File: SolverTypes.h

package info (click to toggle)
minisat2 1:2.2.1-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 328 kB
  • sloc: cpp: 2,952; makefile: 150
file content (427 lines) | stat: -rw-r--r-- 15,606 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/***********************************************************************************[SolverTypes.h]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/


#ifndef Minisat_SolverTypes_h
#define Minisat_SolverTypes_h

#include <assert.h>

#include "minisat/mtl/IntTypes.h"
#include "minisat/mtl/Alg.h"
#include "minisat/mtl/Vec.h"
#include "minisat/mtl/Map.h"
#include "minisat/mtl/Alloc.h"

namespace Minisat {

//=================================================================================================
// Variables, literals, lifted booleans, clauses:


// NOTE! Variables are just integers. No abstraction here. They should be chosen from 0..N,
// so that they can be used as array indices.

typedef int Var;
#define var_Undef (-1)


struct Lit {
    int     x;

    // Use this as a constructor:
    friend Lit mkLit(Var var, bool sign = false);

    bool operator == (Lit p) const { return x == p.x; }
    bool operator != (Lit p) const { return x != p.x; }
    bool operator <  (Lit p) const { return x < p.x;  } // '<' makes p, ~p adjacent in the ordering.
};


inline  Lit  mkLit     (Var var, bool sign) { Lit p; p.x = var + var + (int)sign; return p; }
inline  Lit  operator ~(Lit p)              { Lit q; q.x = p.x ^ 1; return q; }
inline  Lit  operator ^(Lit p, bool b)      { Lit q; q.x = p.x ^ (unsigned int)b; return q; }
inline  bool sign      (Lit p)              { return p.x & 1; }
inline  int  var       (Lit p)              { return p.x >> 1; }

// Mapping Literals to and from compact integers suitable for array indexing:
inline  int  toInt     (Var v)              { return v; } 
inline  int  toInt     (Lit p)              { return p.x; } 
inline  Lit  toLit     (int i)              { Lit p; p.x = i; return p; } 

//const Lit lit_Undef = mkLit(var_Undef, false);  // }- Useful special constants.
//const Lit lit_Error = mkLit(var_Undef, true );  // }

const Lit lit_Undef = { -2 };  // }- Useful special constants.
const Lit lit_Error = { -1 };  // }


//=================================================================================================
// Lifted booleans:
//
// NOTE: this implementation is optimized for the case when comparisons between values are mostly
//       between one variable and one constant. Some care had to be taken to make sure that gcc 
//       does enough constant propagation to produce sensible code, and this appears to be somewhat
//       fragile unfortunately.

#define l_True  (lbool((uint8_t)0)) // gcc does not do constant propagation if these are real constants.
#define l_False (lbool((uint8_t)1))
#define l_Undef (lbool((uint8_t)2))

class lbool {
    uint8_t value;

public:
    explicit lbool(uint8_t v) : value(v) { }

    lbool()       : value(0) { }
    explicit lbool(bool x) : value(!x) { }

    bool  operator == (lbool b) const { return ((b.value&2) & (value&2)) | (!(b.value&2)&(value == b.value)); }
    bool  operator != (lbool b) const { return !(*this == b); }
    lbool operator ^  (bool  b) const { return lbool((uint8_t)(value^(uint8_t)b)); }

    lbool operator && (lbool b) const { 
        uint8_t sel = (this->value << 1) | (b.value << 3);
        uint8_t v   = (0xF7F755F4 >> sel) & 3;
        return lbool(v); }

    lbool operator || (lbool b) const {
        uint8_t sel = (this->value << 1) | (b.value << 3);
        uint8_t v   = (0xFCFCF400 >> sel) & 3;
        return lbool(v); }

    friend int   toInt  (lbool l);
    friend lbool toLbool(int   v);
};
inline int   toInt  (lbool l) { return l.value; }
inline lbool toLbool(int   v) { return lbool((uint8_t)v);  }

//=================================================================================================
// Clause -- a simple class for representing a clause:

class Clause;
typedef RegionAllocator<uint32_t>::Ref CRef;

class Clause {
    struct {
        unsigned mark      : 2;
        unsigned learnt    : 1;
        unsigned has_extra : 1;
        unsigned reloced   : 1;
        unsigned size      : 27; }                        header;
    union { Lit lit; float act; uint32_t abs; CRef rel; } data[0];

    friend class ClauseAllocator;

    // NOTE: This constructor cannot be used directly (doesn't allocate enough memory).
    Clause(const vec<Lit>& ps, bool use_extra, bool learnt) {
        header.mark      = 0;
        header.learnt    = learnt;
        header.has_extra = use_extra;
        header.reloced   = 0;
        header.size      = ps.size();

        for (int i = 0; i < ps.size(); i++) 
            data[i].lit = ps[i];

        if (header.has_extra)
            if (header.learnt)
                data[header.size].act = 0;
            else
                calcAbstraction();
    }

    // NOTE: This constructor cannot be used directly (doesn't allocate enough memory).
    Clause(const Clause& from, bool use_extra){
        header           = from.header;
        header.has_extra = use_extra;   // NOTE: the copied clause may lose the extra field.

        for (int i = 0; i < from.size(); i++)
            data[i].lit = from[i];

        if (header.has_extra)
            if (header.learnt)
                data[header.size].act = from.data[header.size].act;
            else 
                data[header.size].abs = from.data[header.size].abs;
    }

public:
    void calcAbstraction() {
        assert(header.has_extra);
        uint32_t abstraction = 0;
        for (int i = 0; i < size(); i++)
            abstraction |= 1 << (var(data[i].lit) & 31);
        data[header.size].abs = abstraction;  }


    int          size        ()      const   { return header.size; }
    void         shrink      (int i)         { assert(i <= size()); if (header.has_extra) data[header.size-i] = data[header.size]; header.size -= i; }
    void         pop         ()              { shrink(1); }
    bool         learnt      ()      const   { return header.learnt; }
    bool         has_extra   ()      const   { return header.has_extra; }
    uint32_t     mark        ()      const   { return header.mark; }
    void         mark        (uint32_t m)    { header.mark = m; }
    const Lit&   last        ()      const   { return data[header.size-1].lit; }

    bool         reloced     ()      const   { return header.reloced; }
    CRef         relocation  ()      const   { return data[0].rel; }
    void         relocate    (CRef c)        { header.reloced = 1; data[0].rel = c; }

    // NOTE: somewhat unsafe to change the clause in-place! Must manually call 'calcAbstraction' afterwards for
    //       subsumption operations to behave correctly.
    Lit&         operator [] (int i)         { return data[i].lit; }
    Lit          operator [] (int i) const   { return data[i].lit; }
    operator const Lit* (void) const         { return (Lit*)data; }

    float&       activity    ()              { assert(header.has_extra); return data[header.size].act; }
    uint32_t     abstraction () const        { assert(header.has_extra); return data[header.size].abs; }

    Lit          subsumes    (const Clause& other) const;
    void         strengthen  (Lit p);
};


//=================================================================================================
// ClauseAllocator -- a simple class for allocating memory for clauses:

const CRef CRef_Undef = RegionAllocator<uint32_t>::Ref_Undef;
class ClauseAllocator
{
    RegionAllocator<uint32_t> ra;

    static uint32_t clauseWord32Size(int size, bool has_extra){
        return (sizeof(Clause) + (sizeof(Lit) * (size + (int)has_extra))) / sizeof(uint32_t); }

 public:
    enum { Unit_Size = RegionAllocator<uint32_t>::Unit_Size };

    bool extra_clause_field;

    ClauseAllocator(uint32_t start_cap) : ra(start_cap), extra_clause_field(false){}
    ClauseAllocator() : extra_clause_field(false){}

    void moveTo(ClauseAllocator& to){
        to.extra_clause_field = extra_clause_field;
        ra.moveTo(to.ra); }

    CRef alloc(const vec<Lit>& ps, bool learnt = false)
    {
        assert(sizeof(Lit)      == sizeof(uint32_t));
        assert(sizeof(float)    == sizeof(uint32_t));
        bool use_extra = learnt | extra_clause_field;
        CRef cid       = ra.alloc(clauseWord32Size(ps.size(), use_extra));
        new (lea(cid)) Clause(ps, use_extra, learnt);

        return cid;
    }

    CRef alloc(const Clause& from)
    {
        bool use_extra = from.learnt() | extra_clause_field;
        CRef cid       = ra.alloc(clauseWord32Size(from.size(), use_extra));
        new (lea(cid)) Clause(from, use_extra);
        return cid; }

    uint32_t size      () const      { return ra.size(); }
    uint32_t wasted    () const      { return ra.wasted(); }

    // Deref, Load Effective Address (LEA), Inverse of LEA (AEL):
    Clause&       operator[](CRef r)         { return (Clause&)ra[r]; }
    const Clause& operator[](CRef r) const   { return (Clause&)ra[r]; }
    Clause*       lea       (CRef r)         { return (Clause*)ra.lea(r); }
    const Clause* lea       (CRef r) const   { return (Clause*)ra.lea(r);; }
    CRef          ael       (const Clause* t){ return ra.ael((uint32_t*)t); }

    void free(CRef cid)
    {
        Clause& c = operator[](cid);
        ra.free(clauseWord32Size(c.size(), c.has_extra()));
    }

    void reloc(CRef& cr, ClauseAllocator& to)
    {
        Clause& c = operator[](cr);
        
        if (c.reloced()) { cr = c.relocation(); return; }
        
        cr = to.alloc(c);
        c.relocate(cr);
    }
};


//=================================================================================================
// OccLists -- a class for maintaining occurence lists with lazy deletion:

template<class Idx, class Vec, class Deleted>
class OccLists
{
    vec<Vec>  occs;
    vec<char> dirty;
    vec<Idx>  dirties;
    Deleted   deleted;

 public:
    OccLists(const Deleted& d) : deleted(d) {}
    
    void  init      (const Idx& idx){ occs.growTo(toInt(idx)+1); dirty.growTo(toInt(idx)+1, 0); }
    // Vec&  operator[](const Idx& idx){ return occs[toInt(idx)]; }
    Vec&  operator[](const Idx& idx){ return occs[toInt(idx)]; }
    Vec&  lookup    (const Idx& idx){ if (dirty[toInt(idx)]) clean(idx); return occs[toInt(idx)]; }

    void  cleanAll  ();
    void  clean     (const Idx& idx);
    void  smudge    (const Idx& idx){
        if (dirty[toInt(idx)] == 0){
            dirty[toInt(idx)] = 1;
            dirties.push(idx);
        }
    }

    void  clear(bool free = true){
        occs   .clear(free);
        dirty  .clear(free);
        dirties.clear(free);
    }
};


template<class Idx, class Vec, class Deleted>
void OccLists<Idx,Vec,Deleted>::cleanAll()
{
    for (int i = 0; i < dirties.size(); i++)
        // Dirties may contain duplicates so check here if a variable is already cleaned:
        if (dirty[toInt(dirties[i])])
            clean(dirties[i]);
    dirties.clear();
}


template<class Idx, class Vec, class Deleted>
void OccLists<Idx,Vec,Deleted>::clean(const Idx& idx)
{
    Vec& vec = occs[toInt(idx)];
    int  i, j;
    for (i = j = 0; i < vec.size(); i++)
        if (!deleted(vec[i]))
            vec[j++] = vec[i];
    vec.shrink(i - j);
    dirty[toInt(idx)] = 0;
}


//=================================================================================================
// CMap -- a class for mapping clauses to values:


template<class T>
class CMap
{
    struct CRefHash {
        uint32_t operator()(CRef cr) const { return (uint32_t)cr; } };

    typedef Map<CRef, T, CRefHash> HashTable;
    HashTable map;
        
 public:
    // Size-operations:
    void     clear       ()                           { map.clear(); }
    int      size        ()                const      { return map.elems(); }

    
    // Insert/Remove/Test mapping:
    void     insert      (CRef cr, const T& t){ map.insert(cr, t); }
    void     growTo      (CRef cr, const T& t){ map.insert(cr, t); } // NOTE: for compatibility
    void     remove      (CRef cr)            { map.remove(cr); }
    bool     has         (CRef cr, T& t)      { return map.peek(cr, t); }

    // Vector interface (the clause 'c' must already exist):
    const T& operator [] (CRef cr) const      { return map[cr]; }
    T&       operator [] (CRef cr)            { return map[cr]; }

    // Iteration (not transparent at all at the moment):
    int  bucket_count() const { return map.bucket_count(); }
    const vec<typename HashTable::Pair>& bucket(int i) const { return map.bucket(i); }

    // Move contents to other map:
    void moveTo(CMap& other){ map.moveTo(other.map); }

    // TMP debug:
    void debug(){
        printf(" --- size = %d, bucket_count = %d\n", size(), map.bucket_count()); }
};


/*_________________________________________________________________________________________________
|
|  subsumes : (other : const Clause&)  ->  Lit
|  
|  Description:
|       Checks if clause subsumes 'other', and at the same time, if it can be used to simplify 'other'
|       by subsumption resolution.
|  
|    Result:
|       lit_Error  - No subsumption or simplification
|       lit_Undef  - Clause subsumes 'other'
|       p          - The literal p can be deleted from 'other'
|________________________________________________________________________________________________@*/
inline Lit Clause::subsumes(const Clause& other) const
{
    //if (other.size() < size() || (extra.abst & ~other.extra.abst) != 0)
    //if (other.size() < size() || (!learnt() && !other.learnt() && (extra.abst & ~other.extra.abst) != 0))
    assert(!header.learnt);   assert(!other.header.learnt);
    assert(header.has_extra); assert(other.header.has_extra);
    if (other.header.size < header.size || (data[header.size].abs & ~other.data[other.header.size].abs) != 0)
        return lit_Error;

    Lit        ret = lit_Undef;
    const Lit* c   = (const Lit*)(*this);
    const Lit* d   = (const Lit*)other;

    for (unsigned i = 0; i < header.size; i++) {
        // search for c[i] or ~c[i]
        for (unsigned j = 0; j < other.header.size; j++)
            if (c[i] == d[j])
                goto ok;
            else if (ret == lit_Undef && c[i] == ~d[j]){
                ret = c[i];
                goto ok;
            }

        // did not find it
        return lit_Error;
    ok:;
    }

    return ret;
}

inline void Clause::strengthen(Lit p)
{
    remove(*this, p);
    calcAbstraction();
}

//=================================================================================================
}

#endif