File: align.c

package info (click to toggle)
minimap2 2.17%2Bdfsg-12
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 1,204 kB
  • sloc: ansic: 8,653; javascript: 2,301; makefile: 130; python: 91; sh: 42; perl: 29
file content (913 lines) | stat: -rw-r--r-- 33,673 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "minimap.h"
#include "mmpriv.h"
#include "ksw2.h"

static void ksw_gen_simple_mat(int m, int8_t *mat, int8_t a, int8_t b, int8_t sc_ambi)
{
	int i, j;
	a = a < 0? -a : a;
	b = b > 0? -b : b;
	sc_ambi = sc_ambi > 0? -sc_ambi : sc_ambi;
	for (i = 0; i < m - 1; ++i) {
		for (j = 0; j < m - 1; ++j)
			mat[i * m + j] = i == j? a : b;
		mat[i * m + m - 1] = sc_ambi;
	}
	for (j = 0; j < m; ++j)
		mat[(m - 1) * m + j] = sc_ambi;
}

static inline void mm_seq_rev(uint32_t len, uint8_t *seq)
{
	uint32_t i;
	uint8_t t;
	for (i = 0; i < len>>1; ++i)
		t = seq[i], seq[i] = seq[len - 1 - i], seq[len - 1 - i] = t;
}

static inline void update_max_zdrop(int32_t score, int i, int j, int32_t *max, int *max_i, int *max_j, int e, int *max_zdrop, int pos[2][2])
{
	if (score < *max) {
		int li = i - *max_i;
		int lj = j - *max_j;
		int diff = li > lj? li - lj : lj - li;
		int z = *max - score - diff * e;
		if (z > *max_zdrop) {
			*max_zdrop = z;
			pos[0][0] = *max_i, pos[0][1] = i + 1;
			pos[1][0] = *max_j, pos[1][1] = j + 1;
		}
	} else *max = score, *max_i = i, *max_j = j;
}

static int mm_test_zdrop(void *km, const mm_mapopt_t *opt, const uint8_t *qseq, const uint8_t *tseq, uint32_t n_cigar, uint32_t *cigar, const int8_t *mat)
{
	uint32_t k;
	int32_t score = 0, max = INT32_MIN, max_i = -1, max_j = -1, i = 0, j = 0, max_zdrop = 0;
	int pos[2][2] = {{-1, -1}, {-1, -1}}, q_len, t_len;

	// find the score and the region where score drops most along diagonal
	for (k = 0, score = 0; k < n_cigar; ++k) {
		uint32_t l, op = cigar[k]&0xf, len = cigar[k]>>4;
		if (op == 0) {
			for (l = 0; l < len; ++l) {
				score += mat[tseq[i + l] * 5 + qseq[j + l]];
				update_max_zdrop(score, i+l, j+l, &max, &max_i, &max_j, opt->e, &max_zdrop, pos);
			}
			i += len, j += len;
		} else if (op == 1 || op == 2 || op == 3) {
			score -= opt->q + opt->e * len;
			if (op == 1) j += len; // insertion
			else i += len;         // deletion
			update_max_zdrop(score, i, j, &max, &max_i, &max_j, opt->e, &max_zdrop, pos);
		}
	}

	// test if there is an inversion in the most dropped region
	q_len = pos[1][1] - pos[1][0], t_len = pos[0][1] - pos[0][0];
	if (!(opt->flag&(MM_F_SPLICE|MM_F_SR|MM_F_FOR_ONLY|MM_F_REV_ONLY)) && max_zdrop > opt->zdrop_inv && q_len < opt->max_gap && t_len < opt->max_gap) {
		uint8_t *qseq2;
		void *qp;
		int q_off, t_off;
		qseq2 = (uint8_t*)kmalloc(km, q_len);
		for (i = 0; i < q_len; ++i) {
			int c = qseq[pos[1][1] - i - 1];
			qseq2[i] = c >= 4? 4 : 3 - c;
		}
		qp = ksw_ll_qinit(km, 2, q_len, qseq2, 5, mat);
		score = ksw_ll_i16(qp, t_len, tseq + pos[0][0], opt->q, opt->e, &q_off, &t_off);
		kfree(km, qseq2);
		kfree(km, qp);
		if (score >= opt->min_chain_score * opt->a && score >= opt->min_dp_max)
			return 2; // there is a potential inversion
	}
	return max_zdrop > opt->zdrop? 1 : 0;
}

static void mm_fix_cigar(mm_reg1_t *r, const uint8_t *qseq, const uint8_t *tseq, int *qshift, int *tshift)
{
	mm_extra_t *p = r->p;
	int32_t toff = 0, qoff = 0, to_shrink = 0;
	uint32_t k;
	*qshift = *tshift = 0;
	if (p->n_cigar <= 1) return;
	for (k = 0; k < p->n_cigar; ++k) { // indel left alignment
		uint32_t op = p->cigar[k]&0xf, len = p->cigar[k]>>4;
		if (len == 0) to_shrink = 1;
		if (op == 0) {
			toff += len, qoff += len;
		} else if (op == 1 || op == 2) { // insertion or deletion
			if (k > 0 && k < p->n_cigar - 1 && (p->cigar[k-1]&0xf) == 0 && (p->cigar[k+1]&0xf) == 0) {
				int l, prev_len = p->cigar[k-1] >> 4;
				if (op == 1) {
					for (l = 0; l < prev_len; ++l)
						if (qseq[qoff - 1 - l] != qseq[qoff + len - 1 - l])
							break;
				} else {
					for (l = 0; l < prev_len; ++l)
						if (tseq[toff - 1 - l] != tseq[toff + len - 1 - l])
							break;
				}
				if (l > 0)
					p->cigar[k-1] -= l<<4, p->cigar[k+1] += l<<4, qoff -= l, toff -= l;
				if (l == prev_len) to_shrink = 1;
			}
			if (op == 1) qoff += len;
			else toff += len;
		} else if (op == 3) {
			toff += len;
		}
	}
	assert(qoff == r->qe - r->qs && toff == r->re - r->rs);
	for (k = 0; k < p->n_cigar - 2; ++k) { // fix CIGAR like 5I6D7I
		if ((p->cigar[k]&0xf) > 0 && (p->cigar[k]&0xf) + (p->cigar[k+1]&0xf) == 3) {
			uint32_t l, s[3] = {0,0,0};
			for (l = k; l < p->n_cigar; ++l) { // count number of adjacent I and D
				uint32_t op = p->cigar[l]&0xf;
				if (op == 1 || op == 2 || p->cigar[l]>>4 == 0)
					s[op] += p->cigar[l] >> 4;
				else break;
			}
			if (s[1] > 0 && s[2] > 0 && l - k > 2) { // turn to a single I and a single D
				p->cigar[k]   = s[1]<<4|1;
				p->cigar[k+1] = s[2]<<4|2;
				for (k += 2; k < l; ++k)
					p->cigar[k] &= 0xf;
				to_shrink = 1;
			}
			k = l;
		}
	}
	if (to_shrink) { // squeeze out zero-length operations
		int32_t l = 0;
		for (k = 0; k < p->n_cigar; ++k) // squeeze out zero-length operations
			if (p->cigar[k]>>4 != 0)
				p->cigar[l++] = p->cigar[k];
		p->n_cigar = l;
		for (k = l = 0; k < p->n_cigar; ++k) // merge two adjacent operations if they are the same
			if (k == p->n_cigar - 1 || (p->cigar[k]&0xf) != (p->cigar[k+1]&0xf))
				p->cigar[l++] = p->cigar[k];
			else p->cigar[k+1] += p->cigar[k]>>4<<4; // add length to the next CIGAR operator
		p->n_cigar = l;
	}
	if ((p->cigar[0]&0xf) == 1 || (p->cigar[0]&0xf) == 2) { // get rid of leading I or D
		int32_t l = p->cigar[0] >> 4;
		if ((p->cigar[0]&0xf) == 1) {
			if (r->rev) r->qe -= l;
			else r->qs += l;
			*qshift = l;
		} else r->rs += l, *tshift = l;
		--p->n_cigar;
		memmove(p->cigar, p->cigar + 1, p->n_cigar * 4);
	}
}

static void mm_update_cigar_eqx(mm_reg1_t *r, const uint8_t *qseq, const uint8_t *tseq) // written by @armintoepfer
{
	uint32_t n_EQX = 0;
	uint32_t k, l, m, cap, toff = 0, qoff = 0, n_M = 0;
	mm_extra_t *p;
	if (r->p == 0) return;
	for (k = 0; k < r->p->n_cigar; ++k) {
		uint32_t op = r->p->cigar[k]&0xf, len = r->p->cigar[k]>>4;
		if (op == 0) {
			while (len > 0) {
				for (l = 0; l < len && qseq[qoff + l] == tseq[toff + l]; ++l) {} // run of "="; TODO: N<=>N is converted to "="
				if (l > 0) { ++n_EQX; len -= l; toff += l; qoff += l; }

				for (l = 0; l < len && qseq[qoff + l] != tseq[toff + l]; ++l) {} // run of "X"
				if (l > 0) { ++n_EQX; len -= l; toff += l; qoff += l; }
			}
			++n_M;
		} else if (op == 1) { // insertion
			qoff += len;
		} else if (op == 2) { // deletion
			toff += len;
		} else if (op == 3) { // intron
			toff += len;
		}
	}
	// update in-place if we can
	if (n_EQX == n_M) {
		for (k = 0; k < r->p->n_cigar; ++k) {
			uint32_t op = r->p->cigar[k]&0xf, len = r->p->cigar[k]>>4;
			if (op == 0) r->p->cigar[k] = len << 4 | 7;
		}
		return;
	}
	// allocate new storage
	cap = r->p->n_cigar + (n_EQX - n_M) + sizeof(mm_extra_t);
	kroundup32(cap);
	p = (mm_extra_t*)calloc(cap, 4);
	memcpy(p, r->p, sizeof(mm_extra_t));
	p->capacity = cap;
	// update cigar while copying
	toff = qoff = m = 0;
	for (k = 0; k < r->p->n_cigar; ++k) {
		uint32_t op = r->p->cigar[k]&0xf, len = r->p->cigar[k]>>4;
		if (op == 0) { // match/mismatch
			while (len > 0) {
				// match
				for (l = 0; l < len && qseq[qoff + l] == tseq[toff + l]; ++l) {}
				if (l > 0) p->cigar[m++] = l << 4 | 7;
				len -= l;
				toff += l, qoff += l;
				// mismatch
				for (l = 0; l < len && qseq[qoff + l] != tseq[toff + l]; ++l) {}
				if (l > 0) p->cigar[m++] = l << 4 | 8;
				len -= l;
				toff += l, qoff += l;
			}
			continue;
		} else if (op == 1) { // insertion
			qoff += len;
		} else if (op == 2) { // deletion
			toff += len;
		} else if (op == 3) { // intron
			toff += len;
		}
		p->cigar[m++] = r->p->cigar[k];
	}
	p->n_cigar = m;
	free(r->p);
	r->p = p;
}

static void mm_update_extra(mm_reg1_t *r, const uint8_t *qseq, const uint8_t *tseq, const int8_t *mat, int8_t q, int8_t e, int is_eqx)
{
	uint32_t k, l;
	int32_t s = 0, max = 0, qshift, tshift, toff = 0, qoff = 0;
	mm_extra_t *p = r->p;
	if (p == 0) return;
	mm_fix_cigar(r, qseq, tseq, &qshift, &tshift);
	qseq += qshift, tseq += tshift; // qseq and tseq may be shifted due to the removal of leading I/D
	r->blen = r->mlen = 0;
	for (k = 0; k < p->n_cigar; ++k) {
		uint32_t op = p->cigar[k]&0xf, len = p->cigar[k]>>4;
		if (op == 0) { // match/mismatch
			int n_ambi = 0, n_diff = 0;
			for (l = 0; l < len; ++l) {
				int cq = qseq[qoff + l], ct = tseq[toff + l];
				if (ct > 3 || cq > 3) ++n_ambi;
				else if (ct != cq) ++n_diff;
				s += mat[ct * 5 + cq];
				if (s < 0) s = 0;
				else max = max > s? max : s;
			}
			r->blen += len - n_ambi, r->mlen += len - (n_ambi + n_diff), p->n_ambi += n_ambi;
			toff += len, qoff += len;
		} else if (op == 1) { // insertion
			int n_ambi = 0;
			for (l = 0; l < len; ++l)
				if (qseq[qoff + l] > 3) ++n_ambi;
			r->blen += len - n_ambi, p->n_ambi += n_ambi;
			s -= q + e * len;
			if (s < 0) s = 0;
			qoff += len;
		} else if (op == 2) { // deletion
			int n_ambi = 0;
			for (l = 0; l < len; ++l)
				if (tseq[toff + l] > 3) ++n_ambi;
			r->blen += len - n_ambi, p->n_ambi += n_ambi;
			s -= q + e * len;
			if (s < 0) s = 0;
			toff += len;
		} else if (op == 3) { // intron
			toff += len;
		}
	}
	p->dp_max = max;
	assert(qoff == r->qe - r->qs && toff == r->re - r->rs);
	if (is_eqx) mm_update_cigar_eqx(r, qseq, tseq); // NB: it has to be called here as changes to qseq and tseq are not returned
}

static void mm_append_cigar(mm_reg1_t *r, uint32_t n_cigar, uint32_t *cigar) // TODO: this calls the libc realloc()
{
	mm_extra_t *p;
	if (n_cigar == 0) return;
	if (r->p == 0) {
		uint32_t capacity = n_cigar + sizeof(mm_extra_t)/4;
		kroundup32(capacity);
		r->p = (mm_extra_t*)calloc(capacity, 4);
		r->p->capacity = capacity;
	} else if (r->p->n_cigar + n_cigar + sizeof(mm_extra_t)/4 > r->p->capacity) {
		r->p->capacity = r->p->n_cigar + n_cigar + sizeof(mm_extra_t)/4;
		kroundup32(r->p->capacity);
		r->p = (mm_extra_t*)realloc(r->p, r->p->capacity * 4);
	}
	p = r->p;
	if (p->n_cigar > 0 && (p->cigar[p->n_cigar-1]&0xf) == (cigar[0]&0xf)) { // same CIGAR op at the boundary
		p->cigar[p->n_cigar-1] += cigar[0]>>4<<4;
		if (n_cigar > 1) memcpy(p->cigar + p->n_cigar, cigar + 1, (n_cigar - 1) * 4);
		p->n_cigar += n_cigar - 1;
	} else {
		memcpy(p->cigar + p->n_cigar, cigar, n_cigar * 4);
		p->n_cigar += n_cigar;
	}
}

static void mm_align_pair(void *km, const mm_mapopt_t *opt, int qlen, const uint8_t *qseq, int tlen, const uint8_t *tseq, const uint8_t *junc, const int8_t *mat, int w, int end_bonus, int zdrop, int flag, ksw_extz_t *ez)
{
	if (mm_dbg_flag & MM_DBG_PRINT_ALN_SEQ) {
		int i;
		fprintf(stderr, "===> q=(%d,%d), e=(%d,%d), bw=%d, flag=%d, zdrop=%d <===\n", opt->q, opt->q2, opt->e, opt->e2, w, flag, opt->zdrop);
		for (i = 0; i < tlen; ++i) fputc("ACGTN"[tseq[i]], stderr);
		fputc('\n', stderr);
		for (i = 0; i < qlen; ++i) fputc("ACGTN"[qseq[i]], stderr);
		fputc('\n', stderr);
	}
	if (opt->max_sw_mat > 0 && (int64_t)tlen * qlen > opt->max_sw_mat) {
		ksw_reset_extz(ez);
		ez->zdropped = 1;
	} else if (opt->flag & MM_F_SPLICE)
		ksw_exts2_sse(km, qlen, qseq, tlen, tseq, 5, mat, opt->q, opt->e, opt->q2, opt->noncan, zdrop, opt->junc_bonus, flag, junc, ez);
	else if (opt->q == opt->q2 && opt->e == opt->e2)
		ksw_extz2_sse(km, qlen, qseq, tlen, tseq, 5, mat, opt->q, opt->e, w, zdrop, end_bonus, flag, ez);
	else
		ksw_extd2_sse(km, qlen, qseq, tlen, tseq, 5, mat, opt->q, opt->e, opt->q2, opt->e2, w, zdrop, end_bonus, flag, ez);
	if (mm_dbg_flag & MM_DBG_PRINT_ALN_SEQ) {
		int i;
		fprintf(stderr, "score=%d, cigar=", ez->score);
		for (i = 0; i < ez->n_cigar; ++i)
			fprintf(stderr, "%d%c", ez->cigar[i]>>4, "MIDN"[ez->cigar[i]&0xf]);
		fprintf(stderr, "\n");
	}
}

static inline int mm_get_hplen_back(const mm_idx_t *mi, uint32_t rid, uint32_t x)
{
	int64_t i, off0 = mi->seq[rid].offset, off = off0 + x;
	int c = mm_seq4_get(mi->S, off);
	for (i = off - 1; i >= off0; --i)
		if (mm_seq4_get(mi->S, i) != c) break;
	return (int)(off - i);
}

static inline void mm_adjust_minier(const mm_idx_t *mi, uint8_t *const qseq0[2], mm128_t *a, int32_t *r, int32_t *q)
{
	if (mi->flag & MM_I_HPC) {
		const uint8_t *qseq = qseq0[a->x>>63];
		int i, c;
		*q = (int32_t)a->y;
		for (i = *q - 1, c = qseq[*q]; i > 0; --i)
			if (qseq[i] != c) break;
		*q = i + 1;
		c = mm_get_hplen_back(mi, a->x<<1>>33, (int32_t)a->x);
		*r = (int32_t)a->x + 1 - c;
	} else {
		*r = (int32_t)a->x - (mi->k>>1);
		*q = (int32_t)a->y - (mi->k>>1);
	}
}

static int *collect_long_gaps(void *km, int as1, int cnt1, mm128_t *a, int min_gap, int *n_)
{
	int i, n, *K;
	*n_ = 0;
	for (i = 1, n = 0; i < cnt1; ++i) { // count the number of gaps longer than min_gap
		int gap = ((int32_t)a[as1 + i].y - a[as1 + i - 1].y) - ((int32_t)a[as1 + i].x - a[as1 + i - 1].x);
		if (gap < -min_gap || gap > min_gap) ++n;
	}
	if (n <= 1) return 0;
	K = (int*)kmalloc(km, n * sizeof(int));
	for (i = 1, n = 0; i < cnt1; ++i) { // store the positions of long gaps
		int gap = ((int32_t)a[as1 + i].y - a[as1 + i - 1].y) - ((int32_t)a[as1 + i].x - a[as1 + i - 1].x);
		if (gap < -min_gap || gap > min_gap)
			K[n++] = i;
	}
	*n_ = n;
	return K;
}

static void mm_filter_bad_seeds(void *km, int as1, int cnt1, mm128_t *a, int min_gap, int diff_thres, int max_ext_len, int max_ext_cnt)
{
	int max_st, max_en, n, i, k, max, *K;
	K = collect_long_gaps(km, as1, cnt1, a, min_gap, &n);
	if (K == 0) return;
	max = 0, max_st = max_en = -1;
	for (k = 0;; ++k) { // traverse long gaps
		int gap, l, n_ins = 0, n_del = 0, qs, rs, max_diff = 0, max_diff_l = -1;
		if (k == n || k >= max_en) {
			if (max_en > 0)
				for (i = K[max_st]; i < K[max_en]; ++i)
					a[as1 + i].y |= MM_SEED_IGNORE;
			max = 0, max_st = max_en = -1;
			if (k == n) break;
		}
		i = K[k];
		gap = ((int32_t)a[as1 + i].y - (int32_t)a[as1 + i - 1].y) - (int32_t)(a[as1 + i].x - a[as1 + i - 1].x);
		if (gap > 0) n_ins += gap;
		else n_del += -gap;
		qs = (int32_t)a[as1 + i - 1].y;
		rs = (int32_t)a[as1 + i - 1].x;
		for (l = k + 1; l < n && l <= k + max_ext_cnt; ++l) {
			int j = K[l], diff;
			if ((int32_t)a[as1 + j].y - qs > max_ext_len || (int32_t)a[as1 + j].x - rs > max_ext_len) break;
			gap = ((int32_t)a[as1 + j].y - (int32_t)a[as1 + j - 1].y) - (int32_t)(a[as1 + j].x - a[as1 + j - 1].x);
			if (gap > 0) n_ins += gap;
			else n_del += -gap;
			diff = n_ins + n_del - abs(n_ins - n_del);
			if (max_diff < diff)
				max_diff = diff, max_diff_l = l;
		}
		if (max_diff > diff_thres && max_diff > max)
			max = max_diff, max_st = k, max_en = max_diff_l;
	}
	kfree(km, K);
}

static void mm_filter_bad_seeds_alt(void *km, int as1, int cnt1, mm128_t *a, int min_gap, int max_ext)
{
	int n, k, *K;
	K = collect_long_gaps(km, as1, cnt1, a, min_gap, &n);
	if (K == 0) return;
	for (k = 0; k < n;) {
		int i = K[k], l;
		int gap1 = ((int32_t)a[as1 + i].y - (int32_t)a[as1 + i - 1].y) - ((int32_t)a[as1 + i].x - (int32_t)a[as1 + i - 1].x);
		int re1 = (int32_t)a[as1 + i].x;
		int qe1 = (int32_t)a[as1 + i].y;
		gap1 = gap1 > 0? gap1 : -gap1;
		for (l = k + 1; l < n; ++l) {
			int j = K[l], gap2, q_span_pre, rs2, qs2, m;
			if ((int32_t)a[as1 + j].y - qe1 > max_ext || (int32_t)a[as1 + j].x - re1 > max_ext) break;
			gap2 = ((int32_t)a[as1 + j].y - (int32_t)a[as1 + j - 1].y) - (int32_t)(a[as1 + j].x - a[as1 + j - 1].x);
			q_span_pre = a[as1 + j - 1].y >> 32 & 0xff;
			rs2 = (int32_t)a[as1 + j - 1].x + q_span_pre;
			qs2 = (int32_t)a[as1 + j - 1].y + q_span_pre;
			m = rs2 - re1 < qs2 - qe1? rs2 - re1 : qs2 - qe1;
			gap2 = gap2 > 0? gap2 : -gap2;
			if (m > gap1 + gap2) break;
			re1 = (int32_t)a[as1 + j].x;
			qe1 = (int32_t)a[as1 + j].y;
			gap1 = gap2;
		}
		if (l > k + 1) {
			int j, end = K[l - 1];
			for (j = K[k]; j < end; ++j)
				a[as1 + j].y |= MM_SEED_IGNORE;
			a[as1 + end].y |= MM_SEED_LONG_JOIN;
		}
		k = l;
	}
	kfree(km, K);
}

static void mm_fix_bad_ends(const mm_reg1_t *r, const mm128_t *a, int bw, int min_match, int32_t *as, int32_t *cnt)
{
	int32_t i, l, m;
	*as = r->as, *cnt = r->cnt;
	if (r->cnt < 3) return;
	m = l = a[r->as].y >> 32 & 0xff;
	for (i = r->as + 1; i < r->as + r->cnt - 1; ++i) {
		int32_t lq, lr, min, max;
		int32_t q_span = a[i].y >> 32 & 0xff;
		if (a[i].y & MM_SEED_LONG_JOIN) break;
		lr = (int32_t)a[i].x - (int32_t)a[i-1].x;
		lq = (int32_t)a[i].y - (int32_t)a[i-1].y;
		min = lr < lq? lr : lq;
		max = lr > lq? lr : lq;
		if (max - min > l >> 1) *as = i;
		l += min;
		m += min < q_span? min : q_span;
		if (l >= bw << 1 || (m >= min_match && m >= bw) || m >= r->mlen >> 1) break;
	}
	*cnt = r->as + r->cnt - *as;
	m = l = a[r->as + r->cnt - 1].y >> 32 & 0xff;
	for (i = r->as + r->cnt - 2; i > *as; --i) {
		int32_t lq, lr, min, max;
		int32_t q_span = a[i+1].y >> 32 & 0xff;
		if (a[i+1].y & MM_SEED_LONG_JOIN) break;
		lr = (int32_t)a[i+1].x - (int32_t)a[i].x;
		lq = (int32_t)a[i+1].y - (int32_t)a[i].y;
		min = lr < lq? lr : lq;
		max = lr > lq? lr : lq;
		if (max - min > l >> 1) *cnt = i + 1 - *as;
		l += min;
		m += min < q_span? min : q_span;
		if (l >= bw << 1 || (m >= min_match && m >= bw) || m >= r->mlen >> 1) break;
	}
}

static void mm_max_stretch(const mm_reg1_t *r, const mm128_t *a, int32_t *as, int32_t *cnt)
{
	int32_t i, score, max_score, len, max_i, max_len;

	*as = r->as, *cnt = r->cnt;
	if (r->cnt < 2) return;

	max_score = -1, max_i = -1, max_len = 0;
	score = a[r->as].y >> 32 & 0xff, len = 1;
	for (i = r->as + 1; i < r->as + r->cnt; ++i) {
		int32_t lq, lr, q_span;
		q_span = a[i].y >> 32 & 0xff;
		lr = (int32_t)a[i].x - (int32_t)a[i-1].x;
		lq = (int32_t)a[i].y - (int32_t)a[i-1].y;
		if (lq == lr) {
			score += lq < q_span? lq : q_span;
			++len;
		} else {
			if (score > max_score)
				max_score = score, max_len = len, max_i = i - len;
			score = q_span, len = 1;
		}
	}
	if (score > max_score)
		max_score = score, max_len = len, max_i = i - len;
	*as = max_i, *cnt = max_len;
}

static int mm_seed_ext_score(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, const int8_t mat[25], int qlen, uint8_t *qseq0[2], const mm128_t *a)
{
	uint8_t *qseq, *tseq;
	int q_span = a->y>>32&0xff, qs, qe, rs, re, rid, score, q_off, t_off, ext_len = opt->anchor_ext_len;
	void *qp;
	rid = a->x<<1>>33;
	re = (uint32_t)a->x + 1, rs = re - q_span;
	qe = (uint32_t)a->y + 1, qs = qe - q_span;
	rs = rs - ext_len > 0? rs - ext_len : 0;
	qs = qs - ext_len > 0? qs - ext_len : 0;
	re = re + ext_len < (int32_t)mi->seq[rid].len? re + ext_len : mi->seq[rid].len;
	qe = qe + ext_len < qlen? qe + ext_len : qlen;
	tseq = (uint8_t*)kmalloc(km, re - rs);
	mm_idx_getseq(mi, rid, rs, re, tseq);
	qseq = qseq0[a->x>>63] + qs;
	qp = ksw_ll_qinit(km, 2, qe - qs, qseq, 5, mat);
	score = ksw_ll_i16(qp, re - rs, tseq, opt->q, opt->e, &q_off, &t_off);
	kfree(km, tseq);
	kfree(km, qp);
	return score;
}

static void mm_fix_bad_ends_splice(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, const mm_reg1_t *r, const int8_t mat[25], int qlen, uint8_t *qseq0[2], const mm128_t *a, int *as1, int *cnt1)
{ // this assumes a very crude k-mer based mode; it is not necessary to use a good model just for filtering bounary exons
	int score;
	double log_gap;
	*as1 = r->as, *cnt1 = r->cnt;
	if (r->cnt < 3) return;
	log_gap = log((int32_t)a[r->as + 1].x - (int32_t)a[r->as].x);
	if ((a[r->as].y>>32&0xff) < log_gap + opt->anchor_ext_shift) {
		score = mm_seed_ext_score(km, opt, mi, mat, qlen, qseq0, &a[r->as]);
		if ((double)score / mat[0] < log_gap + opt->anchor_ext_shift) // a more exact format is "score < log_4(gap) + shift"
			++(*as1), --(*cnt1);
	}
	log_gap = log((int32_t)a[r->as + r->cnt - 1].x - (int32_t)a[r->as + r->cnt - 2].x);
	if ((a[r->as + r->cnt - 1].y>>32&0xff) < log_gap + opt->anchor_ext_shift) {
		score = mm_seed_ext_score(km, opt, mi, mat, qlen, qseq0, &a[r->as + r->cnt - 1]);
		if ((double)score / mat[0] < log_gap + opt->anchor_ext_shift)
			--(*cnt1);
	}
}

static void mm_align1(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, int qlen, uint8_t *qseq0[2], mm_reg1_t *r, mm_reg1_t *r2, int n_a, mm128_t *a, ksw_extz_t *ez, int splice_flag)
{
	int is_sr = !!(opt->flag & MM_F_SR), is_splice = !!(opt->flag & MM_F_SPLICE);
	int32_t rid = a[r->as].x<<1>>33, rev = a[r->as].x>>63, as1, cnt1;
	uint8_t *tseq, *qseq, *junc;
	int32_t i, l, bw, dropped = 0, extra_flag = 0, rs0, re0, qs0, qe0;
	int32_t rs, re, qs, qe;
	int32_t rs1, qs1, re1, qe1;
	int8_t mat[25];

	if (is_sr) assert(!(mi->flag & MM_I_HPC)); // HPC won't work with SR because with HPC we can't easily tell if there is a gap

	r2->cnt = 0;
	if (r->cnt == 0) return;
	ksw_gen_simple_mat(5, mat, opt->a, opt->b, opt->sc_ambi);
	bw = (int)(opt->bw * 1.5 + 1.);

	if (is_sr && !(mi->flag & MM_I_HPC)) {
		mm_max_stretch(r, a, &as1, &cnt1);
		rs = (int32_t)a[as1].x + 1 - (int32_t)(a[as1].y>>32&0xff);
		qs = (int32_t)a[as1].y + 1 - (int32_t)(a[as1].y>>32&0xff);
		re = (int32_t)a[as1+cnt1-1].x + 1;
		qe = (int32_t)a[as1+cnt1-1].y + 1;
	} else {
		if (!(opt->flag & MM_F_NO_END_FLT)) {
			if (is_splice)
				mm_fix_bad_ends_splice(km, opt, mi, r, mat, qlen, qseq0, a, &as1, &cnt1);
			else
				mm_fix_bad_ends(r, a, opt->bw, opt->min_chain_score * 2, &as1, &cnt1);
		} else as1 = r->as, cnt1 = r->cnt;
		mm_filter_bad_seeds(km, as1, cnt1, a, 10, 40, opt->max_gap>>1, 10);
		mm_filter_bad_seeds_alt(km, as1, cnt1, a, 30, opt->max_gap>>1);
		mm_adjust_minier(mi, qseq0, &a[as1], &rs, &qs);
		mm_adjust_minier(mi, qseq0, &a[as1 + cnt1 - 1], &re, &qe);
	}
	assert(cnt1 > 0);

	if (is_splice) {
		if (splice_flag & MM_F_SPLICE_FOR) extra_flag |= rev? KSW_EZ_SPLICE_REV : KSW_EZ_SPLICE_FOR;
		if (splice_flag & MM_F_SPLICE_REV) extra_flag |= rev? KSW_EZ_SPLICE_FOR : KSW_EZ_SPLICE_REV;
		if (opt->flag & MM_F_SPLICE_FLANK) extra_flag |= KSW_EZ_SPLICE_FLANK;
	}

	/* Look for the start and end of regions to perform DP. This sounds easy
	 * but is in fact tricky. Excessively small regions lead to unnecessary
	 * clippings and lose alignable sequences. Excessively large regions
	 * occasionally lead to large overlaps between two chains and may cause
	 * loss of alignments in corner cases. */
	if (is_sr) {
		qs0 = 0, qe0 = qlen;
		l = qs;
		l += l * opt->a + opt->end_bonus > opt->q? (l * opt->a + opt->end_bonus - opt->q) / opt->e : 0;
		rs0 = rs - l > 0? rs - l : 0;
		l = qlen - qe;
		l += l * opt->a + opt->end_bonus > opt->q? (l * opt->a + opt->end_bonus - opt->q) / opt->e : 0;
		re0 = re + l < (int32_t)mi->seq[rid].len? re + l : mi->seq[rid].len;
	} else {
		// compute rs0 and qs0
		rs0 = (int32_t)a[r->as].x + 1 - (int32_t)(a[r->as].y>>32&0xff);
		qs0 = (int32_t)a[r->as].y + 1 - (int32_t)(a[r->as].y>>32&0xff);
		if (rs0 < 0) rs0 = 0; // this may happen when HPC is in use
		assert(qs0 >= 0); // this should never happen, or it is logic error
		rs1 = qs1 = 0;
		for (i = r->as - 1, l = 0; i >= 0 && a[i].x>>32 == a[r->as].x>>32; --i) { // inspect nearby seeds
			int32_t x = (int32_t)a[i].x + 1 - (int32_t)(a[i].y>>32&0xff);
			int32_t y = (int32_t)a[i].y + 1 - (int32_t)(a[i].y>>32&0xff);
			if (x < rs0 && y < qs0) {
				if (++l > opt->min_cnt) {
					l = rs0 - x > qs0 - y? rs0 - x : qs0 - y;
					rs1 = rs0 - l, qs1 = qs0 - l;
					if (rs1 < 0) rs1 = 0; // not strictly necessary; better have this guard for explicit
					break;
				}
			}
		}
		if (qs > 0 && rs > 0) {
			l = qs < opt->max_gap? qs : opt->max_gap;
			qs1 = qs1 > qs - l? qs1 : qs - l;
			qs0 = qs0 < qs1? qs0 : qs1; // at least include qs0
			l += l * opt->a > opt->q? (l * opt->a - opt->q) / opt->e : 0;
			l = l < opt->max_gap? l : opt->max_gap;
			l = l < rs? l : rs;
			rs1 = rs1 > rs - l? rs1 : rs - l;
			rs0 = rs0 < rs1? rs0 : rs1;
			rs0 = rs0 < rs? rs0 : rs;
		} else rs0 = rs, qs0 = qs;
		// compute re0 and qe0
		re0 = (int32_t)a[r->as + r->cnt - 1].x + 1;
		qe0 = (int32_t)a[r->as + r->cnt - 1].y + 1;
		re1 = mi->seq[rid].len, qe1 = qlen;
		for (i = r->as + r->cnt, l = 0; i < n_a && a[i].x>>32 == a[r->as].x>>32; ++i) { // inspect nearby seeds
			int32_t x = (int32_t)a[i].x + 1;
			int32_t y = (int32_t)a[i].y + 1;
			if (x > re0 && y > qe0) {
				if (++l > opt->min_cnt) {
					l = x - re0 > y - qe0? x - re0 : y - qe0;
					re1 = re0 + l, qe1 = qe0 + l;
					break;
				}
			}
		}
		if (qe < qlen && re < (int32_t)mi->seq[rid].len) {
			l = qlen - qe < opt->max_gap? qlen - qe : opt->max_gap;
			qe1 = qe1 < qe + l? qe1 : qe + l;
			qe0 = qe0 > qe1? qe0 : qe1; // at least include qe0
			l += l * opt->a > opt->q? (l * opt->a - opt->q) / opt->e : 0;
			l = l < opt->max_gap? l : opt->max_gap;
			l = l < (int32_t)mi->seq[rid].len - re? l : mi->seq[rid].len - re;
			re1 = re1 < re + l? re1 : re + l;
			re0 = re0 > re1? re0 : re1;
		} else re0 = re, qe0 = qe;
	}
	if (a[r->as].y & MM_SEED_SELF) {
		int max_ext = r->qs > r->rs? r->qs - r->rs : r->rs - r->qs;
		if (r->rs - rs0 > max_ext) rs0 = r->rs - max_ext;
		if (r->qs - qs0 > max_ext) qs0 = r->qs - max_ext;
		max_ext = r->qe > r->re? r->qe - r->re : r->re - r->qe;
		if (re0 - r->re > max_ext) re0 = r->re + max_ext;
		if (qe0 - r->qe > max_ext) qe0 = r->qe + max_ext;
	}

	assert(re0 > rs0);
	tseq = (uint8_t*)kmalloc(km, re0 - rs0);
	junc = (uint8_t*)kmalloc(km, re0 - rs0);

	if (qs > 0 && rs > 0) { // left extension; probably the condition can be changed to "qs > qs0 && rs > rs0"
		qseq = &qseq0[rev][qs0];
		mm_idx_getseq(mi, rid, rs0, rs, tseq);
		mm_idx_bed_junc(mi, rid, rs0, rs, junc);
		mm_seq_rev(qs - qs0, qseq);
		mm_seq_rev(rs - rs0, tseq);
		mm_seq_rev(rs - rs0, junc);
		mm_align_pair(km, opt, qs - qs0, qseq, rs - rs0, tseq, junc, mat, bw, opt->end_bonus, r->split_inv? opt->zdrop_inv : opt->zdrop, extra_flag|KSW_EZ_EXTZ_ONLY|KSW_EZ_RIGHT|KSW_EZ_REV_CIGAR, ez);
		if (ez->n_cigar > 0) {
			mm_append_cigar(r, ez->n_cigar, ez->cigar);
			r->p->dp_score += ez->max;
		}
		rs1 = rs - (ez->reach_end? ez->mqe_t + 1 : ez->max_t + 1);
		qs1 = qs - (ez->reach_end? qs - qs0 : ez->max_q + 1);
		mm_seq_rev(qs - qs0, qseq);
	} else rs1 = rs, qs1 = qs;
	re1 = rs, qe1 = qs;
	assert(qs1 >= 0 && rs1 >= 0);

	for (i = is_sr? cnt1 - 1 : 1; i < cnt1; ++i) { // gap filling
		if ((a[as1+i].y & (MM_SEED_IGNORE|MM_SEED_TANDEM)) && i != cnt1 - 1) continue;
		if (is_sr && !(mi->flag & MM_I_HPC)) {
			re = (int32_t)a[as1 + i].x + 1;
			qe = (int32_t)a[as1 + i].y + 1;
		} else mm_adjust_minier(mi, qseq0, &a[as1 + i], &re, &qe);
		re1 = re, qe1 = qe;
		if (i == cnt1 - 1 || (a[as1+i].y&MM_SEED_LONG_JOIN) || (qe - qs >= opt->min_ksw_len && re - rs >= opt->min_ksw_len)) {
			int j, bw1 = bw, zdrop_code;
			if (a[as1+i].y & MM_SEED_LONG_JOIN)
				bw1 = qe - qs > re - rs? qe - qs : re - rs;
			// perform alignment
			qseq = &qseq0[rev][qs];
			mm_idx_getseq(mi, rid, rs, re, tseq);
			mm_idx_bed_junc(mi, rid, rs, re, junc);
			if (is_sr) { // perform ungapped alignment
				assert(qe - qs == re - rs);
				ksw_reset_extz(ez);
				for (j = 0, ez->score = 0; j < qe - qs; ++j) {
					if (qseq[j] >= 4 || tseq[j] >= 4) ez->score += opt->e2;
					else ez->score += qseq[j] == tseq[j]? opt->a : -opt->b;
				}
				ez->cigar = ksw_push_cigar(km, &ez->n_cigar, &ez->m_cigar, ez->cigar, 0, qe - qs);
			} else { // perform normal gapped alignment
				mm_align_pair(km, opt, qe - qs, qseq, re - rs, tseq, junc, mat, bw1, -1, opt->zdrop, extra_flag|KSW_EZ_APPROX_MAX, ez); // first pass: with approximate Z-drop
			}
			// test Z-drop and inversion Z-drop
			if ((zdrop_code = mm_test_zdrop(km, opt, qseq, tseq, ez->n_cigar, ez->cigar, mat)) != 0)
				mm_align_pair(km, opt, qe - qs, qseq, re - rs, tseq, junc, mat, bw1, -1, zdrop_code == 2? opt->zdrop_inv : opt->zdrop, extra_flag, ez); // second pass: lift approximate
			// update CIGAR
			if (ez->n_cigar > 0)
				mm_append_cigar(r, ez->n_cigar, ez->cigar);
			if (ez->zdropped) { // truncated by Z-drop; TODO: sometimes Z-drop kicks in because the next seed placement is wrong. This can be fixed in principle.
				for (j = i - 1; j >= 0; --j)
					if ((int32_t)a[as1 + j].x <= rs + ez->max_t)
						break;
				dropped = 1;
				if (j < 0) j = 0;
				r->p->dp_score += ez->max;
				re1 = rs + (ez->max_t + 1);
				qe1 = qs + (ez->max_q + 1);
				if (cnt1 - (j + 1) >= opt->min_cnt) {
					mm_split_reg(r, r2, as1 + j + 1 - r->as, qlen, a);
					if (zdrop_code == 2) r2->split_inv = 1;
				}
				break;
			} else r->p->dp_score += ez->score;
			rs = re, qs = qe;
		}
	}

	if (!dropped && qe < qe0 && re < re0) { // right extension
		qseq = &qseq0[rev][qe];
		mm_idx_getseq(mi, rid, re, re0, tseq);
		mm_idx_bed_junc(mi, rid, re, re0, junc);
		mm_align_pair(km, opt, qe0 - qe, qseq, re0 - re, tseq, junc, mat, bw, opt->end_bonus, opt->zdrop, extra_flag|KSW_EZ_EXTZ_ONLY, ez);
		if (ez->n_cigar > 0) {
			mm_append_cigar(r, ez->n_cigar, ez->cigar);
			r->p->dp_score += ez->max;
		}
		re1 = re + (ez->reach_end? ez->mqe_t + 1 : ez->max_t + 1);
		qe1 = qe + (ez->reach_end? qe0 - qe : ez->max_q + 1);
	}
	assert(qe1 <= qlen);

	r->rs = rs1, r->re = re1;
	if (rev) r->qs = qlen - qe1, r->qe = qlen - qs1;
	else r->qs = qs1, r->qe = qe1;

	assert(re1 - rs1 <= re0 - rs0);
	if (r->p) {
		mm_idx_getseq(mi, rid, rs1, re1, tseq);
		mm_update_extra(r, &qseq0[r->rev][qs1], tseq, mat, opt->q, opt->e, opt->flag & MM_F_EQX);
		if (rev && r->p->trans_strand)
			r->p->trans_strand ^= 3; // flip to the read strand
	}

	kfree(km, tseq);
	kfree(km, junc);
}

static int mm_align1_inv(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, int qlen, uint8_t *qseq0[2], const mm_reg1_t *r1, const mm_reg1_t *r2, mm_reg1_t *r_inv, ksw_extz_t *ez)
{
	int tl, ql, score, ret = 0, q_off, t_off;
	uint8_t *tseq, *qseq;
	int8_t mat[25];
	void *qp;

	memset(r_inv, 0, sizeof(mm_reg1_t));
	if (!(r1->split&1) || !(r2->split&2)) return 0;
	if (r1->id != r1->parent && r1->parent != MM_PARENT_TMP_PRI) return 0;
	if (r2->id != r2->parent && r2->parent != MM_PARENT_TMP_PRI) return 0;
	if (r1->rid != r2->rid || r1->rev != r2->rev) return 0;
	ql = r1->rev? r1->qs - r2->qe : r2->qs - r1->qe;
	tl = r2->rs - r1->re;
	if (ql < opt->min_chain_score || ql > opt->max_gap) return 0;
	if (tl < opt->min_chain_score || tl > opt->max_gap) return 0;

	ksw_gen_simple_mat(5, mat, opt->a, opt->b, opt->sc_ambi);
	tseq = (uint8_t*)kmalloc(km, tl);
	mm_idx_getseq(mi, r1->rid, r1->re, r2->rs, tseq);
	qseq = r1->rev? &qseq0[0][r2->qe] : &qseq0[1][qlen - r2->qs];

	mm_seq_rev(ql, qseq);
	mm_seq_rev(tl, tseq);
	qp = ksw_ll_qinit(km, 2, ql, qseq, 5, mat);
	score = ksw_ll_i16(qp, tl, tseq, opt->q, opt->e, &q_off, &t_off);
	kfree(km, qp);
	mm_seq_rev(ql, qseq);
	mm_seq_rev(tl, tseq);
	if (score < opt->min_dp_max) goto end_align1_inv;
	q_off = ql - (q_off + 1), t_off = tl - (t_off + 1);
	mm_align_pair(km, opt, ql - q_off, qseq + q_off, tl - t_off, tseq + t_off, 0, mat, (int)(opt->bw * 1.5), -1, opt->zdrop, KSW_EZ_EXTZ_ONLY, ez);
	if (ez->n_cigar == 0) goto end_align1_inv; // should never be here
	mm_append_cigar(r_inv, ez->n_cigar, ez->cigar);
	r_inv->p->dp_score = ez->max;
	r_inv->id = -1;
	r_inv->parent = MM_PARENT_UNSET;
	r_inv->inv = 1;
	r_inv->rev = !r1->rev;
	r_inv->rid = r1->rid;
	r_inv->div = -1.0f;
	if (r_inv->rev == 0) {
		r_inv->qs = r2->qe + q_off;
		r_inv->qe = r_inv->qs + ez->max_q + 1;
	} else {
		r_inv->qe = r2->qs - q_off;
		r_inv->qs = r_inv->qe - (ez->max_q + 1);
	}
	r_inv->rs = r1->re + t_off;
	r_inv->re = r_inv->rs + ez->max_t + 1;
	mm_update_extra(r_inv, &qseq[q_off], &tseq[t_off], mat, opt->q, opt->e, opt->flag & MM_F_EQX);
	ret = 1;
end_align1_inv:
	kfree(km, tseq);
	return ret;
}

static inline mm_reg1_t *mm_insert_reg(const mm_reg1_t *r, int i, int *n_regs, mm_reg1_t *regs)
{
	regs = (mm_reg1_t*)realloc(regs, (*n_regs + 1) * sizeof(mm_reg1_t));
	if (i + 1 != *n_regs)
		memmove(&regs[i + 2], &regs[i + 1], sizeof(mm_reg1_t) * (*n_regs - i - 1));
	regs[i + 1] = *r;
	++*n_regs;
	return regs;
}

mm_reg1_t *mm_align_skeleton(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, int qlen, const char *qstr, int *n_regs_, mm_reg1_t *regs, mm128_t *a)
{
	extern unsigned char seq_nt4_table[256];
	int32_t i, n_regs = *n_regs_, n_a;
	uint8_t *qseq0[2];
	ksw_extz_t ez;

	// encode the query sequence
	qseq0[0] = (uint8_t*)kmalloc(km, qlen * 2);
	qseq0[1] = qseq0[0] + qlen;
	for (i = 0; i < qlen; ++i) {
		qseq0[0][i] = seq_nt4_table[(uint8_t)qstr[i]];
		qseq0[1][qlen - 1 - i] = qseq0[0][i] < 4? 3 - qseq0[0][i] : 4;
	}

	// align through seed hits
	n_a = mm_squeeze_a(km, n_regs, regs, a);
	memset(&ez, 0, sizeof(ksw_extz_t));
	for (i = 0; i < n_regs; ++i) {
		mm_reg1_t r2;
		if ((opt->flag&MM_F_SPLICE) && (opt->flag&MM_F_SPLICE_FOR) && (opt->flag&MM_F_SPLICE_REV)) { // then do two rounds of alignments for both strands
			mm_reg1_t s[2], s2[2];
			int which, trans_strand;
			s[0] = s[1] = regs[i];
			mm_align1(km, opt, mi, qlen, qseq0, &s[0], &s2[0], n_a, a, &ez, MM_F_SPLICE_FOR);
			mm_align1(km, opt, mi, qlen, qseq0, &s[1], &s2[1], n_a, a, &ez, MM_F_SPLICE_REV);
			if (s[0].p->dp_score > s[1].p->dp_score) which = 0, trans_strand = 1;
			else if (s[0].p->dp_score < s[1].p->dp_score) which = 1, trans_strand = 2;
			else trans_strand = 3, which = (qlen + s[0].p->dp_score) & 1; // randomly choose a strand, effectively
			if (which == 0) {
				regs[i] = s[0], r2 = s2[0];
				free(s[1].p);
			} else {
				regs[i] = s[1], r2 = s2[1];
				free(s[0].p);
			}
			regs[i].p->trans_strand = trans_strand;
		} else { // one round of alignment
			mm_align1(km, opt, mi, qlen, qseq0, &regs[i], &r2, n_a, a, &ez, opt->flag);
			if (opt->flag&MM_F_SPLICE)
				regs[i].p->trans_strand = opt->flag&MM_F_SPLICE_FOR? 1 : 2;
		}
		if (r2.cnt > 0) regs = mm_insert_reg(&r2, i, &n_regs, regs);
		if (i > 0 && regs[i].split_inv) {
			if (mm_align1_inv(km, opt, mi, qlen, qseq0, &regs[i-1], &regs[i], &r2, &ez)) {
				regs = mm_insert_reg(&r2, i, &n_regs, regs);
				++i; // skip the inserted INV alignment
			}
		}
	}
	*n_regs_ = n_regs;
	kfree(km, qseq0[0]);
	kfree(km, ez.cigar);
	mm_filter_regs(opt, qlen, n_regs_, regs);
	mm_hit_sort(km, n_regs_, regs);
	return regs;
}