1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
#include <stdlib.h>
#include <math.h>
#include "mmpriv.h"
#include "kvec.h"
void mm_select_sub_multi(void *km, float pri_ratio, float pri1, float pri2, int max_gap_ref, int min_diff, int best_n, int n_segs, const int *qlens, int *n_, mm_reg1_t *r)
{
if (pri_ratio > 0.0f && *n_ > 0) {
int i, k, n = *n_, n_2nd = 0;
int max_dist = n_segs == 2? qlens[0] + qlens[1] + max_gap_ref : 0;
for (i = k = 0; i < n; ++i) {
int to_keep = 0;
if (r[i].parent == i) { // primary
to_keep = 1;
} else if (r[i].score + min_diff >= r[r[i].parent].score) {
to_keep = 1;
} else {
mm_reg1_t *p = &r[r[i].parent], *q = &r[i];
if (p->rev == q->rev && p->rid == q->rid && q->re - p->rs < max_dist && p->re - q->rs < max_dist) { // child and parent are close on the ref
if (q->score >= p->score * pri1)
to_keep = 1;
} else {
int is_par_both = (n_segs == 2 && p->qs < qlens[0] && p->qe > qlens[0]);
int is_chi_both = (n_segs == 2 && q->qs < qlens[0] && q->qe > qlens[0]);
if (is_chi_both || is_chi_both == is_par_both) {
if (q->score >= p->score * pri_ratio)
to_keep = 1;
} else { // the remaining case: is_chi_both == 0 && is_par_both == 1
if (q->score >= p->score * pri2)
to_keep = 1;
}
}
}
if (to_keep && r[i].parent != i) {
if (n_2nd++ >= best_n) to_keep = 0; // don't keep if there are too many secondary hits
}
if (to_keep) r[k++] = r[i];
else if (r[i].p) free(r[i].p);
}
if (k != n) mm_sync_regs(km, k, r); // removing hits requires sync()
*n_ = k;
}
}
void mm_set_pe_thru(const int *qlens, int *n_regs, mm_reg1_t **regs)
{
int s, i, n_pri[2], pri[2];
n_pri[0] = n_pri[1] = 0;
pri[0] = pri[1] = -1;
for (s = 0; s < 2; ++s)
for (i = 0; i < n_regs[s]; ++i)
if (regs[s][i].id == regs[s][i].parent)
++n_pri[s], pri[s] = i;
if (n_pri[0] == 1 && n_pri[1] == 1) {
mm_reg1_t *p = ®s[0][pri[0]];
mm_reg1_t *q = ®s[1][pri[1]];
if (p->rid == q->rid && p->rev == q->rev && abs(p->rs - q->rs) < 3 && abs(p->re - q->re) < 3
&& ((p->qs == 0 && qlens[1] - q->qe == 0) || (q->qs == 0 && qlens[0] - p->qe == 0)))
{
p->pe_thru = q->pe_thru = 1;
}
}
}
#include "ksort.h"
typedef struct {
int s, rev;
uint64_t key;
mm_reg1_t *r;
} pair_arr_t;
#define sort_key_pair(a) ((a).key)
KRADIX_SORT_INIT(pair, pair_arr_t, sort_key_pair, 8)
void mm_pair(void *km, int max_gap_ref, int pe_bonus, int sub_diff, int match_sc, const int *qlens, int *n_regs, mm_reg1_t **regs)
{
int i, j, s, n, last[2], dp_thres, segs = 0, max_idx[2];
int64_t max;
pair_arr_t *a;
kvec_t(uint64_t) sc = {0,0,0};
a = (pair_arr_t*)kmalloc(km, (n_regs[0] + n_regs[1]) * sizeof(pair_arr_t));
for (s = n = 0, dp_thres = 0; s < 2; ++s) {
int max = 0;
for (i = 0; i < n_regs[s]; ++i) {
a[n].s = s;
a[n].r = ®s[s][i];
a[n].rev = a[n].r->rev;
a[n].key = (uint64_t)a[n].r->rid << 32 | a[n].r->rs<<1 | (s^a[n].rev);
max = max > a[n].r->p->dp_max? max : a[n].r->p->dp_max;
++n;
segs |= 1<<s;
}
dp_thres += max;
}
if (segs != 3) {
kfree(km, a); // only one end is mapped
return;
}
dp_thres -= pe_bonus;
if (dp_thres < 0) dp_thres = 0;
radix_sort_pair(a, a + n);
max = -1;
max_idx[0] = max_idx[1] = -1;
last[0] = last[1] = -1;
kv_resize(uint64_t, km, sc, (size_t)n);
for (i = 0; i < n; ++i) {
if (a[i].key & 1) { // reverse first read or forward second read
mm_reg1_t *q, *r;
if (last[a[i].rev] < 0) continue;
r = a[i].r;
q = a[last[a[i].rev]].r;
if (r->rid != q->rid || r->rs - q->re > max_gap_ref) continue;
for (j = last[a[i].rev]; j >= 0; --j) {
int64_t score;
if (a[j].rev != a[i].rev || a[j].s == a[i].s) continue;
q = a[j].r;
if (r->rid != q->rid || r->rs - q->re > max_gap_ref) break;
if (r->p->dp_max + q->p->dp_max < dp_thres) continue;
score = (int64_t)(r->p->dp_max + q->p->dp_max) << 32 | (r->hash + q->hash);
if (score > max)
max = score, max_idx[a[j].s] = j, max_idx[a[i].s] = i;
kv_push(uint64_t, km, sc, score);
}
} else { // forward first read or reverse second read
last[a[i].rev] = i;
}
}
if (sc.n > 1)
radix_sort_64(sc.a, sc.a + sc.n);
if (sc.n > 0 && max > 0) { // found at least one pair
int n_sub = 0, mapq_pe;
mm_reg1_t *r[2];
r[0] = a[max_idx[0]].r, r[1] = a[max_idx[1]].r;
r[0]->proper_frag = r[1]->proper_frag = 1;
for (s = 0; s < 2; ++s) {
if (r[s]->id != r[s]->parent) { // then lift to primary and update parent
mm_reg1_t *p = ®s[s][r[s]->parent];
for (i = 0; i < n_regs[s]; ++i)
if (regs[s][i].parent == p->id)
regs[s][i].parent = r[s]->id;
p->mapq = 0;
}
if (!r[s]->sam_pri) { // then sync sam_pri
for (i = 0; i < n_regs[s]; ++i)
regs[s][i].sam_pri = 0;
r[s]->sam_pri = 1;
}
}
mapq_pe = r[0]->mapq > r[1]->mapq? r[0]->mapq : r[1]->mapq;
for (i = 0; i < (int)sc.n; ++i)
if ((sc.a[i]>>32) + sub_diff >= (uint64_t)max>>32)
++n_sub;
if (sc.n > 1) {
int mapq_pe_alt;
mapq_pe_alt = (int)(6.02f * ((max>>32) - (sc.a[sc.n - 2]>>32)) / match_sc - 4.343f * logf(n_sub)); // n_sub > 0 because it counts the optimal, too
mapq_pe = mapq_pe < mapq_pe_alt? mapq_pe : mapq_pe_alt;
}
if (r[0]->mapq < mapq_pe) r[0]->mapq = (int)(.2f * r[0]->mapq + .8f * mapq_pe + .499f);
if (r[1]->mapq < mapq_pe) r[1]->mapq = (int)(.2f * r[1]->mapq + .8f * mapq_pe + .499f);
if (sc.n == 1) {
if (r[0]->mapq < 2) r[0]->mapq = 2;
if (r[1]->mapq < 2) r[1]->mapq = 2;
} else if ((uint64_t)max>>32 > sc.a[sc.n - 2]>>32) {
if (r[0]->mapq < 1) r[0]->mapq = 1;
if (r[1]->mapq < 1) r[1]->mapq = 1;
}
}
kfree(km, a);
kfree(km, sc.a);
mm_set_pe_thru(qlens, n_regs, regs);
}
|