->flag & MM_F_CIGAR) {
mm_err_fread(&capacity, 4, 1, fp[j]);
r->p = (mm_extra_t*)calloc(capacity, 4);
r->p->capacity = capacity;
mm_err_fread(r->p, r->p->capacity, 4, fp[j]);
}
}
}
mm_hit_sort(km, &s->n_reg[k], s->reg[k]);
mm_set_parent(km, opt->mask_level, s->n_reg[k], s->reg[k], opt->a * 2 + opt->b, opt->flag&MM_F_HARD_MLEVEL);
if (!(opt->flag & MM_F_ALL_CHAINS)) {
mm_select_sub(km, opt->pri_ratio, s->p->mi->k*2, opt->best_n, &s->n_reg[k], s->reg[k]);
mm_set_sam_pri(s->n_reg[k], s->reg[k]);
}
mm_set_mapq(km, s->n_reg[k], s->reg[k], opt->min_chain_score, opt->a, rep_len, !!(opt->flag & MM_F_SR));
}
if (s->n_seg[f] == 2 && opt->pe_ori >= 0 && (opt->flag&MM_F_CIGAR))
mm_pair(km, frag_gap_part[0], opt->pe_bonus, opt->a * 2 + opt->b, opt->a, qlens, &s->n_reg[k0], &s->reg[k0]);
}
free(qlens);
km_destroy(km);
}
static void *worker_pipeline(void *shared, int step, void *in)
{
int i, j, k;
pipeline_t *p = (pipeline_t*)shared;
if (step == 0) { // step 0: read sequences
int with_qual = (!!(p->opt->flag & MM_F_OUT_SAM) && !(p->opt->flag & MM_F_NO_QUAL));
int with_comment = !!(p->opt->flag & MM_F_COPY_COMMENT);
int frag_mode = (p->n_fp > 1 || !!(p->opt->flag & MM_F_FRAG_MODE));
step_t *s;
s = (step_t*)calloc(1, sizeof(step_t));
if (p->n_fp > 1) s->seq = mm_bseq_read_frag2(p->n_fp, p->fp, p->mini_batch_size, with_qual, with_comment, &s->n_seq);
else s->seq = mm_bseq_read3(p->fp[0], p->mini_batch_size, with_qual, with_comment, frag_mode, &s->n_seq);
if (s->seq) {
s->p = p;
for (i = 0; i < s->n_seq; ++i)
s->seq[i].rid = p->n_processed++;
s->buf = (mm_tbuf_t**)calloc(p->n_threads, sizeof(mm_tbuf_t*));
for (i = 0; i < p->n_threads; ++i)
s->buf[i] = mm_tbuf_init();
s->n_reg = (int*)calloc(5 * s->n_seq, sizeof(int));
s->seg_off = s->n_reg + s->n_seq; // seg_off, n_seg, rep_len and frag_gap are allocated together with n_reg
s->n_seg = s->seg_off + s->n_seq;
s->rep_len = s->n_seg + s->n_seq;
s->frag_gap = s->rep_len + s->n_seq;
s->reg = (mm_reg1_t**)calloc(s->n_seq, sizeof(mm_reg1_t*));
for (i = 1, j = 0; i <= s->n_seq; ++i)
if (i == s->n_seq || !frag_mode || !mm_qname_same(s->seq[i-1].name, s->seq[i].name)) {
s->n_seg[s->n_frag] = i - j;
s->seg_off[s->n_frag++] = j;
j = i;
}
return s;
} else free(s);
} else if (step == 1) { // step 1: map
if (p->n_parts > 0) merge_hits((step_t*)in);
else kt_for(p->n_threads, worker_for, in, ((step_t*)in)->n_frag);
return in;
} else if (step == 2) { // step 2: output
void *km = 0;
step_t *s = (step_t*)in;
const mm_idx_t *mi = p->mi;
for (i = 0; i < p->n_threads; ++i) mm_tbuf_destroy(s->buf[i]);
free(s->buf);
if ((p->opt->flag & MM_F_OUT_CS) && !(mm_dbg_flag & MM_DBG_NO_KALLOC)) km = km_init();
for (k = 0; k < s->n_frag; ++k) {
int seg_st = s->seg_off[k], seg_en = s->seg_off[k] + s->n_seg[k];
for (i = seg_st; i < seg_en; ++i) {
mm_bseq1_t *t = &s->seq[i];
if (p->opt->split_prefix && p->n_parts == 0) { // then write to temporary files
mm_err_fwrite(&s->n_reg[i], sizeof(int), 1, p->fp_split);
mm_err_fwrite(&s->rep_len[i], sizeof(int), 1, p->fp_split);
mm_err_fwrite(&s->frag_gap[i], sizeof(int), 1, p->fp_split);
for (j = 0; j < s->n_reg[i]; ++j) {
mm_reg1_t *r = &s->reg[i][j];
mm_err_fwrite(r, sizeof(mm_reg1_t), 1, p->fp_split);
if (p->opt->flag & MM_F_CIGAR) {
mm_err_fwrite(&r->p->capacity, 4, 1, p->fp_split);
mm_err_fwrite(r->p, r->p->capacity, 4, p->fp_split);
}
}
} else if (s->n_reg[i] > 0) { // the query has at least one hit
for (j = 0; j < s->n_reg[i]; ++j) {
mm_reg1_t *r = &s->reg[i][j];
assert(!r->sam_pri || r->id == r->parent);
if ((p->opt->flag & MM_F_NO_PRINT_2ND) && r->id != r->parent)
continue;
if (p->opt->flag & MM_F_OUT_SAM)
mm_write_sam3(&p->str, mi, t, i - seg_st, j, s->n_seg[k], &s->n_reg[seg_st], (const mm_reg1_t*const*)&s->reg[seg_st], km, p->opt->flag, s->rep_len[i]);
else
mm_write_paf3(&p->str, mi, t, r, km, p->opt->flag, s->rep_len[i]);
mm_err_puts(p->str.s);
}
} else if ((p->opt->flag & MM_F_PAF_NO_HIT) || ((p->opt->flag & MM_F_OUT_SAM) && !(p->opt->flag & MM_F_SAM_HIT_ONLY))) { // output an empty hit, if requested
if (p->opt->flag & MM_F_OUT_SAM)
mm_write_sam3(&p->str, mi, t, i - seg_st, -1, s->n_seg[k], &s->n_reg[seg_st], (const mm_reg1_t*const*)&s->reg[seg_st], km, p->opt->flag, s->rep_len[i]);
else
mm_write_paf3(&p->str, mi, t, 0, 0, p->opt->flag, s->rep_len[i]);
mm_err_puts(p->str.s);
}
}
for (i = seg_st; i < seg_en; ++i) {
for (j = 0; j < s->n_reg[i]; ++j) free(s->reg[i][j].p);
free(s->reg[i]);
free(s->seq[i].seq); free(s->seq[i].name);
if (s->seq[i].qual) free(s->seq[i].qual);
if (s->seq[i].comment) free(s->seq[i].comment);
}
}
free(s->reg); free(s->n_reg); free(s->seq); // seg_off, n_seg, rep_len and frag_gap were allocated with reg; no memory leak here
km_destroy(km);
if (mm_verbose >= 3)
fprintf(stderr, "[M::%s::%.3f*%.2f] mapped %d sequences\n", __func__, realtime() - mm_realtime0, cputime() / (realtime() - mm_realtime0), s->n_seq);
free(s);
}
return 0;
}
static mm_bseq_file_t **open_bseqs(int n, const char **fn)
{
mm_bseq_file_t **fp;
int i, j;
fp = (mm_bseq_file_t**)calloc(n, sizeof(mm_bseq_file_t*));
for (i = 0; i < n; ++i) {
if ((fp[i] = mm_bseq_open(fn[i])) == 0) {
if (mm_verbose >= 1)
fprintf(stderr, "ERROR: failed to open file '%s'\n", fn[i]);
for (j = 0; j < i; ++j)
mm_bseq_close(fp[j]);
free(fp);
return 0;
}
}
return fp;
}
int mm_map_file_frag(const mm_idx_t *idx, int n_segs, const char **fn, const mm_mapopt_t *opt, int n_threads)
{
int i, pl_threads;
pipeline_t pl;
if (n_segs < 1) return -1;
memset(&pl, 0, sizeof(pipeline_t));
pl.n_fp = n_segs;
pl.fp = open_bseqs(pl.n_fp, fn);
if (pl.fp == 0) return -1;
pl.opt = opt, pl.mi = idx;
pl.n_threads = n_threads > 1? n_threads : 1;
pl.mini_batch_size = opt->mini_batch_size;
if (opt->split_prefix)
pl.fp_split = mm_split_init(opt->split_prefix, idx);
pl_threads = n_threads == 1? 1 : (opt->flag&MM_F_2_IO_THREADS)? 3 : 2;
kt_pipeline(pl_threads, worker_pipeline, &pl, 3);
free(pl.str.s);
if (pl.fp_split) fclose(pl.fp_split);
for (i = 0; i < pl.n_fp; ++i)
mm_bseq_close(pl.fp[i]);
free(pl.fp);
return 0;
}
int mm_map_file(const mm_idx_t *idx, const char *fn, const mm_mapopt_t *opt, int n_threads)
{
return mm_map_file_frag(idx, 1, &fn, opt, n_threads);
}
int mm_split_merge(int n_segs, const char **fn, const mm_mapopt_t *opt, int n_split_idx)
{
int i;
pipeline_t pl;
mm_idx_t *mi;
if (n_segs < 1 || n_split_idx < 1) return -1;
memset(&pl, 0, sizeof(pipeline_t));
pl.n_fp = n_segs;
pl.fp = open_bseqs(pl.n_fp, fn);
if (pl.fp == 0) return -1;
pl.opt = opt;
pl.mini_batch_size = opt->mini_batch_size;
pl.n_parts = n_split_idx;
pl.fp_parts = CALLOC(FILE*, pl.n_parts);
pl.rid_shift = CALLOC(uint32_t, pl.n_parts);
pl.mi = mi = mm_split_merge_prep(opt->split_prefix, n_split_idx, pl.fp_parts, pl.rid_shift);
if (pl.mi == 0) {
free(pl.fp_parts);
free(pl.rid_shift);
return -1;
}
for (i = n_split_idx - 1; i > 0; --i)
pl.rid_shift[i] = pl.rid_shift[i - 1];
for (pl.rid_shift[0] = 0, i = 1; i < n_split_idx; ++i)
pl.rid_shift[i] += pl.rid_shift[i - 1];
if (opt->flag & MM_F_OUT_SAM)
for (i = 0; i < (int32_t)pl.mi->n_seq; ++i)
printf("@SQ\tSN:%s\tLN:%d\n", pl.mi->seq[i].name, pl.mi->seq[i].len);
kt_pipeline(2, worker_pipeline, &pl, 3);
free(pl.str.s);
mm_idx_destroy(mi);
free(pl.rid_shift);
for (i = 0; i < n_split_idx; ++i)
fclose(pl.fp_parts[i]);
free(pl.fp_parts);
for (i = 0; i < pl.n_fp; ++i)
mm_bseq_close(pl.fp[i]);
free(pl.fp);
mm_split_rm_tmp(opt->split_prefix, n_split_idx);
return 0;
}
|