1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
#include <string.h>
#include <assert.h>
#include "ksw2.h"
#define SIMDE_ENABLE_NATIVE_ALIASES
#include "simde/x86/sse4.1.h"
#if defined(SIMDE_SSE4_1_NATIVE)
void ksw_extz2_sse41(void *km, int qlen, const uint8_t *query, int tlen, const uint8_t *target, int8_t m, const int8_t *mat, int8_t q, int8_t e, int w, int zdrop, int end_bonus, int flag, ksw_extz_t *ez)
#elif defined(SIMDE_SSE2_NATIVE)
void ksw_extz2_sse2(void *km, int qlen, const uint8_t *query, int tlen, const uint8_t *target, int8_t m, const int8_t *mat, int8_t q, int8_t e, int w, int zdrop, int end_bonus, int flag, ksw_extz_t *ez)
#else
void ksw_extz2_sse(void *km, int qlen, const uint8_t *query, int tlen, const uint8_t *target, int8_t m, const int8_t *mat, int8_t q, int8_t e, int w, int zdrop, int end_bonus, int flag, ksw_extz_t *ez)
#endif // ~KSW_CPU_DISPATCH
{
#define __dp_code_block1 \
z = _mm_add_epi8(_mm_load_si128(&s[t]), qe2_); \
xt1 = _mm_load_si128(&x[t]); /* xt1 <- x[r-1][t..t+15] */ \
tmp = _mm_srli_si128(xt1, 15); /* tmp <- x[r-1][t+15] */ \
xt1 = _mm_or_si128(_mm_slli_si128(xt1, 1), x1_); /* xt1 <- x[r-1][t-1..t+14] */ \
x1_ = tmp; \
vt1 = _mm_load_si128(&v[t]); /* vt1 <- v[r-1][t..t+15] */ \
tmp = _mm_srli_si128(vt1, 15); /* tmp <- v[r-1][t+15] */ \
vt1 = _mm_or_si128(_mm_slli_si128(vt1, 1), v1_); /* vt1 <- v[r-1][t-1..t+14] */ \
v1_ = tmp; \
a = _mm_add_epi8(xt1, vt1); /* a <- x[r-1][t-1..t+14] + v[r-1][t-1..t+14] */ \
ut = _mm_load_si128(&u[t]); /* ut <- u[t..t+15] */ \
b = _mm_add_epi8(_mm_load_si128(&y[t]), ut); /* b <- y[r-1][t..t+15] + u[r-1][t..t+15] */
#define __dp_code_block2 \
z = _mm_max_epu8(z, b); /* z = max(z, b); this works because both are non-negative */ \
z = _mm_min_epu8(z, max_sc_); \
_mm_store_si128(&u[t], _mm_sub_epi8(z, vt1)); /* u[r][t..t+15] <- z - v[r-1][t-1..t+14] */ \
_mm_store_si128(&v[t], _mm_sub_epi8(z, ut)); /* v[r][t..t+15] <- z - u[r-1][t..t+15] */ \
z = _mm_sub_epi8(z, q_); \
a = _mm_sub_epi8(a, z); \
b = _mm_sub_epi8(b, z);
int r, t, qe = q + e, n_col_, *off = 0, *off_end = 0, tlen_, qlen_, last_st, last_en, wl, wr, max_sc, min_sc;
int with_cigar = !(flag&KSW_EZ_SCORE_ONLY), approx_max = !!(flag&KSW_EZ_APPROX_MAX);
int32_t *H = 0, H0 = 0, last_H0_t = 0;
uint8_t *qr, *sf, *mem, *mem2 = 0;
__m128i q_, qe2_, zero_, flag1_, flag2_, flag8_, flag16_, sc_mch_, sc_mis_, sc_N_, m1_, max_sc_;
__m128i *u, *v, *x, *y, *s, *p = 0;
ksw_reset_extz(ez);
if (m <= 0 || qlen <= 0 || tlen <= 0) return;
zero_ = _mm_set1_epi8(0);
q_ = _mm_set1_epi8(q);
qe2_ = _mm_set1_epi8((q + e) * 2);
flag1_ = _mm_set1_epi8(1);
flag2_ = _mm_set1_epi8(2);
flag8_ = _mm_set1_epi8(0x08);
flag16_ = _mm_set1_epi8(0x10);
sc_mch_ = _mm_set1_epi8(mat[0]);
sc_mis_ = _mm_set1_epi8(mat[1]);
sc_N_ = mat[m*m-1] == 0? _mm_set1_epi8(-e) : _mm_set1_epi8(mat[m*m-1]);
m1_ = _mm_set1_epi8(m - 1); // wildcard
max_sc_ = _mm_set1_epi8(mat[0] + (q + e) * 2);
if (w < 0) w = tlen > qlen? tlen : qlen;
wl = wr = w;
tlen_ = (tlen + 15) / 16;
n_col_ = qlen < tlen? qlen : tlen;
n_col_ = ((n_col_ < w + 1? n_col_ : w + 1) + 15) / 16 + 1;
qlen_ = (qlen + 15) / 16;
for (t = 1, max_sc = mat[0], min_sc = mat[1]; t < m * m; ++t) {
max_sc = max_sc > mat[t]? max_sc : mat[t];
min_sc = min_sc < mat[t]? min_sc : mat[t];
}
if (-min_sc > 2 * (q + e)) return; // otherwise, we won't see any mismatches
mem = (uint8_t*)kcalloc(km, tlen_ * 6 + qlen_ + 1, 16);
u = (__m128i*)(((size_t)mem + 15) >> 4 << 4); // 16-byte aligned
v = u + tlen_, x = v + tlen_, y = x + tlen_, s = y + tlen_, sf = (uint8_t*)(s + tlen_), qr = sf + tlen_ * 16;
if (!approx_max) {
H = (int32_t*)kmalloc(km, tlen_ * 16 * 4);
for (t = 0; t < tlen_ * 16; ++t) H[t] = KSW_NEG_INF;
}
if (with_cigar) {
mem2 = (uint8_t*)kmalloc(km, ((size_t)(qlen + tlen - 1) * n_col_ + 1) * 16);
p = (__m128i*)(((size_t)mem2 + 15) >> 4 << 4);
off = (int*)kmalloc(km, (qlen + tlen - 1) * sizeof(int) * 2);
off_end = off + qlen + tlen - 1;
}
for (t = 0; t < qlen; ++t) qr[t] = query[qlen - 1 - t];
memcpy(sf, target, tlen);
for (r = 0, last_st = last_en = -1; r < qlen + tlen - 1; ++r) {
int st = 0, en = tlen - 1, st0, en0, st_, en_;
int8_t x1, v1;
uint8_t *qrr = qr + (qlen - 1 - r), *u8 = (uint8_t*)u, *v8 = (uint8_t*)v;
__m128i x1_, v1_;
// find the boundaries
if (st < r - qlen + 1) st = r - qlen + 1;
if (en > r) en = r;
if (st < (r-wr+1)>>1) st = (r-wr+1)>>1; // take the ceil
if (en > (r+wl)>>1) en = (r+wl)>>1; // take the floor
if (st > en) {
ez->zdropped = 1;
break;
}
st0 = st, en0 = en;
st = st / 16 * 16, en = (en + 16) / 16 * 16 - 1;
// set boundary conditions
if (st > 0) {
if (st - 1 >= last_st && st - 1 <= last_en)
x1 = ((uint8_t*)x)[st - 1], v1 = v8[st - 1]; // (r-1,s-1) calculated in the last round
else x1 = v1 = 0; // not calculated; set to zeros
} else x1 = 0, v1 = r? q : 0;
if (en >= r) ((uint8_t*)y)[r] = 0, u8[r] = r? q : 0;
// loop fission: set scores first
if (!(flag & KSW_EZ_GENERIC_SC)) {
for (t = st0; t <= en0; t += 16) {
__m128i sq, st, tmp, mask;
sq = _mm_loadu_si128((__m128i*)&sf[t]);
st = _mm_loadu_si128((__m128i*)&qrr[t]);
mask = _mm_or_si128(_mm_cmpeq_epi8(sq, m1_), _mm_cmpeq_epi8(st, m1_));
tmp = _mm_cmpeq_epi8(sq, st);
tmp = _mm_blendv_epi8(sc_mis_, sc_mch_, tmp);
tmp = _mm_blendv_epi8(tmp, sc_N_, mask);
_mm_storeu_si128((__m128i*)((uint8_t*)s + t), tmp);
}
} else {
for (t = st0; t <= en0; ++t)
((uint8_t*)s)[t] = mat[sf[t] * m + qrr[t]];
}
// core loop
x1_ = _mm_cvtsi32_si128(x1);
v1_ = _mm_cvtsi32_si128(v1);
st_ = st / 16, en_ = en / 16;
assert(en_ - st_ + 1 <= n_col_);
if (!with_cigar) { // score only
for (t = st_; t <= en_; ++t) {
__m128i z, a, b, xt1, vt1, ut, tmp;
__dp_code_block1;
z = _mm_max_epi8(z, a); // z = z > a? z : a (signed)
__dp_code_block2;
_mm_store_si128(&x[t], _mm_max_epi8(a, zero_));
_mm_store_si128(&y[t], _mm_max_epi8(b, zero_));
}
} else if (!(flag&KSW_EZ_RIGHT)) { // gap left-alignment
__m128i *pr = p + (size_t)r * n_col_ - st_;
off[r] = st, off_end[r] = en;
for (t = st_; t <= en_; ++t) {
__m128i d, z, a, b, xt1, vt1, ut, tmp;
__dp_code_block1;
d = _mm_and_si128(_mm_cmpgt_epi8(a, z), flag1_); // d = a > z? 1 : 0
z = _mm_max_epi8(z, a); // z = z > a? z : a (signed)
tmp = _mm_cmpgt_epi8(b, z);
d = _mm_blendv_epi8(d, flag2_, tmp); // d = b > z? 2 : d
__dp_code_block2;
tmp = _mm_cmpgt_epi8(a, zero_);
_mm_store_si128(&x[t], _mm_and_si128(tmp, a));
d = _mm_or_si128(d, _mm_and_si128(tmp, flag8_)); // d = a > 0? 0x08 : 0
tmp = _mm_cmpgt_epi8(b, zero_);
_mm_store_si128(&y[t], _mm_and_si128(tmp, b));
d = _mm_or_si128(d, _mm_and_si128(tmp, flag16_)); // d = b > 0? 0x10 : 0
_mm_store_si128(&pr[t], d);
}
} else { // gap right-alignment
__m128i *pr = p + (size_t)r * n_col_ - st_;
off[r] = st, off_end[r] = en;
for (t = st_; t <= en_; ++t) {
__m128i d, z, a, b, xt1, vt1, ut, tmp;
__dp_code_block1;
d = _mm_andnot_si128(_mm_cmpgt_epi8(z, a), flag1_); // d = z > a? 0 : 1
z = _mm_max_epi8(z, a); // z = z > a? z : a (signed)
tmp = _mm_cmpgt_epi8(z, b);
d = _mm_blendv_epi8(flag2_, d, tmp); // d = z > b? d : 2
__dp_code_block2;
tmp = _mm_cmpgt_epi8(zero_, a);
_mm_store_si128(&x[t], _mm_andnot_si128(tmp, a));
d = _mm_or_si128(d, _mm_andnot_si128(tmp, flag8_)); // d = 0 > a? 0 : 0x08
tmp = _mm_cmpgt_epi8(zero_, b);
_mm_store_si128(&y[t], _mm_andnot_si128(tmp, b));
d = _mm_or_si128(d, _mm_andnot_si128(tmp, flag16_)); // d = 0 > b? 0 : 0x10
_mm_store_si128(&pr[t], d);
}
}
if (!approx_max) { // find the exact max with a 32-bit score array
int32_t max_H, max_t;
// compute H[], max_H and max_t
if (r > 0) {
int32_t HH[4], tt[4], en1 = st0 + (en0 - st0) / 4 * 4, i;
__m128i max_H_, max_t_, qe_;
max_H = H[en0] = en0 > 0? H[en0-1] + u8[en0] - qe : H[en0] + v8[en0] - qe; // special casing the last element
max_t = en0;
max_H_ = _mm_set1_epi32(max_H);
max_t_ = _mm_set1_epi32(max_t);
qe_ = _mm_set1_epi32(q + e);
for (t = st0; t < en1; t += 4) { // this implements: H[t]+=v8[t]-qe; if(H[t]>max_H) max_H=H[t],max_t=t;
__m128i H1, tmp, t_;
H1 = _mm_loadu_si128((__m128i*)&H[t]);
t_ = _mm_setr_epi32(v8[t], v8[t+1], v8[t+2], v8[t+3]);
H1 = _mm_add_epi32(H1, t_);
H1 = _mm_sub_epi32(H1, qe_);
_mm_storeu_si128((__m128i*)&H[t], H1);
t_ = _mm_set1_epi32(t);
tmp = _mm_cmpgt_epi32(H1, max_H_);
max_H_ = _mm_blendv_epi8(max_H_, H1, tmp);
max_t_ = _mm_blendv_epi8(max_t_, t_, tmp);
}
_mm_storeu_si128((__m128i*)HH, max_H_);
_mm_storeu_si128((__m128i*)tt, max_t_);
for (i = 0; i < 4; ++i)
if (max_H < HH[i]) max_H = HH[i], max_t = tt[i] + i;
for (; t < en0; ++t) { // for the rest of values that haven't been computed with SSE
H[t] += (int32_t)v8[t] - qe;
if (H[t] > max_H)
max_H = H[t], max_t = t;
}
} else H[0] = v8[0] - qe - qe, max_H = H[0], max_t = 0; // special casing r==0
// update ez
if (en0 == tlen - 1 && H[en0] > ez->mte)
ez->mte = H[en0], ez->mte_q = r - en;
if (r - st0 == qlen - 1 && H[st0] > ez->mqe)
ez->mqe = H[st0], ez->mqe_t = st0;
if (ksw_apply_zdrop(ez, 1, max_H, r, max_t, zdrop, e)) break;
if (r == qlen + tlen - 2 && en0 == tlen - 1)
ez->score = H[tlen - 1];
} else { // find approximate max; Z-drop might be inaccurate, too.
if (r > 0) {
if (last_H0_t >= st0 && last_H0_t <= en0 && last_H0_t + 1 >= st0 && last_H0_t + 1 <= en0) {
int32_t d0 = v8[last_H0_t] - qe;
int32_t d1 = u8[last_H0_t + 1] - qe;
if (d0 > d1) H0 += d0;
else H0 += d1, ++last_H0_t;
} else if (last_H0_t >= st0 && last_H0_t <= en0) {
H0 += v8[last_H0_t] - qe;
} else {
++last_H0_t, H0 += u8[last_H0_t] - qe;
}
if ((flag & KSW_EZ_APPROX_DROP) && ksw_apply_zdrop(ez, 1, H0, r, last_H0_t, zdrop, e)) break;
} else H0 = v8[0] - qe - qe, last_H0_t = 0;
if (r == qlen + tlen - 2 && en0 == tlen - 1)
ez->score = H0;
}
last_st = st, last_en = en;
//for (t = st0; t <= en0; ++t) printf("(%d,%d)\t(%d,%d,%d,%d)\t%d\n", r, t, ((int8_t*)u)[t], ((int8_t*)v)[t], ((int8_t*)x)[t], ((int8_t*)y)[t], H[t]); // for debugging
}
kfree(km, mem);
if (!approx_max) kfree(km, H);
if (with_cigar) { // backtrack
int rev_cigar = !!(flag & KSW_EZ_REV_CIGAR);
if (!ez->zdropped && !(flag&KSW_EZ_EXTZ_ONLY)) {
ksw_backtrack(km, 1, rev_cigar, 0, (uint8_t*)p, off, off_end, n_col_*16, tlen-1, qlen-1, &ez->m_cigar, &ez->n_cigar, &ez->cigar);
} else if (!ez->zdropped && (flag&KSW_EZ_EXTZ_ONLY) && ez->mqe + end_bonus > (int)ez->max) {
ez->reach_end = 1;
ksw_backtrack(km, 1, rev_cigar, 0, (uint8_t*)p, off, off_end, n_col_*16, ez->mqe_t, qlen-1, &ez->m_cigar, &ez->n_cigar, &ez->cigar);
} else if (ez->max_t >= 0 && ez->max_q >= 0) {
ksw_backtrack(km, 1, rev_cigar, 0, (uint8_t*)p, off, off_end, n_col_*16, ez->max_t, ez->max_q, &ez->m_cigar, &ez->n_cigar, &ez->cigar);
}
kfree(km, mem2); kfree(km, off);
}
}
|