File: shell.c

package info (click to toggle)
minimuf 3.5-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 112 kB
  • ctags: 94
  • sloc: ansic: 659; makefile: 69
file content (863 lines) | stat: -rw-r--r-- 23,176 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
/***********************************************************************
 *                                                                     *
 * Copyright (c) David L. Mills 1994-1998                              *
 *                                                                     *
 * Permission to use, copy, modify, and distribute this software and   *
 * its documentation for any purpose and without fee is hereby         *
 * granted, provided that the above copyright notice appears in all    *
 * copies and that both the copyright notice and this permission       *
 * notice appear in supporting documentation, and that the name        *
 * University of Delaware not be used in advertising or publicity      *
 * pertaining to distribution of the software without specific,        *
 * written prior permission.  The University of Delaware makes no      *
 * representations about the suitability this software for any         *
 * purpose. It is provided "as is" without express or implied          *
 * warranty.                                                           *
 *                                                                     *
 ***********************************************************************
 */
/*
 * Program to calculate maximum usable frequency and received signal
 * strength for high-frequency radio circuits. Uses MINIMUF 3.5.
 */
/*
 * Command line:
 *
 *	minimuf [-mdhspoel] [infile] [antfile]
 * 		infile	input file
 *		antfile	antenna data file
 *
 * Command-line modifiers (Unix only):
 *
 *	If any of these are specified, they override the corresponding
 *	data in the input file.
 *
 *	-d day
 *		day of month (1-31)
 *
 *	-e angle
 *		minimum takeoff angle (deg)
 *
 *	-h hour
 *		hour of day (0-23)
 *
 *	-l
 *		use long path (default is short path)
 *
 *	-m month
 *		month of year (1-12)
 *
 *	-o format
 *		output format (see below)
 *
 *	-p dbw
 *		transmitter power (dBW)
 *
 *	-s flux
 *		10-cm solar flux (65-250)
 *		output format (1-4)
 *
 * Input file format:
 *
 *	first line contains six numbers:
 *
 *	3 1 1 194 20 5
 *
 *	1. output format
 *		1 receive power (dBm above threshold)
 *		2 elevation angle (deg)
 *		3 delay (ms)
 *		4 fot (MHz), receive power (dBm above threshold)
 *		all formats are preceded by; UT LT MUF phi
 *			UT	universal time
 *			LT	local time at receiver
 *			MUF	maximum usable frequency
 *			phi	Sun zenith angle at path midpoint
 *	2. month (1-12)
 *	3. day (1-31)
 *	4. 10-cm solar flux (65-250)
 *	5. transmitter power (dBW)
 *	6. number of frequencies to follow (0 indicates default)
 *
 *	if (6) is nonzero, second line contains frequencies (MHz)
 *
 *	2.5 5 10 15 20
 *
 *	second/third line contains transmitter coordinates and name:
 *
 *	39.70000 -75.78194 W3HCF Newark 39:42:00N 75:46:55W
 *
 *	third and subsequent lines contain receiver coordinates
 *	and name:
 *
 *	39.68005 -75.75085 Evans Hall 39:40:48.184N 75:45:3.067W
 *	40.6803 -105.0408  WWV Ft Collins 40:40:49.0N 105:02:27.0W
 *	21.9906 -159.7667  WWVH Hawaii 21:59:26.0N 159:46:00.0W
 *	45.30    -75.75    CHU Ottawa 45:18N 75:45N
 *	50.17      9.00    DCF77 Mainflingen 50:01N 9:00E
 *	52.37     -1.18    MSF Rugby 52:22N 1:11W
 *
 * Timecode transmitters, frequencies and geographic coordinates
 *
 * WWV  Ft. Collins	2.5, 5, 10, 15, 20 MHz	40:40:49.0N 105:02:27.0W
 * WWVB Ft. Collins	60 kHz			40:40:28.3N 105:02:39.5W
 * WWVL Ft. Collins	20 kHz (silent key)	40:40:51.3N 105:03:00.0W
 * WWVH Kauai		2.5, 5, 10, 15 MHz	21:59:26.0N 159:46:00.0W
 * CHU Ottawa		3330, 7335, 14670	45:18N 75:45N
 * DCF77 Mainflingen	77.5 kHz		50:01N 9:00E
 * MSF Rugby		60 kHz			52:22N 1:11W
 */
#include <stdio.h>
#include <math.h>
#include <unistd.h>

#define R 6371.2		/* radius of the Earth (km) */
#define hE 110.			/* mean height of E layer (km) */
#define hF 320.			/* mean height of F layer (km) */
#define GAMMA 1.42		/* geomagnetic constant */
#define LN10 2.302585		/* natural logarithm of 10 */
#define PI 3.141592653589	/* the real thing */
#define PIH (PI / 2.)		/* the real thing / 2 */
#define PID (PI * 2.)		/* the real thing * 2 */
#define VOFL 2.9979250e8	/* velocity of light (m/s) */
#define D2R (PI / 180.)		/* degrees to radians */
#define R2D (180. / PI)		/* radians to degrees */
#define MINBETA (10. * D2R)	/* min elevation angle (rad) */
#define BOLTZ 1.380622e-23	/* Boltzmann's constant */
#define NTEMP 290.		/* receiver noise temperature (K) */
#define DELTAF 2500.		/* communication bandwidth (Hz) */
#define MPATH 3.		/* multipath threshold (dB) */
#define GLOSS 3.		/* ground-reflection loss (dB) */
#define SLOSS 10.		/* excess system loss */
#define RSENS -123.		/* receiver sensitivity (dBm) */
#define NGAIN 5			/* antenna gain frequencies */
#define FMAX 10			/* max frequencies */
#define HMAX 30			/* max hops */

/*
 * Program flags (flags)
 */
#define H_FMT	0x0001		/* output format */
#define H_MONTH	0x0002		/* month of year */
#define H_DAY	0x0004		/* day of month */
#define H_HOUR	0x0008		/* hour of day */
#define H_FLUX	0x0010		/* 10-cm solar flux */
#define H_POWER	0x0020		/* transmitter power */
#define H_BETA	0x0040		/* minimum elevation angle */
#define H_GAIN	0x0080		/* antenna gain table present */
#define H_LONG	0x0100		/* use long path (default is short) */

/*
 * Path flags (daynight)
 */
#define P_J 0x01		/* hop in daytime */
#define P_N 0x02		/* hop in nighttime */
#define P_S 0x04		/* signal below sensitivity */
#define P_E 0x08		/* E-layer cutoff */
#define P_M 0x10		/* multipath */

/*
 * Global function declarations
 */
extern FILE *fopen();
extern double minimuf(double, double, double, double, double, double,
    double, double);
extern double spots(double);
extern char *optarg;		/* pointer to option string */
extern int opterr;		/* error message enable */
extern int optind;		/* argv index of next argument */

/*
 * Local function declarations
 */
static double antgain(double, double);
static void ion(int, double, double);
static int pathloss(int, double);
static double zenith(double);
static void dsx(int);

/*
 * Global data
 */
double month;			/* month of year (1 - 12) */
double day;			/* day of month */
double hour;			/* hour of day (UTC) */
double flux;			/* 10-cm solar flux */
double ssn;			/* sunspot number (derived from flux) */
double lat1, lon1;		/* transmitter coordinates (deg N/W) */
double b1;			/* transmitter bearing (rad) */
char site1[30];			/* transmitter site name */
double lat2, lon2;		/* receiver coordinates (deg N/W) */
double b2;			/* receiver bearing (rad) */
char site2[30];			/* receiver site name */
double theta;			/* path angle (rad) */
double lats, lons;		/* subsolar coordinates (rad) */
double noise;			/* thermal noise (dBm) */
FILE *fp_in, *fp_an;		/* file handles */
char antfile[25];		/* antenna file name */
int flag;			/* output format */
double dB1;			/* transmitter output power (dBW) */
int options;			/* option flags */

/*
 * Antenna gain data
 */
int nfreq;			/* number of frequencies */
double freq[FMAX];		/* working frequencies (MHz) */
double gainfreq[NGAIN];		/* antenna gain frequencies (MHz) */
double gain[46][NGAIN];		/* antenna gain (main lobe) (dB) */

/*
 * Path variables
 */
double mufE[HMAX];		/* maximum E-layer MUF (MHz) */
double mufF[HMAX];		/* minimum F-layer MUF (MHz) */
double absorp[HMAX];		/* ionospheric absorption coefficient */
double dB2[HMAX];		/* receive power (dBm) */
double path[HMAX];		/* path length (km) */
double beta[HMAX];		/* elevation angle (rad) */
char daynight[HMAX];		/* path flags */

/*
 * Main program
 */
int
main(
	int argc,		/* count of arguments */
	char **argv		/* argument list */
	)
{

	/*
	 * Path variables
	 */
	double delay;		/* path delay (ms) */
	double psi = 0.;		/* sun zenith angle (rad) */
	double ftemp, gtemp;	/* double temps */
	int i, j = 0, h, n;		/* int temps */
	double offset;		/* offset for local time (hours) */
	double fcF;		/* F-layer critical frequency (MHz) */
	double phiF;		/* F-layer angle of incidence (rad) */
	int hop;		/* number of ray hops */
	double beta1;		/* elevation angle (rad) */
	double minbeta;		/* minimum elevation angle (rad) */
	double d;		/* great-circle distance (rad) */
	double dhop = 0.;		/* hop great-circle distance (rad) */
	double height;		/* height of F layer (km) */
	double time;		/* time of day (hour) */
	double hr1, hr2;	/* hour span */
	double opt_month;	/* month of year (1 - 12) */
	double opt_day;		/* day of month */
	double opt_flux;	/* 10-cm solar flux */
	double opt_dB1;		/* transmitter output power (dBW) */
	int opt_flag;		/* output format */
	int temp;		/* int temp */

	fp_in = stdin;
	hr1 = 0;
	hr2 = 23;
	optind = 1;
	options = 0;
	minbeta = MINBETA;

	/*
	 * Process command-line arguments
	 */
	while ((temp = getopt(argc, argv, "d:e:h:lm:o:p:s:")) != -1) {
		switch (temp) {

		/*
		 * Day
		 */
		case 'd':
			sscanf(optarg, "%lf", &opt_day);
			options |= H_DAY;
			break;

		/*
		 * Minimum elevation angle
		 */
		case 'e':
			sscanf(optarg, "%lf", &minbeta);
			minbeta *= R2D;
			options |= H_BETA;
			break;

		/*
		 * Hour
		 */
		case 'h':
			sscanf(optarg, "%lf", &hr1);
			hr2 = hr1;
			options |= H_HOUR;
			break;

		/*
		 * Use long path (default is short path)
		 */
		case 'l':
			options |= H_LONG;
			break;

		/*
		 * Month
		 */
		case 'm':
			sscanf(optarg, "%lf", &opt_month);
			options |= H_MONTH;
			break;

		/*
		 * Output format
		 */
		case 'o':
			sscanf(optarg, "%d", &opt_flag);
			options |= H_FMT;
			break;

		/*
		 * Transmitter power output
		 */
		case 'p':
			sscanf(optarg, "%lf", &opt_dB1);
			options |= H_POWER;
			break;

		/*
		 * 10-cm solar flux
		 */
		case 's':
			sscanf(optarg, "%lf", &opt_flux);
			options |= H_FLUX;
			break;
		}
	}

	/*
	 * Read data and frequency list.
	 */
	if (argc > optind)
		fp_in = fopen (argv[optind], "r");
	if (fp_in == NULL)
		return(1);
	fscanf(fp_in, "%i%lf%lf%lf%lf%i", &flag, &month, &day, &flux,
	    &dB1, &nfreq);
	if (nfreq <= 0) {
		nfreq = NGAIN;
		for (i = 0; i < nfreq; i++)
			freq[i] = gainfreq[i];
	} else {
		if (nfreq > FMAX)
			nfreq = FMAX;
		for (i = 0; i < nfreq; i++)
			if (fscanf(fp_in, "%lf", &freq[i]) != 1)
				return(1);
	}

	if (options & H_MONTH)
		month = opt_month;
	if (options & H_DAY)
		day = opt_day;
	if (options & H_FLUX)
		flux = opt_flux;
	if (options & H_POWER)
		dB1 = opt_dB1;
	if (options & H_FMT)
		flag = opt_flag;

	/*
	 * Read in optional frequency and antenna gain tables.
	 */
	optind++;
	if (argc > optind) {
		fp_an = fopen (argv[optind], "r");
		if (fp_an == NULL)
			return (1);
		for (j = 0; j < NGAIN; j++)
			if (fscanf(fp_an, "%lf", &gainfreq[j]) != 1)
				return (1);
		for (i = 0; i < 46; i++) {
			for (j = 0; j < NGAIN; j++)
				if (fscanf(fp_an, "%lf", &gain[i][j]) !=
				    1)
					return (1);
		}
		options |= H_GAIN;
	}

	/*
	 * Get transmitter coordinates and site name.
	 */
	fscanf(fp_in, "%lf%lf%[^\n]", &lat1, &lon1, site1);
	lat1 = lat1 * D2R;
	lon1 = - lon1 * D2R;
	if (flag < 4)
		printf("Transmitter %s\n", site1);

	/*
	 * Main loop. Get receiver coordinates and site name.
	 */
	ssn = spots(flux);
L1:	if (fscanf(fp_in, "%lf%lf%[^\n]", &lat2, &lon2, site2) != 3)
		return (0);
	lat2 = lat2 * D2R;
	lon2 = -lon2 * D2R;
	if (flag < 4)
		printf("\nReceiver %s\n", site2);

	/*
	 * Compute great-circle bearings, great-circle distance, min
	 * hops, F-layer angle of incidence and path delay
	 */
	theta = lon1 - lon2;
	if (theta >= PI)
		theta -= PID;
	if (theta <= -PI)
		theta += PID;
	d = acos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) *
	    cos(theta));
	if (d < 0.)
		d += PI;
	b1 = acos((sin(lat2) - sin(lat1) * cos(d)) / (cos(lat1) *
	    sin(d)));
	if (b1 < 0.)
		b1 += PI;
	if (theta < 0)
		b1 = PID - b1;
	b2 = acos((sin(lat1) - sin(lat2) * cos(d)) / (cos(lat2) *
	    sin(d)));
	if (b2 < 0.)
		b2 += PI;
	if (theta >= 0.)
		b2 = PID - b2;
	if (options & H_LONG) {
		d = PID - d;
		b1 += PI;
		if (b1 >= PID)
 			b1 -= PID;
		b2 += PI;
		if (b2 >= PID)
			b2 -= PID;
	}
	hop = (int)(d / (2. * acos(R / (R + hF))));
	beta1 = 0.;
	while (beta1 < minbeta) {
		hop++;
		dhop = d / (hop * 2.);
		beta1 = atan((cos(dhop) - R / (R + hF)) / sin(dhop));
	}
	ftemp = R * cos(beta1) / (R + hF);
	phiF = atan(ftemp / sqrt(1. - ftemp * ftemp));
	delay = 2. * hop * sin(dhop) * (R + hF) / cos(beta1) / VOFL *
	    1e6;

	if (flag < 4) {
		printf("\n10-cm solar flux:%4.0lf   SN:%4.0lf   Month:%3.0lf   Day:%3.0lf\n",
		    flux, ssn, month, day);
		printf("Power:%3.0f dBW    Distance:%6.0f km    Delay:%5.1f ms\n",
		    dB1, d * R, delay);
		printf("Location                        Lat      Long    Azim\n");
		printf("%-27s %7.2fN  %7.2fW    %3.0f\n",
		    site1, lat1 * R2D, lon1 * R2D, b1 * R2D);
		printf("%-27s %7.2fN  %7.2fW    %3.0f\n",
		    site2, lat2 * R2D, lon2 * R2D, b2 * R2D);
		printf("UT LT  MUF Zen");
		for (i = 0; i < nfreq; i++)
			printf("%7.1f", freq[i]);
		printf("\n");
	}

	/*
	 * Hour loop: This loop determines the min-hop path and next two
	 * higher-hop paths. It selects the most likely path for each
	 * frequency and calculates the receive power. The F-layer
	 * critical frequency is computed directly from MINIMUF 3.5 and
	 * the secant law.
	 */
	noise = 10. * log10(BOLTZ * NTEMP * DELTAF) + 30.;
	offset = (lon2 * 24. / PID);
	for (hour = hr1; hour <= hr2; hour++) {
		time = hour - offset;
		if (time < 0.)
			time += 24.;
		if (time >= 24.)
			time -= 24.;
		printf("%2.0f %2.0f", hour, time);
		ftemp = minimuf(flux, month, day, hour, lat1, lon1,
		    lat2, lon2);
		fcF = ftemp * cos(phiF);

		/*
		 * Calculate subsolar coordinates.
		 */
		ftemp = (month - 1.) * 365.25 / 12. + day - 80.;
		lats = 23.5 * D2R * sin(ftemp / 365.25 * PID);
		lons = (hour * 15. - 180.) * D2R;

		/*
		 * Path loop: This loop determines the geometry of the
		 * min-hop path and the next two higher-hop paths. It
		 * calculates the minimum F-layer MUF, maximum E-layer
		 * MUF and ionospheric absorption factor for each
		 * geometry.
		 */
		for (h = hop; h < hop + 3; h++) {

			/*
			 * We assume the F layer height increases during
			 * the day and decreases at night, as determined
			 * at the midpoint of the path.
			 */
			height = hF;
			psi = zenith(d / 2.);
			if (psi < 0)
				height -= 70.;
			else
				height += 30.;
			dhop = d / (h * 2.);
			beta[h] = atan((cos(dhop) - R / (R + height)) /
			    sin(dhop));
			path[h] = 2. * h * sin(dhop) * (R + height) /
			    cos(beta[h]);
			ion(h, d, fcF);
		}
		/*
		 * Display one line for this hour.
		 */
		printf("%5.1f%4.0f ", mufF[hop], 90. - psi * R2D);
		ftemp = noise;
		for (i = 0; i < nfreq; i++) {
			n = pathloss(hop, freq[i]);
			if (flag != 4)
				dsx(n);
			gtemp = dB2[n];
			if (gtemp > ftemp && n > 0) {
				ftemp = gtemp;
				h = i;
				j = n;
			}
		}
		if (flag == 4) {
			printf("%8.5lf", freq[h]);
			dsx(j);
 		}
		printf("\n");
	}
	goto L1;
}

/*
 * ion(d, h, fcF) - determine paratmeters for hop h
 *
 * This routine determines the reflection zones for each hop along the
 * path and computes the minimum F-layer MUF, maximum E-layer MUF,
 * ionospheric absorption factor and day/night flags for the entire
 * path.
 */
static void
ion(
	int h,			/* hop index */
	double d,		/* path angle (rad) */
	double fcF		/* F-layer critical frequency */
	)
{
	double beta;		/* elevation angle (rad) */
	double psi;		/* sun zenith angle (rad) */
	double dhop;		/* hop angle / 2 (rad) */
	double dist;		/* path angle (rad) */
	double phiF;		/* F-layer angle of incidence (rad) */
	double phiE;		/* E-layer angle of incidence (rad) */
	double fcE;		/* E-layer critical frequency (MHz) */
	double ftemp;		/* double temp */
	int daytime, nightime;	/* path flags */

	/*
	 * Determine the path geometry, E-layer angle of incidence and
	 * minimum F-layer MUF. The F-layer MUF is determined from the
	 * F-layer critical frequency previously calculated by MINIMUF
	 * 3.5 and the secant law and so depends only on the F-layer
	 * angle of incidence. This is somewhat of a crock; however,
	 * doing it with MINIMUF 3.5 on a hop-by-hop basis results in
	 * rather serious errors.
	 */
	daytime = 0;
	nightime = 0;
	dhop = d / (h * 2.);
	beta = atan((cos(dhop) - R / (R + hF)) / sin(dhop));
	ftemp = R * cos(beta) / (R + hE);
	phiE = atan(ftemp / sqrt(1. - ftemp * ftemp));
	ftemp = R * cos(beta) / (R + hF);
	phiF = atan(ftemp / sqrt(1. - ftemp * ftemp));
	mufE[h] = 0;
	mufF[h] = fcF / cos(phiF);;
	absorp[h] = 0.;
	daynight[h] = 0;
	for (dist = dhop; dist < d; dist += dhop * 2) {

		/*
		 * Calculate the E-layer critical frequency and MUF.
		 */
		fcE = 0.;
		psi = zenith(dist);
		ftemp = cos(psi);
		if (ftemp > 0.)
			fcE = .9 * pow((180. + 1.44 * ssn) * ftemp,
			    .25);
		if (fcE < .005 * ssn)
			fcE = .005 * ssn;
		ftemp = fcE / cos(phiE);
		if (ftemp > mufE[h])
			mufE[h] = ftemp;

		/*
		 * Calculate ionospheric absorption coefficient and
		 * day/night indicators. Note that some hops along a
		 * path can be in daytime and others in nighttime.
		 */
		ftemp = psi;
		if (ftemp > 100.8 * D2R) {
			ftemp = 100.8 * D2R;
			daynight[h] |= P_N;
		}
		else
			daynight[h] |= P_J;
		ftemp = cos(90. / 100.8 * ftemp);
		if (ftemp < 0.)
			ftemp = 0.;
		ftemp = (1. + .0037 * ssn) * pow(ftemp, 1.3);
		if (ftemp < .1)
			ftemp = .1;
		absorp[h] += ftemp;
	}
}

/*
 * pathloss(freq, hop) - Compute receive power for given path.
 *
 * This routine determines which of the three ray paths determined
 * previously are usable. It returns the hop index of the best of these
 * or zero if none are found.
 */
static int
pathloss(
	int hop,		/* minimum hops */
	double freq		/* frequency */
	)
{
	int h;			/* hop number */
	double level;		/* max signal (dBm) */
	double signal;		/* receive signal (dBm) */
	double ftemp;		/* double temp */
	int j;			/* index temp */

	/*
	 * Calculate signal and noise for all hops. The noise level is
	 * -140 dBm for a receiver bandwidth of 2500 Hz and noise
	 * temperature 290 K. The receiver sensitivity is assumed -123
	 * dBm (0.15 V at 50 Ohm for 10 dB S/N). Paths where the signal
	 * is less than the noise or when the frequency exceeds the F-
	 * layer MUF are considered unusable.
	 */
	level = noise;
	j = 0;
	for (h = hop; h < hop + 3; h++) {
		daynight[h] &= ~(P_E | P_S | P_M);
		if (freq < 0.85 * mufF[h]) {

			/*
			 * Transmit power (dBm)
			 */
			signal = dB1 + antgain(freq, beta[h]) + 30.;

			/*
			 * Path loss
			 */
			signal -= 32.44 + 20. * log10(path[h] * freq) +
			    SLOSS;

			/*
			 * Ionospheric loss
			 */
			ftemp = R * cos(beta[h]) / (R + hE);
			ftemp = atan(ftemp / sqrt(1. - ftemp * ftemp));
			signal -= 677.2 * absorp[h] / cos(ftemp) /
			    (pow((freq + GAMMA), 1.98) + 10.2);

			/*
			 * Ground reflection loss
			 */
			signal -= h * GLOSS;

			dB2[h] = signal;

			/*
			 * Paths where the signal is greater than the
			 * noise, but less than the receiver sensitivity
			 * are marked 's'. Paths below the E-layer MUF
			 * are marked 'e'. When comparing for maximum
			 * signal, The signal for these paths is reduced
			 * by 3 dB so they will be used only as a last
			 * resort.
			 */
			if (signal < RSENS)
				daynight[h] |= P_S;
			if (freq < mufE[h]) {
				daynight[h] |= P_E;
				signal -= MPATH;
			}
			if (signal > level) {
				level = signal;
				j = h;
			}
		}
	}

	/*
	 * We have found the best path. If this path is less than 3 dB
	 * above the RMS sum of the other paths, the path is marked 'm'.
	 */
	if (j == 0)
		return (0);

	ftemp = 0.;
	for (h = hop; h < hop + 3; h++) {
		if (h != j)
			ftemp += exp(2. / 10. * dB2[h] * LN10);
	}
	ftemp = 10. / 2. * log10(ftemp);
	if (level < ftemp + MPATH)
		daynight[j] |= P_M;
	return (j);
}

/*
 * antgain(freq, beta) - Compute antenna gain from tables.
 *
 * The gain table gain[i][j] is indexed by elevation i in 2-degree
 * increments and frequency j as dermined from the gainfreq[j] vector.
 * If the table is not present, an isotropic radiator is assumed.
 */
static double
antgain(
	double freq,		/* frequency (MHz) */
	double beta		/* elevation angle (rad) */
	)
{
	double p, q, r, s;	/* double temps */
	int i, j;		/* index temps */

	if (~options & H_GAIN)
		return (0);
	r = beta * R2D / 2.;
	if (r >= 45.)
		r = 45.;
	i = (int)r;
	r -= i;
	s = 1. - r;
	for (j = 0; j < NGAIN && gainfreq[j] < freq; j++);
	if (j == 0)
		return(r * gain[i][0] + s * gain[i + 1][0]);
	else if (j >= NGAIN)
		return(r * gain[i][NGAIN - 1] + s *
	    gain[i + 1][NGAIN - 1]);
	p = (freq - gainfreq[j - 1]) / (gainfreq[j] - gainfreq[j - 1]);
	q = 1. - p;
	return(p * (r * gain[i][j - 1] + q * gain[i + 1][j - 1]) +
	    q * (r * gain[i][j] + s * gain[i + 1][j]));
}

/*
 * zenith(dist) - Determine sun zenith angle at reflection zone.
 */
static double
zenith(
	double dist		/* path angle */
	)
{
	double latr, lonr;	/* reflection zone coordinates (rad) */
	double thetar;		/* reflection zone angle (rad) */
	double psi;		/* sun zenith angle (rad) */

	/*
	 * Calculate reflection zone coordinates.
	 */
	latr = acos(cos(dist) * sin(lat1) + sin(dist) *
	    cos(lat1) * cos(b1));
	if (latr < 0.)
		latr += PI;
	latr = PIH - latr;
	lonr = acos((cos(dist) - sin(latr) * sin(lat1)) /
	    (cos(latr) * cos(lat1)));
	if (lonr < 0.)
		lonr += PI;
	if (theta < 0.)
		lonr = - lonr;
	lonr = lon1 - lonr;
	if (lonr >= PI)
		lonr -= PID;
	if (lonr <= -PI)
		lonr += PID;
	thetar = lons - lonr;
	if (thetar > PI)
		thetar = PID - thetar;
	if (thetar < - PI)
		thetar -= PID;

	/*
	 * Calculate sun zenith angle.
	 */
	psi = acos(sin(latr) * sin(lats) + cos(latr) * cos(lats) *
	    cos(thetar));
	if (psi < 0.)
		psi += PI;
	return(psi);
}

/*
 * dsx(h) - Decode and display path descriptor.
 */
static void
dsx(
	int h			/* hop index */
	)
{
	char c1, c2;		/* path flags */

	/*
	 * Determine day/night flags for the path.
	 */
	if (h == 0) {
		if (flag != 4)
			printf("       ");
		return;
	}
	if (daynight[h] & P_J && daynight[h] & P_N)
		c1 = 'x';
	else if (daynight[h] & P_J)
		c1 = 'j';
	else if (daynight[h] & P_N)
		c1 = 'n';
	else
		c1 = ' ';
	if (daynight[h] & P_S)
		c2 = 's';
	else if (daynight[h] & P_M)
		c2 = 'm';
	else
		c2 = ' ';
	switch (flag) {

	case 1:
	case 4:
		printf("%4.0f%c%1i%c", dB2[h] - RSENS, c1, h, c2);
		break;

	case 2:
		printf("%4.0f%c%1i%c", beta[h] * R2D, c1, h, c2);
		break;

	case 3:
		printf("%5.1f%c%1i", path[h] / VOFL * 1e6, c1, h);
		break;
	}
}