1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/***********************************************************************
* *
* Copyright (c) David L. Mills 1994-1998 *
* *
* Permission to use, copy, modify, and distribute this software and *
* its documentation for any purpose and without fee is hereby *
* granted, provided that the above copyright notice appears in all *
* copies and that both the copyright notice and this permission *
* notice appear in supporting documentation, and that the name *
* University of Delaware not be used in advertising or publicity *
* pertaining to distribution of the software without specific, *
* written prior permission. The University of Delaware makes no *
* representations about the suitability this software for any *
* purpose. It is provided "as is" without express or implied *
* warranty. *
* *
***********************************************************************
*/
/*
* MINIMUF 3.5 from QST December 1982
* (originally in BASIC)
*/
#include <math.h>
#define PI 3.141592653589 /* the real thing */
#define PIH (PI / 2.) /* the real thing / 2 */
#define PID (PI * 2.) /* the real thing * 2 */
#define SGN(x) ((x==0.)?0.:((x>0.)?1.:-1.)) /* BASIC SGN function */
double spots(double);
/*
* MINIMUF 3.5 (From QST December 1982, originally in BASIC)
*/
double
minimuf(
double flux, /* 10-cm solar flux */
double month, /* month of year (1 - 12) */
double day, /* day of month (1 - 31) */
double hour, /* hour of day (utc) (0 - 23) */
double lat1, /* transmitter latitude (deg n) */
double lon1, /* transmitter longitude (deg w) */
double lat2, /* receiver latitude (deg n) */
double lon2 /* receiver longitude (deg w) */
)
{
double ssn; /* sunspot number dervived from flux */
double muf; /* maximum usable frequency */
double dist; /* path angle (rad) */
double a, p, q; /* unfathomable local variables */
double y1, y2, y3;
double t, t4, t9;
double g0, g8;
double k1, k6, k8, k9;
double m9, c0;
double ftemp, gtemp; /* volatile temps */
/*
* Determine geometry and invariant coefficients
*/
ssn = spots(flux);
ftemp = sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) *
cos(lon2 - lon1);
if (ftemp < -1.)
ftemp = -1.;
if (ftemp > 1.)
ftemp = 1.;
dist = acos(ftemp);
k6 = 1.59 * dist;
if (k6 < 1.)
k6 = 1.;
p = sin(lat2);
q = cos(lat2);
a = (sin(lat1) - p * cos(dist)) / (q * sin(dist));
y1 = .0172 * (10. + (month - 1.) * 30.4 + day);
y2 = .409 * cos(y1);
ftemp = 2.5 * dist / k6;
if (ftemp > PIH)
ftemp = PIH;
ftemp = sin(ftemp);
m9 = 1. + 2.5 * ftemp * sqrt(ftemp);
muf = 100.;
/*
* Loop along path
*/
for (k1 = 1. / (2. * k6); k1 <= 1. - 1. / (2. * k6);
k1 += fabs(.9999 - 1. / k6)) {
gtemp = dist * k1;
ftemp = p * cos(gtemp) + q * sin(gtemp) * a;
if (ftemp < -1.)
ftemp = -1.;
if (ftemp > 1.)
ftemp = 1.;
y3 = PIH - acos(ftemp);
ftemp = (cos(gtemp) - ftemp * p) / (q * sqrt(1. - ftemp
* ftemp));
if (ftemp < -1.)
ftemp = -1.;
if (ftemp > 1.)
ftemp = 1.;
ftemp = lon2 + SGN(sin(lon1 - lon2)) * acos(ftemp);
if (ftemp < 0.)
ftemp += PID;
if (ftemp >= PID)
ftemp -= PID;
ftemp = 3.82 * ftemp + 12. + .13 * (sin(y1) + 1.2 *
sin(2. * y1));
k8 = ftemp - 12. * (1. + SGN(ftemp - 24.)) *
SGN(fabs(ftemp - 24.));
if (cos(y3 + y2) <= -.26) {
k9 = 0.;
g0 = 0.;
} else {
ftemp = (-.26 + sin(y2) * sin(y3)) / (cos(y2) *
cos(y3) + .001);
k9 = 12. - atan(ftemp / sqrt(fabs(1. - ftemp *
ftemp))) * 7.639437;
t = k8 - k9 / 2. + 12. * (1. - SGN(k8 - k9 /
2.)) * SGN(fabs(k8 - k9 / 2.));
t4 = k8 + k9 / 2. - 12. * (1. + SGN(k8 + k9 /
2. - 24.)) * SGN(fabs(k8 + k9 / 2. - 24.));
c0 = fabs(cos(y3 + y2));
t9 = 9.7 * pow(c0, 9.6);
if (t9 < .1)
t9 = .1;
g8 = PI * t9 / k9;
if ((t4 < t && (hour - t4) * (t - hour) > 0.) ||
(t4 >= t && (hour - t) * (t4 - hour) <= 0.))
{
ftemp = hour + 12. * (1. + SGN(t4 -
hour)) * SGN(fabs(t4 - hour));
ftemp = (t4 - ftemp) / 2.;
g0 = c0 * (g8 * (exp(-k9 / t9) + 1.)) *
exp(ftemp) / (1. + g8 * g8);
} else {
ftemp = hour + 12. * (1. + SGN(t -
hour)) * SGN(fabs(t - hour));
gtemp = PI * (ftemp - t) / k9;
ftemp = (t - ftemp) / t9;
g0 = c0 * (sin(gtemp) + g8 * (exp(ftemp)
- cos(gtemp))) / (1. + g8 * g8);
ftemp = c0 * (g8 * (exp(-k9 / t9) + 1.))
* exp((k9 - 24.) / 2.) / (1. + g8 *
g8);
if (g0 < ftemp)
g0 = ftemp;
}
}
ftemp = (1. + ssn / 250.) * m9 * sqrt(6. + 58. *
sqrt(g0));
ftemp *= 1. - .1 * exp((k9 - 24.) / 3.);
ftemp *= 1. + .1 * (1. - SGN(lat1) * SGN(lat2));
ftemp *= 1. - .1 * (1. + SGN(fabs(sin(y3)) - cos(y3)));
if (ftemp < muf)
muf = ftemp;
}
return (muf);
}
/*
* spots(flux) - Routine to map solar flux to sunspot number.
*
* THis routine was done by eyeball and graph on p. 22-6 of the 1991
* ARRL Handbook. The nice curve fitting was done using Mathematica.
*/
double
spots(
double flux /* 10-cm solar flux */
)
{
double ftemp; /* double temp */
if (flux < 65.)
return (0.);
else if (flux < 110.) {
ftemp = flux - 200.6;
ftemp = 108.36 - .005896 * ftemp * ftemp;
} else if (flux < 213.) {
ftemp = 60. + 1.0680 * (flux - 110.);
} else {
ftemp = flux - 652.9;
ftemp = 384.0 - .0011059 * ftemp * ftemp;
}
return (ftemp);
}
|