File: MIPdomains.cpp

package info (click to toggle)
minizinc 2.9.3%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 17,620 kB
  • sloc: cpp: 74,682; ansic: 8,541; python: 3,322; sh: 79; makefile: 13
file content (2299 lines) | stat: -rw-r--r-- 93,589 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */

/*
 *  Main authors:
 *     Gleb Belov <gleb.belov@monash.edu>
 */

/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#endif

#include <minizinc/MIPdomains.hh>
#include <minizinc/astexception.hh>
#include <minizinc/astiterator.hh>
#include <minizinc/copy.hh>
#include <minizinc/eval_par.hh>
#include <minizinc/flatten.hh>
#include <minizinc/flatten_internal.hh>
#include <minizinc/hash.hh>

// temporary
#include <minizinc/prettyprinter.hh>

#include <map>
#include <unordered_map>
#include <unordered_set>

/// TODOs
/// TODO  Not going to work for float vars because of round-offs in the domain interval sorting...
/// set_in etc. are ! propagated between views
/// CLEANUP after work: ~destructor
/// Also check initexpr of all vars?  DONE
/// In case of only_range_domains we'd need to register inequalities
///   - so better turn that off TODO
/// CSE for lineq coefs     TODO

///  TODO use integer division instead of INT_EPS
#define INT_EPS 1e-5  // the absolute epsilon for integrality of integer vars.

#define MZN_MIPDOMAINS_PRINTMORESTATS
#define MZN_DBG_CHECK_ITER_CUTOUT

//   #define MZN_DBGOUT_MIPDOMAINS
#ifdef MZN_DBGOUT_MIPDOMAINS
#define DBGOUT_MIPD(s) std::cerr << s << std::endl
#define DBGOUT_MIPD_FLUSH(s) std::cerr << s << std::flush
#define DBGOUT_MIPD_SELF(op) op
#else
#define DBGOUT_MIPD(s) \
  do {                 \
  } while (false)
#define DBGOUT_MIPD_FLUSH(s) \
  do {                       \
  } while (false)
#define DBGOUT_MIPD_SELF(op) \
  do {                       \
  } while (false)
#endif

namespace MiniZinc {

enum EnumStatIdx_MIPD {
  N_POSTs_all,  // N all POSTs in the model
  N_POSTs_intCmpReif,
  N_POSTs_floatCmpReif,  // in detail
  N_POSTs_intNE,
  N_POSTs_floatNE,
  N_POSTs_setIn,
  N_POSTs_domain,
  N_POSTs_setInReif,
  N_POSTs_eq_encode,
  N_POSTs_intAux,
  N_POSTs_floatAux,
  // Kind of equality connections between involved variables
  N_POSTs_eq2intlineq,
  N_POSTs_eq2floatlineq,
  N_POSTs_int2float,
  N_POSTs_internalvarredef,
  N_POSTs_initexpr1id,
  N_POSTs_initexpr1linexp,
  N_POSTs_initexprN,
  N_POSTs_eqNlineq,
  N_POSTs_eqNmapsize,
  // other
  N_POSTs_varsDirect,
  N_POSTs_varsInvolved,
  N_POSTs_NSubintvMin,
  N_POSTs_NSubintvSum,
  N_POSTs_NSubintvMax,  // as N subintervals
  N_POSTs_SubSizeMin,
  N_POSTs_SubSizeSum,
  N_POSTs_SubSizeMax,  // subintv. size
  N_POSTs_linCoefMin,
  N_POSTs_linCoefMax,
  N_POSTs_cliquesWithEqEncode,
  N_POSTs_clEEEnforced,
  N_POSTs_clEEFound,
  N_POSTs_size
};
extern std::vector<double> MIPD_stats;

enum EnumReifType { RIT_None, RIT_Static, RIT_Reif, RIT_Halfreif };
enum EnumConstrType { CT_None, CT_Comparison, CT_SetIn, CT_Encode };
enum EnumCmpType {
  CMPT_None = 0,
  CMPT_LE = -4,
  CMPT_GE = 4,
  CMPT_EQ = 1,
  CMPT_NE = 3,
  CMPT_LT = -5,
  CMPT_GT = 5,
  CMPT_LE_0 = -6,
  CMPT_GE_0 = 6,
  CMPT_EQ_0 = 2,
  CMPT_LT_0 = -7,
  CMPT_GT_0 = 7
};
enum EnumVarType { VT_None, VT_Int, VT_Float };

/// struct DomainCallType describes & characterizes a possible domain constr call
struct DCT {
  const char* sFuncName = nullptr;
  const std::vector<Type>& aParams;
  //     unsigned iItem;          // call's item number in the flat
  EnumReifType nReifType = RIT_None;     // 0/static/halfreif/reif
  EnumConstrType nConstrType = CT_None;  //
  EnumCmpType nCmpType = CMPT_None;
  EnumVarType nVarType = VT_None;
  FunctionI*& pfi;
  //     double dEps = -1.0;
  DCT(const char* fn, const std::vector<Type>& prm, EnumReifType er, EnumConstrType ec,
      EnumCmpType ecmp, EnumVarType ev, FunctionI*& pfi_)
      : sFuncName(fn),
        aParams(prm),
        nReifType(er),
        nConstrType(ec),
        nCmpType(ecmp),
        nVarType(ev),
        pfi(pfi_) {}
};

template <class N>
struct Interval {
  N left = infMinus(), right = infPlus();
  mutable VarDecl* varFlag = nullptr;
  /*constexpr*/ static N infMinus() {
    return (std::numeric_limits<N>::has_infinity) ? -std::numeric_limits<N>::infinity()
                                                  : std::numeric_limits<N>::lowest();
  }
  /*constexpr*/ static N infPlus() {
    return (std::numeric_limits<N>::has_infinity) ? std::numeric_limits<N>::infinity()
                                                  : std::numeric_limits<N>::max();
  }
  Interval(N a = infMinus(), N b = infPlus()) : left(a), right(b) {}
  bool operator<(const Interval& intv) const { return left < intv.left; }
};
typedef Interval<double> IntvReal;

template <class N>
std::ostream& operator<<(std::ostream& os, const Interval<N>& ii) {
  os << "[ " << ii.left << ", " << ii.right << " ] ";
  return os;
}

template <class N>
class SetOfIntervals : public std::multiset<Interval<N> > {
public:
  using Intv = Interval<N>;
  typedef std::multiset<Interval<N> > Base;
  typedef typename Base::iterator iterator;
  SetOfIntervals() : Base() {}
  SetOfIntervals(std::initializer_list<Interval<N> > il) : Base(il) {}
  template <class Iter>
  SetOfIntervals(Iter i1, Iter i2) : Base(i1, i2) {}
  /// Number of integer values in all the intervals
  /// Assumes the interval bounds are ints
  int cardInt() const;
  /// Max interval length
  N maxInterval() const;
  /// Special insert function: check if interval is ok
  iterator insert(const Interval<N>& iv) {
    if (iv.left > iv.right) {
      DBGOUT_MIPD("Interval " << iv.left << ".." << iv.right
                              << " is empty, difference: " << (iv.right - iv.left) << ". Skipping");
      return Base::end();
    }
    return Base::insert(iv);
  }
  template <class N1>
  void intersect(const SetOfIntervals<N1>& s2);
  /// Assumes open intervals to cut out from closed
  template <class N1>
  void cutDeltas(const SetOfIntervals<N1>& s2, N1 delta);
  template <class N1>
  void cutDeltas(N1 left, N1 right, N1 delta) {
    SetOfIntervals<N1> soi;
    soi.insert(Interval<N1>(left, right));
    cutDeltas(soi, delta);
  }
  /// Cut out an open interval from a set of closed ones (except for infinities)
  void cutOut(const Interval<N>& intv);
  typedef std::pair<iterator, iterator> SplitResult;
  SplitResult split(iterator& it, N pos);
  bool checkFiniteBounds();
  /// Check there are no useless interval splittings
  bool checkDisjunctStrict();
  Interval<N> getBounds() const;
  /// Split domain into the integer values
  /// May assume integer bounds
  void split2Bits();
};  // class SetOfIntervals
typedef SetOfIntervals<double> SetOfIntvReal;

template <class N>
std::ostream& operator<<(std::ostream& os, const SetOfIntervals<N>& soi) {
  os << "[[ ";
  for (auto& ii : soi) {
    os << "[ " << ii.left << ", " << ii.right;
    if (ii.varFlag) {
      os << " @" << ii.varFlag;
    }
    os << " ] ";
  }
  os << "]]";
  return os;
}

template <class Coefs, class Vars>
class LinEqHelper {
public:
  Coefs coefs;
  Vars vd;
  double rhs;
};

template <class Coefs, class Vars>
static std::ostream& operator<<(std::ostream& os, LinEqHelper<Coefs, Vars>& led) {
  os << "( [";
  for (auto c : led.coefs) {
    os << c << ' ';
  }
  os << " ] * [ ";
  for (auto v : led.vd) {
    os << v->id()->str() << ' ';
  }
  os << " ] ) == " << led.rhs;
  return os;
}

typedef LinEqHelper<std::array<double, 2>, std::array<VarDecl*, 2> > LinEq2Vars;
typedef LinEqHelper<std::vector<double>, std::vector<VarDecl*> > LinEq;
//     struct LinEq2Vars {
//       std::array<double, 2> coefs;
//       std::array<PVarDecl, 2> vd = { { 0, 0 } };
//       double rhs;
//     };
//
//     struct LinEq {
//       std::vector<double> coefs;
//       std::vector<VarDecl*> vd;
//       double rhs;
//     };

std::vector<double> MIPD_stats(N_POSTs_size);

template <class T>
static std::vector<T> make_vec(T t1, T t2) {
  T c_array[] = {t1, t2};
  std::vector<T> result(c_array, c_array + sizeof(c_array) / sizeof(c_array[0]));
  return result;
}
template <class T>
static std::vector<T> make_vec(T t1, T t2, T t3) {
  T c_array[] = {t1, t2, t3};
  std::vector<T> result(c_array, c_array + sizeof(c_array) / sizeof(c_array[0]));
  return result;
}
template <class T>
static std::vector<T> make_vec(T t1, T t2, T t3, T t4) {
  T c_array[] = {t1, t2, t3, t4};
  std::vector<T> result(c_array, c_array + sizeof(c_array) / sizeof(c_array[0]));
  return result;
}

class MIPD {
public:
  MIPD(Env* env, bool fV, int nmi, double dmd)
      : nMaxIntv2Bits(nmi), dMaxNValueDensity(dmd), _env(env) {
    getEnv();
    fVerbose = fV;
  }
  static bool fVerbose;
  const int nMaxIntv2Bits = 0;           // Maximal interval length to enforce equality encoding
  const double dMaxNValueDensity = 3.0;  // Maximal ratio cardInt() / size() of a domain
                                         // to enforce ee
  bool doMIPdomains() {
    MIPD_stats[N_POSTs_NSubintvMin] = 1e100;
    MIPD_stats[N_POSTs_SubSizeMin] = 1e100;

    if (!registerLinearConstraintDecls()) {
      return true;
    }
    if (!registerPOSTConstraintDecls()) {  // not declared => no conversions
      return true;
    }
    registerPOSTVariables();
    if (_vVarDescr.empty()) {
      return true;
    }
    constructVarViewCliques();
    if (!decomposeDomains()) {
      return false;
    }
    if (fVerbose) {
      printStats(std::cerr);
    }
    return true;
  }

private:
  Env* _env = nullptr;
  Env* getEnv() {
    MZN_MIPD_assert_hard(_env);
    return _env;
  }

  typedef VarDecl* PVarDecl;

  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* int_lin_eq;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* int_lin_le;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* float_lin_eq;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* float_lin_le;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* int2float;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* lin_exp_int;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* lin_exp_float;

  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> int_lin_eq_t = make_vec(Type::parint(1), Type::varint(1), Type::parint());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> float_lin_eq_t =
      make_vec(Type::parfloat(1), Type::varfloat(1), Type::parfloat());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VIVF = make_vec(Type::varint(), Type::varfloat());

  //     double float_lt_EPS_coef_ = 1e-5;

  bool registerLinearConstraintDecls() {
    EnvI& env = getEnv()->envi();
    GCLock lock;

    int_lin_eq = env.model->matchFn(env, env.constants.ids.int_.lin_eq, int_lin_eq_t, false);
    DBGOUT_MIPD("  int_lin_eq = " << int_lin_eq);
    //       MZN_MIPD_assert_hard(fi);
    //       int_lin_eq = (fi && fi->e()) ? fi : NULL;
    int_lin_le = env.model->matchFn(env, env.constants.ids.int_.lin_le, int_lin_eq_t, false);
    float_lin_eq = env.model->matchFn(env, env.constants.ids.float_.lin_eq, float_lin_eq_t, false);
    float_lin_le = env.model->matchFn(env, env.constants.ids.float_.lin_le, float_lin_eq_t, false);
    int2float = env.model->matchFn(env, env.constants.ids.int2float, t_VIVF, false);

    lin_exp_int = env.model->matchFn(env, env.constants.ids.lin_exp, int_lin_eq_t, false);
    lin_exp_float = env.model->matchFn(env, env.constants.ids.lin_exp, float_lin_eq_t, false);

    return (int_lin_eq != nullptr) && (int_lin_le != nullptr) && (float_lin_eq != nullptr) &&
           (float_lin_le != nullptr);
    // say something...

    //       std::cerr << "  lin_exp_int=" << lin_exp_int << std::endl;
    //       std::cerr << "  lin_exp_float=" << lin_exp_float << std::endl;
    // For this to work, need to define a function, see mzn_only_range_domains()
    //       {
    //         GCLock lock;
    //         Call* call_EPS_for_LT =
    //           Call::a(Location(),"mzn_float_lt_EPS_coef__", std::vector<Expression*>());
    //         call_EPS_for_LT->type(Type::parfloat());
    //         call_EPS_for_LT->decl(env.model->matchFn(getEnv()->envi(), call_EPS_for_LT));
    //         float_lt_EPS_coef_ = eval_float(getEnv()->envi(), call_EPS_for_LT);
    //       }
  }
  //   bool matchAndMarkFunction();
  //   std::set<FunctionI*> funcs;

  /// Possible function param sets
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VII = make_vec(Type::varint(), Type::parint());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VIVI = make_vec(Type::varint(), Type::varint());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VIIVI = make_vec(Type::varint(), Type::parint(), Type::varint());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VFVI = make_vec(Type::varfloat(), Type::varint());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VFVF = make_vec(Type::varfloat(), Type::varfloat());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VFFVI = make_vec(Type::varfloat(), Type::parfloat(), Type::varint());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VFFVIF =
      make_vec(Type::varfloat(), Type::parfloat(), Type::varint(), Type::parfloat());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VFVIF = make_vec(Type::varfloat(), Type::varint(), Type::parfloat());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VFVIVF = make_vec(Type::varfloat(), Type::varint(), Type::varfloat());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VFVIVFF =
      make_vec(Type::varfloat(), Type::varint(), Type::varfloat(), Type::parfloat());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VFVFF = make_vec(Type::varfloat(), Type::varfloat(), Type::parfloat());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VFFF = make_vec(Type::varfloat(), Type::parfloat(), Type::parfloat());
  //     std::vector<Type> t_VFVFVIF({ Type::varfloat(), Type::varfloat(), Type::varint(),
  //     Type::parfloat() });

  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VIAVI = make_vec(Type::varint(), Type::varint(1));
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VISI = make_vec(Type::varint(), Type::parsetint());
  // NOLINTNEXTLINE(readability-identifier-naming)
  std::vector<Type> t_VISIVI = make_vec(Type::varint(), Type::parsetint(), Type::varint());

  //     std::vector<Type> t_intarray(1);
  //     t_intarray[0] = Type::parint(-1);

  typedef std::unordered_map<FunctionI*, DCT*> M_POSTCallTypes;
  M_POSTCallTypes _mCallTypes;  // actually declared in the input
  std::vector<DCT> _aCT;        // all possible

  // Fails:
  //   DomainCallType a = { NULL, t_VII, RIT_Halfreif, CT_Comparison, CMPT_EQ, VT_Float };

  /// struct VarDescr stores some info about variables involved in domain constr
  struct VarDescr {
    typedef unsigned char boolShort;
    VarDescr(VarDecl* vd_, boolShort fi, double l_ = 0.0, double u_ = 0.0)
        : lb(l_), ub(u_), vd(vd_), fInt(fi) {}
    double lb, ub;
    VarDecl* vd = nullptr;
    int nClique = -1;  // clique number
                       //       std::vector<Call*> aCalls;
    std::vector<ConstraintI*> aCalls;
    boolShort fInt = 0;
    ConstraintI* pEqEncoding = nullptr;
    boolShort fDomainConstrProcessed = 0;
    //       boolShort fPropagatedViews=0;
    //       boolShort fPropagatedLargerEqns=0;
  };

  std::vector<VarDescr> _vVarDescr;

  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* int_le_reif_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* int_ge_reif_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* int_eq_reif_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* int_ne_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* float_le_reif_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* float_ge_reif_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* aux_float_lt_zero_iff_1_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* float_eq_reif_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* float_ne_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* aux_float_eq_zero_if_1_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* aux_int_le_zero_if_1_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* aux_float_le_zero_if_1_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* aux_float_lt_zero_if_1_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* equality_encoding_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* set_in_POST = nullptr;
  // NOLINTNEXTLINE(readability-identifier-naming)
  FunctionI* set_in_reif_POST = nullptr;

  bool registerPOSTConstraintDecls() {
    EnvI& env = getEnv()->envi();
    GCLock lock;

    _aCT.clear();
    _aCT.emplace_back("int_le_reif__POST", t_VIIVI, RIT_Reif, CT_Comparison, CMPT_LE, VT_Int,
                      int_le_reif_POST);
    _aCT.emplace_back("int_ge_reif__POST", t_VIIVI, RIT_Reif, CT_Comparison, CMPT_GE, VT_Int,
                      int_ge_reif_POST);
    _aCT.emplace_back("int_eq_reif__POST", t_VIIVI, RIT_Reif, CT_Comparison, CMPT_EQ, VT_Int,
                      int_eq_reif_POST);
    _aCT.emplace_back("int_ne__POST", t_VII, RIT_Static, CT_Comparison, CMPT_NE, VT_Int,
                      int_ne_POST);

    _aCT.emplace_back("float_le_reif__POST", t_VFFVIF, RIT_Reif, CT_Comparison, CMPT_LE, VT_Float,
                      float_le_reif_POST);
    _aCT.emplace_back("float_ge_reif__POST", t_VFFVIF, RIT_Reif, CT_Comparison, CMPT_GE, VT_Float,
                      float_ge_reif_POST);
    _aCT.emplace_back("aux_float_lt_zero_iff_1__POST", t_VFVIF, RIT_Reif, CT_Comparison, CMPT_LT,
                      VT_Float, aux_float_lt_zero_iff_1_POST);
    _aCT.emplace_back("float_eq_reif__POST", t_VFFVIF, RIT_Reif, CT_Comparison, CMPT_EQ, VT_Float,
                      float_eq_reif_POST);
    _aCT.emplace_back("float_ne__POST", t_VFFF, RIT_Static, CT_Comparison, CMPT_NE, VT_Float,
                      float_ne_POST);

    _aCT.emplace_back("aux_float_eq_zero_if_1__POST", t_VFVIVF, RIT_Halfreif, CT_Comparison,
                      CMPT_EQ_0, VT_Float, aux_float_eq_zero_if_1_POST);
    _aCT.emplace_back("aux_int_le_zero_if_1__POST", t_VIVI, RIT_Halfreif, CT_Comparison, CMPT_LE_0,
                      VT_Int, aux_int_le_zero_if_1_POST);
    _aCT.emplace_back("aux_float_le_zero_if_1__POST", t_VFVIVF, RIT_Halfreif, CT_Comparison,
                      CMPT_LE_0, VT_Float, aux_float_le_zero_if_1_POST);
    _aCT.emplace_back("aux_float_lt_zero_if_1__POST", t_VFVIVFF, RIT_Halfreif, CT_Comparison,
                      CMPT_LT_0, VT_Float, aux_float_lt_zero_if_1_POST);

    _aCT.emplace_back("equality_encoding__POST", t_VIAVI, RIT_Static, CT_Encode, CMPT_None, VT_Int,
                      equality_encoding_POST);
    _aCT.emplace_back("set_in__POST", t_VISI, RIT_Static, CT_SetIn, CMPT_None, VT_Int, set_in_POST);
    _aCT.emplace_back("set_in_reif__POST", t_VISIVI, RIT_Reif, CT_SetIn, CMPT_None, VT_Int,
                      set_in_reif_POST);
    /// Registering all declared & compatible _POST constraints
    /// (First, cleanup FunctionIs' payload:  -- ! doing now)
    for (int i = 0; i < _aCT.size(); ++i) {
      FunctionI* fi = env.model->matchFn(env, ASTString(_aCT[i].sFuncName), _aCT[i].aParams, false);
      if (fi != nullptr) {
        _mCallTypes[fi] = _aCT.data() + i;
        _aCT[i].pfi = fi;
        //         fi->pPayload = (void*)this;
        //         std::cerr << "  FOund declaration: " << _aCT[i].sFuncName << std::endl;
      } else {
        _aCT[i].pfi = nullptr;
        DBGOUT_MIPD("  MIssing declaration: " << _aCT[i].sFuncName);
        return false;
      }
    }
    return true;
  }

  /// Registering all _POST calls' domain-constrained variables
  void registerPOSTVariables() {
    EnvI& env = getEnv()->envi();
    GCLock lock;
    Model& mFlat = *getEnv()->flat();
    // First, cleanup VarDecls' payload which stores index in _vVarDescr
    for (VarDeclIterator ivd = mFlat.vardecls().begin(); ivd != mFlat.vardecls().end(); ++ivd) {
      ivd->e()->payload(-1);
    }
    // Now add variables with non-contiguous domain
    for (VarDeclIterator ivd = mFlat.vardecls().begin(); ivd != mFlat.vardecls().end(); ++ivd) {
      VarDecl* vd0 = ivd->e();
      bool fNonCtg = false;
      if (vd0->type().isint()) {  // currently only for int vars   TODO
        if (Expression* eDom = vd0->ti()->domain()) {
          IntSetVal* dom = eval_intset(env, eDom);
          fNonCtg = (dom->size() > 1);
        }
      }
      if (fNonCtg) {
        DBGOUT_MIPD(" Variable " << vd0->id()->str() << ": non-contiguous domain "
                                 << (*(vd0->ti()->domain())));
        if (vd0->payload() == -1) {  // ! yet visited
          vd0->payload(static_cast<int>(_vVarDescr.size()));
          _vVarDescr.emplace_back(vd0, vd0->type().isint());  // can use /prmTypes/ as well
          if (vd0->e() != nullptr) {
            checkInitExpr(vd0);
          }
        } else {
          DBGOUT_MIPD_FLUSH(" (already touched)");
        }
        ++MIPD_stats[N_POSTs_domain];
        ++MIPD_stats[N_POSTs_all];
      }
    }
    // Iterate thru original _POST constraints to mark constrained vars:
    for (ConstraintIterator ic = mFlat.constraints().begin(); ic != mFlat.constraints().end();
         ++ic) {
      if (ic->removed()) {
        continue;
      }
      if (Call* c = Expression::dynamicCast<Call>(ic->e())) {
        auto ipct = _mCallTypes.find(c->decl());
        if (ipct != _mCallTypes.end()) {
          // No ! here because might be deleted immediately in later versions.
          //             ic->remove();                              // mark removed at once
          MZN_MIPD_assert_hard(c->argCount() > 1);
          ++MIPD_stats[N_POSTs_all];
          VarDecl* vd0 = expr2VarDecl(c->arg(0));
          if (nullptr == vd0) {
            DBGOUT_MIPD_FLUSH("  Call " << *c
                                        << ": 1st arg not a VarDecl, removing if eq_encoding...");
            /// Only allow literals as main argument for equality_encoding
            if (equality_encoding_POST ==
                ipct->first) {  //  was MZN_MIPD_assert_hard before MZN 2017
              ic->remove();
            }
            continue;  // ignore this call
          }
          DBGOUT_MIPD_FLUSH("  Call " << c->id().str() << " uses variable " << vd0->id()->str());
          if (vd0->payload() == -1) {  // ! yet visited
            vd0->payload(static_cast<int>(_vVarDescr.size()));
            _vVarDescr.emplace_back(vd0, vd0->type().isint());  // can use /prmTypes/ as well
            // bounds/domains later for each involved var TODO
            if (vd0->e() != nullptr) {
              checkInitExpr(vd0);
            }
          } else {
            DBGOUT_MIPD_FLUSH(" (already touched)");
          }
          DBGOUT_MIPD("");
          if (equality_encoding_POST == c->decl()) {
            MZN_MIPD_assert_hard(!_vVarDescr[vd0->payload()].pEqEncoding);
            _vVarDescr[vd0->payload()].pEqEncoding = &*ic;
            DBGOUT_MIPD(" Variable " << vd0->id()->str() << " has eq_encode.");
          }  // + if has aux_ constraints?
          else {
            _vVarDescr[vd0->payload()].aCalls.push_back(&*ic);
          }
        }
      }
    }
    MIPD_stats[N_POSTs_varsDirect] = static_cast<double>(_vVarDescr.size());
  }

  // Should only be called on a newly added variable
  // OR when looking thru all non-touched vars
  /// Checks init expr of a variable
  /// Return true IFF new connection
  /// The bool param requires RHS to be POST-touched
  // Guido: can! be recursive in FZN
  bool checkInitExpr(VarDecl* vd, bool fCheckArg = false) {
    MZN_MIPD_assert_hard(vd->e());
    if (!vd->type().isint() && !vd->type().isfloat()) {
      return false;
    }
    if (!fCheckArg) {
      MZN_MIPD_assert_hard(vd->payload() >= 0);
    }
    if (Id* id = Expression::dynamicCast<Id>(vd->e())) {
      //         const int f1 = ( vd->payload()>=0 );
      //         const int f2 = ( id->decl()->payload()>=0 );
      if (!fCheckArg || (id->decl()->payload() >= 0)) {
        DBGOUT_MIPD_FLUSH("  Checking init expr  ");
        DBGOUT_MIPD_SELF(debugprint(vd));
        LinEq2Vars led;
        // FAILS:
        //         led.vd = { vd, expr2VarDecl(id->decl()->e()) };
        led.vd = {{vd, expr2VarDecl(vd->e())}};
        led.coefs = {{1.0, -1.0}};
        led.rhs = 0.0;
        put2VarsConnection(led, false);
        ++MIPD_stats[N_POSTs_initexpr1id];
        if (id->decl()->e() != nullptr) {  // no initexpr for initexpr  FAILS on cc-base.mzn
          checkInitExpr(id->decl());
        }
        return true;  // in any case
      }
    } else if (Call* c = Expression::dynamicCast<Call>(vd->e())) {
      if (lin_exp_int == c->decl() || lin_exp_float == c->decl()) {
        //             std::cerr << "  !E call " << std::flush;
        //             debugprint(c);
        MZN_MIPD_assert_hard(c->argCount() == 3);
        //           ArrayLit* al = c->args()[1]->dynamicCast<ArrayLit>();
        auto* al = Expression::cast<ArrayLit>(follow_id(c->arg(1)));
        MZN_MIPD_assert_hard(al);
        MZN_MIPD_assert_hard(!al->empty());
        if (al->size() == 1) {  // 1-term scalar product in the rhs
          LinEq2Vars led;
          led.vd = {{vd, expr2VarDecl((*al)[0])}};
          //             const int f1 = ( vd->payload()>=0 );
          //             const int f2 = ( led.vd[1]->payload()>=0 );
          if (!fCheckArg || (led.vd[1]->payload() >= 0)) {
            // Can use a!her map here:
            //               if ( _sCallLinEq2.end() != _sCallLinEq2.find(c) )
            //                 continue;
            //               _sCallLinEq2.insert(c);     // memorize this call
            DBGOUT_MIPD_FLUSH("  REG 1-LINEXP ");
            DBGOUT_MIPD_SELF(debugprint(vd));
            std::array<double, 1> coef0;
            expr2Array(c->arg(0), coef0);
            led.coefs = {{-1.0, coef0[0]}};
            led.rhs = -expr2Const(c->arg(2));  // MINUS
            put2VarsConnection(led, false);
            ++MIPD_stats[N_POSTs_initexpr1linexp];
            if (led.vd[1]->e() != nullptr) {  // no initexpr for initexpr   FAILS  TODO
              checkInitExpr(led.vd[1]);
            }
            return true;  // in any case
          }
        } else if (true) {  // NOLINT: check larger views always. OK? TODO
          //             if ( vd->payload()>=0 )  {                      // larger views
          // TODO should be here?
          //             std::cerr << " LE_" << al->v().size() << ' ' << std::flush;
          DBGOUT_MIPD("      REG N-LINEXP ");
          DBGOUT_MIPD_SELF(debugprint(vd));
          // Checking all but adding only touched defined vars?
          return findOrAddDefining(vd->id(), c);
        }
      }
    }
    return false;
  }

  /// Build var cliques (i.e. of var pairs viewing each other)
  void constructVarViewCliques() {
    //       std::cerr << "  Model: " << std::endl;
    //       debugprint(getEnv()->flat());

    //     TAgenda agenda(_vVarDescr.size()), agendaNext;
    //     for ( int i=0; i<agenda.size(); ++i )
    //       agenda[i] = i;
    bool fChanges;
    do {
      fChanges = false;
      propagateViews(fChanges);
      propagateImplViews(fChanges);
    } while (fChanges);

    MIPD_stats[N_POSTs_varsInvolved] = static_cast<double>(_vVarDescr.size());
  }

  void propagateViews(bool& fChanges) {
    GCLock lock;

    // Iterate thru original 2-variable equalities to mark views:
    Model& mFlat = *getEnv()->flat();

    DBGOUT_MIPD("  CHECK ALL INITEXPR if they access a touched variable:");
    for (VarDeclIterator ivd = mFlat.vardecls().begin(); ivd != mFlat.vardecls().end(); ++ivd) {
      if (ivd->removed()) {
        continue;
      }
      if ((ivd->e()->e() != nullptr) && ivd->e()->payload() < 0           // untouched
          && (ivd->e()->type().isint() || ivd->e()->type().isfloat())) {  // scalars
        if (checkInitExpr(ivd->e(), true)) {
          fChanges = true;
        }
      }
    }

    DBGOUT_MIPD("  CHECK ALL CONSTRAINTS for 2-var equations:");
    for (ConstraintIterator ic = mFlat.constraints().begin(); ic != mFlat.constraints().end();
         ++ic) {
      if (ic->removed()) {
        continue;
      }
      if (Call* c = Expression::dynamicCast<Call>(ic->e())) {
        const bool fIntLinEq = int_lin_eq == c->decl();
        const bool fFloatLinEq = float_lin_eq == c->decl();
        if (fIntLinEq || fFloatLinEq) {
          MZN_MIPD_assert_hard(c->argCount() == 3);
          auto* al = Expression::cast<ArrayLit>(follow_id(c->arg(1)));
          MZN_MIPD_assert_hard(al);
          if (al->size() == 2) {  // 2-term eqn
            LinEq2Vars led;
            expr2DeclArray(c->arg(1), led.vd);
            // At least 1 touched var:
            if (nullptr != led.vd[0] && nullptr != led.vd[1]) {
              if (led.vd[0]->payload() >= 0 || led.vd[1]->payload() >= 0) {
                if (_sCallLinEq2.end() != _sCallLinEq2.find(c)) {
                  continue;
                }
                _sCallLinEq2.insert(c);  // memorize this call
                DBGOUT_MIPD("  REG 2-call ");
                DBGOUT_MIPD_SELF(debugprint(c));
                led.rhs = expr2Const(c->arg(2));
                expr2Array(c->arg(0), led.coefs);
                MZN_MIPD_assert_hard(2 == led.coefs.size());
                fChanges = true;
                put2VarsConnection(led);
                ++MIPD_stats[fIntLinEq ? N_POSTs_eq2intlineq : N_POSTs_eq2floatlineq];
              }
            }
          }  /// case with just 1 variable: else if (al->size() == 1) { }
          else {  // larger eqns
            auto* eVD = get_annotation(Expression::ann(c), Constants::constants().ann.defines_var);
            if (eVD != nullptr) {
              if (_sCallLinEqN.end() != _sCallLinEqN.find(c)) {
                continue;
              }
              _sCallLinEqN.insert(c);  // memorize this call
              DBGOUT_MIPD("       REG N-call ");
              DBGOUT_MIPD_SELF(debugprint(c));
              Call* pC = Expression::cast<Call>(eVD);
              MZN_MIPD_assert_hard(pC->argCount());
              // Checking all but adding only touched defined vars? Seems too long.
              VarDecl* vd = expr2VarDecl(pC->arg(0));
              if ((vd != nullptr) && vd->payload() >= 0) {  // only if touched
                if (findOrAddDefining(pC->arg(0), c)) {
                  fChanges = true;
                }
              }
            }
          }
        } else if (int2float == c->decl() || Constants::constants().varRedef == c->decl()) {
          MZN_MIPD_assert_hard(c->argCount() == 2);
          LinEq2Vars led;
          led.vd[0] = expr2VarDecl(c->arg(0));
          led.vd[1] = expr2VarDecl(c->arg(1));
          // At least 1 touched var:
          if (led.vd[0]->payload() >= 0 || led.vd[1]->payload() >= 0) {
            if (_sCallInt2Float.end() != _sCallInt2Float.find(c)) {
              continue;
            }
            _sCallInt2Float.insert(c);  // memorize this call
            DBGOUT_MIPD("  REG call ");
            DBGOUT_MIPD_SELF(debugprint(c));
            led.rhs = 0.0;
            led.coefs = {{1.0, -1.0}};
            fChanges = true;
            put2VarsConnection(led);
            ++MIPD_stats[int2float == c->decl() ? N_POSTs_int2float : N_POSTs_internalvarredef];
          }
        }
      }
    }
  }

  /// This vector stores the linear part of a general view
  /// x = <linear part> + rhs
  typedef std::vector<std::pair<VarDecl*, double> > TLinExpLin;
  /// This struct has data describing the rest of a general view
  struct NViewData {
    VarDecl* pVarDefined = nullptr;
    double coef0 = 1.0;
    double rhs;
  };
  typedef std::map<TLinExpLin, NViewData> NViewMap;
  NViewMap _mNViews;

  /// compare to an existing defining linexp, || just add it to the map
  /// adds only touched defined vars
  /// return true iff new linear connection
  // linexp: z = a^T x+b
  // _lin_eq: a^T x == b
  bool findOrAddDefining(Expression* exp, Call* pC) {
    Id* pId = Expression::cast<Id>(exp);
    VarDecl* vd = pId->decl();
    MZN_MIPD_assert_hard(vd);
    MZN_MIPD_assert_hard(pC->argCount() == 3);

    TLinExpLin rhsLin;
    NViewData nVRest;
    nVRest.pVarDefined = vd;
    nVRest.rhs = expr2Const(pC->arg(2));

    std::vector<VarDecl*> vars;
    expr2DeclArray(pC->arg(1), vars);
    std::vector<double> coefs;
    expr2Array(pC->arg(0), coefs);
    MZN_MIPD_assert_hard(vars.size() == coefs.size());

    int nVD = 0;
    for (int i = 0; i < vars.size(); ++i) {
      if (vd ==
          vars[i]) {  // when int/float_lin_eq :: defines_var(vd) "Recursive definition of " << *vd
        nVRest.coef0 = -coefs[i];
        nVRest.rhs = -nVRest.rhs;
        ++nVD;
      } else {
        rhsLin.emplace_back(vars[i], coefs[i]);
      }
    }
    MZN_MIPD_assert_hard(1 >= nVD);
    std::sort(rhsLin.begin(), rhsLin.end());

    // Divide the equation by the 1st coef
    const double coef1 = rhsLin.begin()->second;
    MZN_MIPD_assert_hard(0.0 != std::fabs(coef1));
    nVRest.coef0 /= coef1;
    nVRest.rhs /= coef1;
    for (auto& rhsL : rhsLin) {
      rhsL.second /= coef1;
    }

    auto it = _mNViews.find(rhsLin);
    if (_mNViews.end() != it &&
        nVRest.pVarDefined != it->second.pVarDefined) {  // don't connect to itself
      LinEq2Vars leq;
      leq.vd = {{nVRest.pVarDefined, it->second.pVarDefined}};
      leq.coefs = {{nVRest.coef0, -it->second.coef0}};  // +, -
      leq.rhs = nVRest.rhs - it->second.rhs;
      put2VarsConnection(leq, false);
      ++MIPD_stats[nVD != 0 ? N_POSTs_eqNlineq : N_POSTs_initexprN];
      return true;
    }
    if (vd->payload() >= 0) {  // only touched
      _mNViews[rhsLin] = nVRest;
      return true;  // can lead to a new connection
    }

    return false;
  }

  static void propagateImplViews(bool& fChanges) {
    //      EnvI& env = getEnv()->envi();
    GCLock lock;

    // TODO
  }

  /// Could be better to mark the calls instead:
  std::unordered_set<Call*> _sCallLinEq2, _sCallInt2Float, _sCallLinEqN;

  class TClique : public std::vector<LinEq2Vars> {  // need more info?
  public:
    /// This function takes the 1st variable && relates all to it
    /// Return false if contrad / disconnected graph
    //       bool findRelations0() {
    //         return true;
    //       }
  };
  typedef std::vector<TClique> TCLiqueList;
  TCLiqueList _aCliques;

  /// register a 2-variable lin eq
  /// add it to the var clique, joining the participants' cliques if needed
  void put2VarsConnection(LinEq2Vars& led, bool fCheckinitExpr = true) {
    MZN_MIPD_assert_hard(led.coefs.size() == led.vd.size());
    MZN_MIPD_assert_hard(led.vd.size() == 2);
    DBGOUT_MIPD_FLUSH("  Register 2-var connection: " << led);
    /// Check it's not same 2 vars
    if (led.vd[0] == led.vd[1]) {
      MZN_MIPD_assert_soft(
          0, "MIPD: STRANGE: registering var connection to itself: " << led << ", skipping");
      MZN_MIPD_ASSERT_FOR_SAT(fabs(led.coefs[0] + led.coefs[1]) < 1e-6,  // TODO param
                              getEnv()->envi(), Expression::loc(led.vd[0]),
                              "Var connection to itself seems to indicate UNSAT: " << led);
      return;
    }
    // register if new variables
    //       std::vector<bool> fHaveClq(led.vd.size(), false);
    int nCliqueAvailable = -1;
    for (auto* vd : led.vd) {
      if (vd->payload() < 0) {  // ! yet visited
        vd->payload(static_cast<int>(_vVarDescr.size()));
        _vVarDescr.emplace_back(vd, vd->type().isint());  // can use /prmTypes/ as well
        if (fCheckinitExpr && (vd->e() != nullptr)) {
          checkInitExpr(vd);
        }
      } else {
        int nMaybeClq = _vVarDescr[vd->payload()].nClique;
        if (nMaybeClq >= 0) {
          nCliqueAvailable = nMaybeClq;
        }
        //           MZN_MIPD_assert_hard( nCliqueAvailable>=0 );
        //           fHaveClq[i] = true;
      }
    }
    if (nCliqueAvailable < 0) {  // no clique found
      nCliqueAvailable = static_cast<int>(_aCliques.size());
      _aCliques.resize(_aCliques.size() + 1);
    }
    DBGOUT_MIPD(" ...adding to clique " << nCliqueAvailable << " of size "
                                        << _aCliques[nCliqueAvailable].size());
    TClique& clqNew = _aCliques[nCliqueAvailable];
    clqNew.push_back(led);
    for (auto* vd : led.vd) {  // merging cliques
      int& nMaybeClq = _vVarDescr[vd->payload()].nClique;
      if (nMaybeClq >= 0 && nMaybeClq != nCliqueAvailable) {
        TClique& clqOld = _aCliques[nMaybeClq];
        MZN_MIPD_assert_hard(!clqOld.empty());
        for (auto& eq2 : clqOld) {
          for (auto* vd : eq2.vd) {  // point all the variables to the new clique
            _vVarDescr[vd->payload()].nClique = nCliqueAvailable;
          }
        }
        clqNew.insert(clqNew.end(), clqOld.begin(), clqOld.end());
        clqOld.clear();  // Can use C++11 move      TODO
        DBGOUT_MIPD("    +++ Joining cliques");
      }
      nMaybeClq = nCliqueAvailable;  // Could mark as 'unused'  TODO
    }
  }

  /// Finds a clique variable to which all domain constr are related
  class TCliqueSorter {
    MIPD& _mipd;
    const int _iVarStart;  // this is the first var to which all others are related
  public:
    //       VarDecl* varRef0=0;  // this is the first var to which all others are related
    VarDecl* varRef1 = nullptr;  // this is the 2nd main reference.
                                 // it is a var with eq_encode, ||
                                 // an (integer if any) variable with the least rel. factor
    bool fRef1HasEqEncode = false;
    /// This map stores the relations y = ax+b of all the clique's vars to y
    typedef std::unordered_map<VarDecl*, std::pair<double, double> > TMapVars;
    TMapVars mRef0, mRef1;  // to the main var 0, 1

    class TMatrixVars : public std::unordered_map<VarDecl*, TMapVars> {
    public:
      /// Check existing connection
      template <class IVarDecl>
      bool checkExistingArc(IVarDecl begV, double A, double B, bool fReportRepeat = true) {
        auto it1 = this->find(*begV);
        if (this->end() != it1) {
          auto it2 = it1->second.find(*(begV + 1));
          if (it1->second.end() != it2) {
            /// We could catch infeasibility here in some cases but it's weird. #550
            /*
            MZN_MIPD_assert_hard(std::fabs(it2->second.first - A) <
                                 1e-6 * std::max(std::fabs(it2->second.first), std::fabs(A)));
            MZN_MIPD_assert_hard(std::fabs(it2->second.second - B) <
                                 1e-6 * std::max(std::fabs(it2->second.second), std::fabs(B)) +
                                     1e-6);
              */
            MZN_MIPD_assert_hard(std::fabs(A) != 0.0);
            MZN_MIPD_assert_soft(!fVerbose || std::fabs(A) > 1e-12,
                                 " Very small coef: " << (*begV)->id()->str() << " = " << A << " * "
                                                      << (*(begV + 1))->id()->str() << " + " << B);
            if (fReportRepeat) {
              MZN_MIPD_assert_soft(!fVerbose, "LinEqGraph: eqn between "
                                                  << (*begV)->id()->str() << " && "
                                                  << (*(begV + 1))->id()->str()
                                                  << " is repeated. ");
            }
            return true;
          }
        }
        return false;
      }
    };

    class LinEqGraph : public TMatrixVars {
    public:
      static double dCoefMin, dCoefMax;

      /// Stores the arc (x1, x2) as x1 = a*x2 + b
      /// so that a constraint on x2, say x2<=c <-> f,
      /// is equivalent to one for x1:  x1 <=/>= a*c+b <-> f
      //// ( the other way involves division:
      ////   so that a constraint on x1, say x1<=c <-> f,
      ////   can easily be converted into one for x2 as a*x2 <= c-b <-> f
      ////   <=> x2 (care for sign) (c-b)/a <-> f )
      template <class ICoef, class IVarDecl>
      void addArc(ICoef begC, IVarDecl begV, double rhs) {
        MZN_MIPD_assert_soft(!fVerbose || std::fabs(*begC) >= 1e-10,
                             "  Vars " << (*begV)->id()->str() << "  to "
                                       << (*(begV + 1))->id()->str() << ": coef=" << (*begC));
        // Transform Ax+By=C into x = -B/Ay+C/A
        const double negBA = -(*(begC + 1)) / (*begC);
        const double CA = rhs / (*begC);
        checkExistingArc(begV, negBA, CA, false);
        (*this)[*begV][*(begV + 1)] = std::make_pair(negBA, CA);
        const double dCoefAbs = std::fabs(negBA);
        if (dCoefAbs < dCoefMin) {
          dCoefMin = dCoefAbs;
        }
        if (dCoefAbs > dCoefMax) {
          dCoefMax = dCoefAbs;
        }
      }
      void addEdge(const LinEq2Vars& led) {
        addArc(led.coefs.begin(), led.vd.begin(), led.rhs);
        addArc(led.coefs.rbegin(), led.vd.rbegin(), led.rhs);
      }
      /// Propagate linear relations from the given variable
      void propagate(iterator itStart, TMapVars& mWhereStore) {
        MZN_MIPD_assert_hard(this->end() != itStart);
        TMatrixVars mTemp;
        mTemp[itStart->first] = itStart->second;  // init with existing
        DBGOUT_MIPD("Propagation started from " << itStart->first->id()->str() << "  having "
                                                << itStart->second.size() << " connections");
        propagate2(itStart, itStart, std::make_pair(1.0, 0.0), mTemp);
        mWhereStore = mTemp.begin()->second;
        MZN_MIPD_assert_hard_msg(
            mWhereStore.size() == this->size() - 1,
            "Variable " << (*(mTemp.begin()->first))
                        << " should be connected to all others in the clique, but "
                        << "|edges|==" << mWhereStore.size() << ", |all nodes|==" << this->size());
      }
      /// Propagate linear relations from it1 via it2
      void propagate2(iterator itSrc, iterator itVia, std::pair<double, double> rel,
                      TMatrixVars& mWhereStore) {
        for (auto itDst = itVia->second.begin(); itDst != itVia->second.end(); ++itDst) {
          // Transform x1=A1x2+B1, x2=A2x3+B2 into x1=A1A2x3+A1B2+B1
          if (itDst->first == itSrc->first) {
            continue;
          }
          const double A1A2 = rel.first * itDst->second.first;
          const double A1B2plusB1 = rel.first * itDst->second.second + rel.second;
          bool fDive = true;
          if (itSrc != itVia) {
            PVarDecl vd[2] = {itSrc->first, itDst->first};
            if (!mWhereStore.checkExistingArc(vd, A1A2, A1B2plusB1, false)) {
              mWhereStore[vd[0]][vd[1]] = std::make_pair(A1A2, A1B2plusB1);
              DBGOUT_MIPD("   PROPAGATING: " << vd[0]->id()->str() << " = " << A1A2 << " * "
                                             << vd[1]->id()->str() << " + " << A1B2plusB1);
            } else {
              fDive = false;
            }
          }
          if (fDive) {
            auto itDST = this->find(itDst->first);
            MZN_MIPD_assert_hard(this->end() != itDST);
            propagate2(itSrc, itDST, std::make_pair(A1A2, A1B2plusB1), mWhereStore);
          }
        }
      }
    };
    LinEqGraph leg;

    TCliqueSorter(MIPD* pm, int iv) : _mipd(*pm), _iVarStart(iv) {}
    void doRelate() {
      MZN_MIPD_assert_hard(_mipd._vVarDescr[_iVarStart].nClique >= 0);
      const TClique& clq = _mipd._aCliques[_mipd._vVarDescr[_iVarStart].nClique];
      for (const auto& eq2 : clq) {
        leg.addEdge(eq2);
      }
      DBGOUT_MIPD(" Clique " << _mipd._vVarDescr[_iVarStart].nClique << ": " << leg.size()
                             << " variables, " << clq.size() << " connections.");
      for (auto& it1 : leg) {
        _mipd._vVarDescr[it1.first->payload()].fDomainConstrProcessed = 1U;
      }

      // Propagate the 1st var's relations:
      leg.propagate(leg.begin(), mRef0);

      // Find a best main variable according to:
      // 1. isInt 2. hasEqEncode 3. abs linFactor to ref0
      varRef1 = leg.begin()->first;
      std::array<double, 3> aCrit = {
          {(double)_mipd._vVarDescr[varRef1->payload()].fInt,
           static_cast<double>(_mipd._vVarDescr[varRef1->payload()].pEqEncoding != nullptr), 1.0}};
      for (auto& it2 : mRef0) {
        VarDescr& vard = _mipd._vVarDescr[it2.first->payload()];
        std::array<double, 3> aCrit1 = {{(double)vard.fInt,
                                         static_cast<double>(vard.pEqEncoding != nullptr),
                                         std::fabs(it2.second.first)}};
        if (aCrit1 > aCrit) {
          varRef1 = it2.first;
          aCrit = aCrit1;
        }
      }
      leg.propagate(leg.find(varRef1), mRef1);
    }
  };  // class TCliqueSorter

  /// Build a domain decomposition for a clique
  /// a clique can consist of just 1 var without a clique object
  class DomainDecomp {
  public:
    MIPD& mipd;
    const int iVarStart;
    TCliqueSorter cls;
    SetOfIntvReal sDomain;

    DomainDecomp(MIPD* pm, int iv) : mipd(*pm), iVarStart(iv), cls(pm, iv) {
      sDomain.insert(IntvReal());  // the decomposed domain. Init to +-inf
    }
    void doProcess() {
      // Choose the main variable && relate all others to it
      const int nClique = mipd._vVarDescr[iVarStart].nClique;
      if (nClique >= 0) {
        cls.doRelate();
      } else {
        cls.varRef1 = mipd._vVarDescr[iVarStart].vd;
      }
      // Adding itself:
      cls.mRef1[cls.varRef1] = std::make_pair(1.0, 0.0);

      int iVarRef1 = cls.varRef1->payload();
      MZN_MIPD_assert_hard(nClique == mipd._vVarDescr[iVarRef1].nClique);
      cls.fRef1HasEqEncode = (mipd._vVarDescr[iVarRef1].pEqEncoding != nullptr);

      // First, construct the domain decomposition in any case
      //         projectVariableConstr( cls.varRef1, std::make_pair(1.0, 0.0) );
      //         if ( nClique >= 0 ) {
      for (auto& iRef1 : cls.mRef1) {
        projectVariableConstr(iRef1.first, iRef1.second);
      }

      DBGOUT_MIPD("Clique " << nClique << ": main ref var " << cls.varRef1->id()->str()
                            << ", domain dec: " << sDomain);

      MZN_MIPD_ASSERT_FOR_SAT(!sDomain.empty(), mipd.getEnv()->envi(), Expression::loc(cls.varRef1),
                              "clique " << nClique << ": main ref var " << *cls.varRef1->id()
                                        << ", domain decomposition seems empty: " << sDomain);

      MZN_MIPD_FLATTENING_ERROR_IF_NOT(sDomain.checkFiniteBounds(), mipd.getEnv()->envi(),
                                       Expression::loc(cls.varRef1),
                                       "variable " << *cls.varRef1->id()
                                                   << " needs finite bounds for linearisation."
                                                      " Or, use indicator constraints. "
                                                   << "Current domain is " << sDomain);

      MZN_MIPD_assert_hard(sDomain.checkDisjunctStrict());

      makeRangeDomains();

      // Then, use equality_encoding if available
      if (cls.fRef1HasEqEncode) {
        syncWithEqEncoding();
        syncOtherEqEncodings();
      } else {                      // ! cls.fRef1HasEqEncode
        if (sDomain.size() >= 2) {  // need to simplify stuff otherwise
          considerDenseEncoding();
          createDomainFlags();
        }
      }
      implementPOSTs();

      // Statistics
      if (static_cast<double>(sDomain.size()) < MIPD_stats[N_POSTs_NSubintvMin]) {
        MIPD_stats[N_POSTs_NSubintvMin] = static_cast<double>(sDomain.size());
      }
      MIPD_stats[N_POSTs_NSubintvSum] += static_cast<double>(sDomain.size());
      if (static_cast<double>(sDomain.size()) > MIPD_stats[N_POSTs_NSubintvMax]) {
        MIPD_stats[N_POSTs_NSubintvMax] = static_cast<double>(sDomain.size());
      }
      for (const auto& intv : sDomain) {
        const auto nSubSize = intv.right - intv.left;
        if (nSubSize < MIPD_stats[N_POSTs_SubSizeMin]) {
          MIPD_stats[N_POSTs_SubSizeMin] = nSubSize;
        }
        MIPD_stats[N_POSTs_SubSizeSum] += nSubSize;
        if (nSubSize > MIPD_stats[N_POSTs_SubSizeMax]) {
          MIPD_stats[N_POSTs_SubSizeMax] = nSubSize;
        }
      }
      if (cls.fRef1HasEqEncode) {
        ++MIPD_stats[N_POSTs_cliquesWithEqEncode];
      }
    }

    /// Project the domain-related constraints of a variable into the clique
    /// Deltas should be scaled but to a minimum of the target's discr
    /// COmparison sense changes on negated vars
    void projectVariableConstr(VarDecl* vd, std::pair<double, double> eq1) {
      DBGOUT_MIPD_FLUSH("  MIPD: projecting variable  ");
      DBGOUT_MIPD_SELF(debugprint(vd));
      // Always check if domain becomes empty?         TODO
      const double A = eq1.first;  // vd = A*arg + B.  conversion
      const double B = eq1.second;
      // process domain info
      double lb = B;
      double ub = A + B;  // projected bounds for bool
      if (vd->ti()->domain() != nullptr) {
        if (vd->type().isint() || vd->type().isfloat()) {  // INT VAR OR FLOAT VAR
          SetOfIntvReal sD1;
          convertIntSet(vd->ti()->domain(), sD1, cls.varRef1, A, B);
          sDomain.intersect(sD1);
          DBGOUT_MIPD(" Clique domain after proj of the init. domain "
                      << sD1 << " of " << (vd->type().isint() ? "varint" : "varfloat") << A << " * "
                      << vd->id()->str() << " + " << B << ":  " << sDomain);
          auto bnds = sD1.getBounds();
          lb = bnds.left;
          ub = bnds.right;
        } else {
          MZN_MIPD_FLATTENING_ERROR_IF_NOT(0, mipd.getEnv()->envi(), Expression::loc(cls.varRef1),
                                           "Variable " << vd->id()->str() << " of type "
                                                       << vd->type().toString(mipd._env->envi())
                                                       << " has a domain.");
        }
        //           /// Deleting var domain:
        //           vd->ti()->domain( NULL );
      } else {
        if (nullptr == vd->ti()->domain() && !vd->type().isbool()) {
          lb = IntvReal::infMinus();
          ub = IntvReal::infPlus();
        }
      }
      auto bnds = sDomain.getBounds();  // can change    TODO
      // process calls. Can use the constr type info.
      auto& aCalls = mipd._vVarDescr[vd->payload()].aCalls;
      for (Item* pItem : aCalls) {
        auto* pCI = pItem->dynamicCast<ConstraintI>();
        MZN_MIPD_assert_hard(pCI != nullptr);
        Call* pCall = Expression::cast<Call>(pCI->e());
        DBGOUT_MIPD_FLUSH("PROPAG CALL  ");
        DBGOUT_MIPD_SELF(debugprint(pCall));
        // check the bounds for bool in reifs?                     TODO
        auto ipct = mipd._mCallTypes.find(pCall->decl());
        MZN_MIPD_assert_hard(mipd._mCallTypes.end() != ipct);
        const DCT& dct = *ipct->second;
        int nCmpType_ADAPTED = dct.nCmpType;
        if (A < 0.0) {                            // negative factor
          if (std::abs(nCmpType_ADAPTED) >= 4) {  // inequality
            nCmpType_ADAPTED = -nCmpType_ADAPTED;
          }
        }
        switch (dct.nConstrType) {
          case CT_SetIn: {
            SetOfIntvReal SS;
            convertIntSet(pCall->arg(1), SS, cls.varRef1, A, B);
            if (RIT_Static == dct.nReifType) {
              sDomain.intersect(SS);
              ++MIPD_stats[N_POSTs_setIn];
            } else {
              sDomain.cutDeltas(SS, std::max(1.0, std::fabs(A)));  // deltas to scale
              ++MIPD_stats[N_POSTs_setInReif];
            }
          } break;
          case CT_Comparison:
            if (RIT_Reif == dct.nReifType) {
              const double rhs = (mipd.aux_float_lt_zero_iff_1_POST == pCall->decl())
                                     ? B /* + A*0.0, relating to 0 */
                                     // The 2nd argument is constant:
                                     : A * MIPD::expr2Const(pCall->arg(1)) + B;
              const double rhsUp = rndUpIfInt(cls.varRef1, rhs);
              const double rhsDown = rndDownIfInt(cls.varRef1, rhs);
              const double rhsRnd = rndIfInt(cls.varRef1, rhs);
              /// Strictly, for delta we should finish domain reductions first...   TODO?
              const double delta = computeDelta(cls.varRef1, vd, bnds, A, pCall, 3);
              switch (nCmpType_ADAPTED) {
                case CMPT_LE:
                  sDomain.cutDeltas(IntvReal::infMinus(), rhsDown, delta);
                  break;
                case CMPT_GE:
                  sDomain.cutDeltas(rhsUp, IntvReal::infPlus(), delta);
                  break;
                case CMPT_LT_0:
                  sDomain.cutDeltas(IntvReal::infMinus(), rhsDown - delta, delta);
                  break;
                case CMPT_GT_0:
                  sDomain.cutDeltas(rhsUp + delta, IntvReal::infPlus(), delta);
                  break;
                case CMPT_EQ:
                  if (!(cls.varRef1->type().isint() &&         // skip if int target var
                        std::fabs(rhs - rhsRnd) > INT_EPS)) {  // && fract value
                    sDomain.cutDeltas(rhsRnd, rhsRnd, delta);
                  }
                  break;
                default:
                  MZN_MIPD_assert_hard_msg(0, " No other reified cmp type ");
              }
              ++MIPD_stats[(vd->ti()->type().isint()) ? N_POSTs_intCmpReif : N_POSTs_floatCmpReif];
            } else if (RIT_Static == dct.nReifType) {
              // _ne, later maybe static ineq                                 TODO
              MZN_MIPD_assert_hard(CMPT_NE == dct.nCmpType);
              const double rhs = A * MIPD::expr2Const(pCall->arg(1)) + B;
              const double rhsRnd = rndIfInt(cls.varRef1, rhs);
              bool fSkipNE = (cls.varRef1->type().isint() && std::fabs(rhs - rhsRnd) > INT_EPS);
              if (!fSkipNE) {
                const double delta = computeDelta(cls.varRef1, vd, bnds, A, pCall, 2);
                sDomain.cutOut({rhsRnd - delta, rhsRnd + delta});
              }
              ++MIPD_stats[(vd->ti()->type().isint()) ? N_POSTs_intNE : N_POSTs_floatNE];
            } else {  // aux_ relate to 0.0
                      // But we don't modify domain splitting for them currently
              ++MIPD_stats[(vd->ti()->type().isint()) ? N_POSTs_intAux : N_POSTs_floatAux];
              MZN_MIPD_assert_hard(RIT_Halfreif == dct.nReifType);
              //                 const double rhs = B;               // + A*0
              //                 const double delta = vd->type().isint() ? 1.0 : 1e-5;           //
              //                 TODO : eps
            }
            break;
          case CT_Encode:
            // See if any further constraints here?                             TODO
            ++MIPD_stats[N_POSTs_eq_encode];
            break;
          default:
            MZN_MIPD_assert_hard_msg(0, "Unknown constraint type");
        }
      }
      DBGOUT_MIPD(" Clique domain after proj of " << A << " * " << vd->id()->str() << " + " << B
                                                  << ":  " << sDomain);
    }

    static double rndIfInt(VarDecl* vdTarget, double v) {
      return vdTarget->type().isint() ? std::round(v) : v;
    }
    static double rndIfBothInt(VarDecl* vdTarget, double v) {
      if (!vdTarget->type().isint()) {
        return v;
      }
      const double vRnd = std::round(v);
      return (fabs(v - vRnd) < INT_EPS) ? vRnd : v;
    }
    static double rndUpIfInt(VarDecl* vdTarget, double v) {
      return vdTarget->type().isint() ? std::ceil(v - INT_EPS) : v;
    }
    static double rndDownIfInt(VarDecl* vdTarget, double v) {
      return vdTarget->type().isint() ? std::floor(v + INT_EPS) : v;
    }

    void makeRangeDomains() {
      auto bnds = sDomain.getBounds();
      for (auto& iRef1 : cls.mRef1) {
        VarDecl* vd = iRef1.first;
        // projecting the bounds back:
        double lb0 = (bnds.left - iRef1.second.second) / iRef1.second.first;
        double ub0 = (bnds.right - iRef1.second.second) / iRef1.second.first;
        if (lb0 > ub0) {
          MZN_MIPD_assert_hard(iRef1.second.first < 0.0);
          std::swap(lb0, ub0);
        }
        if (vd->type().isint()) {
          lb0 = rndUpIfInt(vd, lb0);
          ub0 = rndDownIfInt(vd, ub0);
        }
        setVarDomain(vd, lb0, ub0);
      }
    }

    /// tightens element bounds in the existing eq_encoding of varRef1
    /// necessary because if one exists, int_ne is not translated into it
    /// Can also back-check from there?   TODO
    /// And further checks                TODO
    void syncWithEqEncoding() {
      std::vector<Expression*> pp;
      auto bnds = sDomain.getBounds();
      const long long iMin = mipd.expr2ExprArray(
          Expression::cast<Call>(mipd._vVarDescr[cls.varRef1->payload()].pEqEncoding->e())->arg(1),
          pp);
      MZN_MIPD_assert_hard(pp.size() >= bnds.right - bnds.left + 1);
      MZN_MIPD_assert_hard(iMin <= bnds.left);
      long long vEE = iMin;
      DBGOUT_MIPD_FLUSH(
          "   SYNC EQ_ENCODE( "
          << (*cls.varRef1) << ",   bitflags: "
          << *(mipd._vVarDescr[cls.varRef1->payload()].pEqEncoding->e()->dynamicCast<Call>()->arg(
                 1))
          << " ):  SETTING 0 FLAGS FOR VALUES: ");
      for (const auto& intv : sDomain) {
        for (; static_cast<double>(vEE) < intv.left; ++vEE) {
          if (vEE >= static_cast<long long>(iMin + pp.size())) {
            return;
          }
          if (Expression::isa<Id>(pp[vEE - iMin])) {
            if (Expression::type(Expression::cast<Id>(pp[vEE - iMin])->decl()).isvar()) {
              DBGOUT_MIPD_FLUSH(vEE << ", ");
              setVarDomain(Expression::cast<Id>(pp[vEE - iMin])->decl(), 0.0, 0.0);
            }
          }
        }
        vEE = static_cast<long long>(intv.right + 1);
      }
      for (; vEE < static_cast<long long>(iMin + pp.size()); ++vEE) {
        if (Expression::isa<Id>(pp[vEE - iMin])) {
          if (Expression::type(Expression::cast<Id>(pp[vEE - iMin])->decl()).isvar()) {
            DBGOUT_MIPD_FLUSH(vEE << ", ");
            setVarDomain(Expression::cast<Id>(pp[vEE - iMin])->decl(), 0.0, 0.0);
          }
        }
      }
      DBGOUT_MIPD("");
    }

    /// sync varRef1's eq_encoding with those of other variables
    void syncOtherEqEncodings() {
      // TODO  This could be in the var projection? No, need the final domain
    }

    /// Depending on params,
    /// create an equality encoding for an integer variable
    /// TODO What if a float's domain is discrete?
    void considerDenseEncoding() {
      if (cls.varRef1->id()->type().isint()) {
        if (sDomain.maxInterval() <= mipd.nMaxIntv2Bits ||
            sDomain.cardInt() <= mipd.dMaxNValueDensity * static_cast<double>(sDomain.size())) {
          sDomain.split2Bits();
          ++MIPD_stats[N_POSTs_clEEEnforced];
        }
      }
    }

    /// if ! eq_encoding, creates a flag for each subinterval in the domain
    /// && constrains sum(flags)==1
    void createDomainFlags() {
      std::vector<Expression*> vVars(sDomain.size());  // flags for each subinterval
      std::vector<double> vIntvLB(sDomain.size() + 1);
      std::vector<double> vIntvUB_(sDomain.size() + 1);
      int i = 0;
      double dMaxIntv = -1.0;
      for (const auto& intv : sDomain) {
        intv.varFlag = addIntVar(0.0, 1.0);
        vVars[i] = intv.varFlag->id();
        vIntvLB[i] = intv.left;
        vIntvUB_[i] = -intv.right;
        dMaxIntv = std::max(dMaxIntv, intv.right - intv.left);
        ++i;
      }
      // Sum of flags == 1
      std::vector<double> ones(sDomain.size(), 1.0);
      addLinConstr(ones, vVars, CMPT_EQ, 1.0);
      // Domain decomp
      vVars.push_back(cls.varRef1->id());
      vIntvLB[i] = -1.0;  // var1 >= sum(LBi*flagi)
      /// STRICT equality encoding if small intervals
      if (dMaxIntv > 1e-6) {  // EPS = param?   TODO
        vIntvUB_[i] = 1.0;    // var1 <= sum(UBi*flagi)
        addLinConstr(vIntvLB, vVars, CMPT_LE, 0.0);
        addLinConstr(vIntvUB_, vVars, CMPT_LE, 0.0);
      } else {
        ++MIPD_stats[N_POSTs_clEEFound];
        addLinConstr(vIntvLB, vVars, CMPT_EQ, 0.0);
      }
    }

    /// deletes them as well
    void implementPOSTs() {
      auto bnds = sDomain.getBounds();
      for (auto& iRef1 : cls.mRef1) {
        //           DBGOUT_MIPD_FLUSH( "  MIPD: implementing constraints of variable  " );
        //           DBGOUT_MIPD_SELF( debugprint(vd) );
        VarDecl* vd = iRef1.first;
        auto eq1 = iRef1.second;
        const double A = eq1.first;  // vd = A*arg + B.  conversion
        const double B = eq1.second;
        // process calls. Can use the constr type info.
        auto& aCalls = mipd._vVarDescr[vd->payload()].aCalls;
        for (Item* pItem : aCalls) {
          auto* pCI = pItem->dynamicCast<ConstraintI>();
          MZN_MIPD_assert_hard(pCI);
          Call* pCall = Expression::dynamicCast<Call>(pCI->e());
          MZN_MIPD_assert_hard(pCall);
          DBGOUT_MIPD_FLUSH("IMPL CALL  ");
          DBGOUT_MIPD_SELF(debugprint(pCall));
          // check the bounds for bool in reifs?                     TODO
          auto ipct = mipd._mCallTypes.find(pCall->decl());
          MZN_MIPD_assert_hard(mipd._mCallTypes.end() != ipct);
          const DCT& dct = *ipct->second;
          int nCmpType_ADAPTED = dct.nCmpType;
          if (A < 0.0) {                            // negative factor
            if (std::abs(nCmpType_ADAPTED) >= 4) {  // inequality
              nCmpType_ADAPTED = -nCmpType_ADAPTED;
            }
          }
          switch (dct.nConstrType) {
            case CT_SetIn:
              if (RIT_Reif == dct.nReifType) {
                SetOfIntvReal SS;
                convertIntSet(pCall->arg(1), SS, cls.varRef1, A, B);
                relateReifFlag(pCall->arg(2), SS);
              }
              break;
            case CT_Comparison:
              if (RIT_Reif == dct.nReifType) {
                const double rhs = (mipd.aux_float_lt_zero_iff_1_POST == pCall->decl())
                                       ? B /* + A*0.0, relating to 0 */
                                       // The 2nd argument is constant:
                                       : A * MIPD::expr2Const(pCall->arg(1)) + B;
                const double rhsUp = rndUpIfInt(cls.varRef1, rhs);
                const double rhsDown = rndDownIfInt(cls.varRef1, rhs);
                const double rhsRnd = rndIfBothInt(
                    cls.varRef1, rhs);  // if the ref var is int, need to round almost-int values
                const double delta = computeDelta(cls.varRef1, vd, bnds, A, pCall, 3);
                switch (nCmpType_ADAPTED) {
                  case CMPT_LE:
                    relateReifFlag(pCall->arg(2), {{IntvReal::infMinus(), rhsDown}});
                    break;
                  case CMPT_GE:
                    relateReifFlag(pCall->arg(2), {{rhsUp, IntvReal::infPlus()}});
                    break;
                  case CMPT_LT_0:
                    relateReifFlag(pCall->arg(1), {{IntvReal::infMinus(), rhsDown - delta}});
                    break;
                  case CMPT_GT_0:
                    relateReifFlag(pCall->arg(1), {{rhsUp + delta, IntvReal::infPlus()}});
                    break;
                  case CMPT_EQ:
                    relateReifFlag(pCall->arg(2), {{rhsRnd, rhsRnd}});
                    break;  // ... but if the value is sign. fractional for an int var, the flag is
                            // set=0
                  default:
                    break;
                }
              } else if (RIT_Static == dct.nReifType) {
                // !hing here for NE
                MZN_MIPD_assert_hard(CMPT_NE == nCmpType_ADAPTED);
              } else {  // aux_ relate to 0.0
                        // But we don't modify domain splitting for them currently
                MZN_MIPD_assert_hard(RIT_Halfreif == dct.nReifType);
                double rhs = B;  // + A*0
                const double rhsUp = rndUpIfInt(cls.varRef1, rhs);
                const double rhsDown = rndDownIfInt(cls.varRef1, rhs);
                const double rhsRnd = rndIfInt(cls.varRef1, rhs);
                double delta = 0.0;
                if (mipd.aux_float_lt_zero_if_1_POST == pCall->decl()) {  // only float && lt
                  delta = computeDelta(cls.varRef1, vd, bnds, A, pCall, 3);
                }
                if (nCmpType_ADAPTED < 0) {
                  delta = -delta;
                }
                if (cls.varRef1->type().isint() && CMPT_EQ_0 != nCmpType_ADAPTED) {
                  if (nCmpType_ADAPTED < 0) {
                    rhs = rhsDown;
                  } else {
                    rhs = rhsUp;
                  }
                } else {
                  rhs += delta;
                }
                // Now we need rhs ! to be in the inner of the domain
                bool fUseDD = true;
                if (!cls.fRef1HasEqEncode) {
                  switch (nCmpType_ADAPTED) {
                    case CMPT_EQ_0: {
                      auto itLB = sDomain.lower_bound(rhsRnd);
                      fUseDD = (itLB->left == rhsRnd && itLB->right == rhsRnd);  // exactly
                    } break;
                    case CMPT_LT_0:
                    case CMPT_LE_0: {
                      auto itUB = sDomain.upper_bound(rhsUp);
                      bool fInner = false;
                      if (sDomain.begin() != itUB) {
                        --itUB;
                        if (itUB->right > rhs) {
                          fInner = true;
                        }
                      }
                      fUseDD = !fInner;
                    } break;
                    case CMPT_GT_0:
                    case CMPT_GE_0: {
                      auto itLB = sDomain.lower_bound(rhsDown);
                      bool fInner = false;
                      if (sDomain.begin() != itLB) {
                        --itLB;
                        if (itLB->right >= rhs) {
                          fInner = true;
                        }
                      }
                      fUseDD = !fInner;
                    } break;
                    default:
                      MZN_MIPD_assert_hard_msg(0, "Unknown halfreif cmp type");
                  }
                }
                if (fUseDD) {  // use sDomain
                  if (CMPT_EQ_0 == nCmpType_ADAPTED) {
                    relateReifFlag(pCall->arg(1), {{rhsRnd, rhsRnd}}, RIT_Halfreif);
                  } else if (nCmpType_ADAPTED < 0) {
                    relateReifFlag(pCall->arg(1), {{IntvReal::infMinus(), rhsDown}}, RIT_Halfreif);
                  } else {
                    relateReifFlag(pCall->arg(1), {{rhsUp, IntvReal::infPlus()}}, RIT_Halfreif);
                  }
                } else {  // use big-M
                  DBGOUT_MIPD("   AUX BY BIG-Ms: ");
                  const bool fLE = (CMPT_EQ_0 == nCmpType_ADAPTED || 0 > nCmpType_ADAPTED);
                  const bool fGE = (CMPT_EQ_0 == nCmpType_ADAPTED || 0 < nCmpType_ADAPTED);
                  // Take integer || float indicator version, depending on the constrained var:
                  const int nIdxInd =  // (VT_Int==dct.nVarType) ?
                                       //          No:             vd->ti()->type().isint() ? 1 : 2;
                      cls.varRef1->ti()->type().isint()
                          ? 1
                          : 2;  // need the type of the variable to be constr
                  MZN_MIPD_assert_hard(static_cast<unsigned int>(nIdxInd) < pCall->argCount());
                  Expression* pInd = pCall->arg(nIdxInd);
                  if (fLE && rhs < bnds.right) {
                    if (rhs >= bnds.left) {
                      std::vector<double> coefs = {1.0, bnds.right - rhs};
                      // Use the float version of indicator:
                      std::vector<Expression*> vars = {cls.varRef1->id(), pInd};
                      addLinConstr(coefs, vars, CMPT_LE, bnds.right);
                    } else {
                      setVarDomain(MIPD::expr2VarDecl(pInd), 0.0, 0.0);
                    }
                  }
                  if (fGE && rhs > bnds.left) {
                    if (rhs <= bnds.right) {
                      std::vector<double> coefs = {-1.0, rhs - bnds.left};
                      std::vector<Expression*> vars = {cls.varRef1->id(), pInd};
                      addLinConstr(coefs, vars, CMPT_LE, -bnds.left);
                    } else {
                      setVarDomain(MIPD::expr2VarDecl(pInd), 0.0, 0.0);
                    }
                  }
                }
              }
              break;
            case CT_Encode:
              // See if any further constraints here?                             TODO
              break;
            default:
              MZN_MIPD_assert_hard_msg(0, "Unknown constraint type");
          }
          pItem->remove();  // removing the call
        }
        // removing the eq_encoding call
        if (mipd._vVarDescr[vd->payload()].pEqEncoding != nullptr) {
          mipd._vVarDescr[vd->payload()].pEqEncoding->remove();
        }
      }
    }

    /// sets varFlag = || <= sum( intv.varFlag : SS )
    void relateReifFlag(Expression* expFlag, const SetOfIntvReal& SS, EnumReifType nRT = RIT_Reif) {
      MZN_MIPD_assert_hard(RIT_Reif == nRT || RIT_Halfreif == nRT);
      //         MZN_MIPD_assert_hard( sDomain.size()>=2 );
      VarDecl* varFlag = MIPD::expr2VarDecl(expFlag);
      std::vector<Expression*> vIntvFlags;
      if (cls.fRef1HasEqEncode) {  // use eq_encoding
        MZN_MIPD_assert_hard(varFlag->type().isint());
        std::vector<Expression*> pp;
        auto bnds = sDomain.getBounds();
        const long long iMin = mipd.expr2ExprArray(
            Expression::cast<Call>(mipd._vVarDescr[cls.varRef1->payload()].pEqEncoding->e())
                ->arg(1),
            pp);
        MZN_MIPD_assert_hard(pp.size() >= bnds.right - bnds.left + 1);
        MZN_MIPD_assert_hard(iMin <= bnds.left);
        for (const auto& intv : SS) {
          for (long long vv = static_cast<long long>(std::max(double(iMin), ceil(intv.left)));
               vv <= static_cast<long long>(
                         std::min(static_cast<double>(iMin + pp.size() - 1), floor(intv.right)));
               ++vv) {
            vIntvFlags.push_back(pp[vv - iMin]);
          }
        }
      } else {
        MZN_MIPD_assert_hard(varFlag->type().isint());
        for (const auto& intv : SS) {
          auto it1 = sDomain.lower_bound(intv.left);
          auto it2 = sDomain.upper_bound(intv.right);
          auto it11 = it1;
          // Check that we are looking ! into a subinterval:
          if (sDomain.begin() != it11) {
            --it11;
            MZN_MIPD_assert_hard(it11->right < intv.left);
          }
          auto it12 = it2;
          if (sDomain.begin() != it12) {
            --it12;
            MZN_MIPD_assert_hard_msg(it12->right <= intv.right,
                                     "  relateReifFlag for " << intv << " in " << sDomain);
          }
          for (it12 = it1; it12 != it2; ++it12) {
            if (it12->varFlag != nullptr) {
              vIntvFlags.push_back(it12->varFlag->id());
            } else {
              MZN_MIPD_assert_hard(1 == sDomain.size());
              vIntvFlags.push_back(IntLit::a(1));  // just a constant then
            }
          }
        }
      }
      if (!vIntvFlags.empty()) {
        // Could find out if reif is true                  -- TODO && see above for 1 subinterval
        std::vector<double> onesm(vIntvFlags.size(), -1.0);
        onesm.push_back(1.0);
        vIntvFlags.push_back(varFlag->id());
        EnumCmpType nCmpType = (RIT_Reif == nRT) ? CMPT_EQ : CMPT_LE;
        addLinConstr(onesm, vIntvFlags, nCmpType, 0.0);
      } else {  // the reif is false
        setVarDomain(varFlag, 0.0, 0.0);
      }
    }

    static void setVarDomain(VarDecl* vd, double lb, double ub) {
      // need to check if the new range is in the previous bounds...   TODO
      if (vd->type().isfloat()) {
        //           if ( 0.0==lb && 0.0==ub ) {
        auto* newDom =
            new BinOp(Location().introduce(), FloatLit::a(lb), BOT_DOTDOT, FloatLit::a(ub));
        newDom->type(Type::parsetfloat());
        vd->ti()->domain(newDom);
        DBGOUT_MIPD("  NULL OUT:  " << vd->id()->str());
        //           }
      } else if (vd->type().isint() || vd->type().isbool()) {
        auto* newDom = new SetLit(
            Location().introduce(),
            IntSetVal::a(static_cast<long long int>(lb), static_cast<long long int>(ub)));
        newDom->type(Type::parsetint());
        //           TypeInst* nti = copy(mipd.getEnv()->envi(),varFlag->ti())->cast<TypeInst>();
        //           nti->domain(newDom);
        vd->ti()->domain(newDom);
      } else {
        MZN_MIPD_assert_hard_msg(0, "Unknown var type ");
      }
    }

    VarDecl* addIntVar(double LB, double UB) {
      //         GCLock lock;
      // Cache them? Only location can be different                    TODO
      auto* newDom =
          new SetLit(Location().introduce(),
                     IntSetVal::a(static_cast<long long int>(LB), static_cast<long long int>(UB)));
      newDom->type(Type::parsetint());
      auto* ti = new TypeInst(Location().introduce(), Type::varint(), newDom);
      auto* newVar = new VarDecl(Location().introduce(), ti, mipd.getEnv()->envi().genId());
      newVar->flat(newVar);
      mipd.getEnv()->envi().flatAddItem(VarDeclI::a(Location().introduce(), newVar));
      return newVar;
    }

    void addLinConstr(std::vector<double>& coefs, std::vector<Expression*>& vars,
                      EnumCmpType nCmpType, double rhs) {
      std::vector<Expression*> args(3);
      MZN_MIPD_assert_hard(vars.size() >= 2);
      for (auto* v : vars) {
        MZN_MIPD_assert_hard(&v);
        //             throw std::string("addLinConstr: &var=NULL");
        MZN_MIPD_assert_hard_msg(
            Expression::isa<Id>(v) || Expression::isa<IntLit>(v) || Expression::isa<FloatLit>(v),
            "  expression at " << v << " eid = " << Expression::eid(v)
                               << " while E_INTLIT=" << Expression::E_INTLIT);
        //             throw std::string("addLinConstr: only id's as variables allowed");
      }
      MZN_MIPD_assert_hard(coefs.size() == vars.size());
      MZN_MIPD_assert_hard(CMPT_EQ == nCmpType || CMPT_LE == nCmpType);
      DBGOUT_MIPD_SELF(  // LinEq leq; leq.coefs=coefs; leq.vd=vars; leq.rhs=rhs;
          DBGOUT_MIPD_FLUSH(" ADDING " << (CMPT_EQ == nCmpType ? "LIN_EQ" : "LIN_LE") << ": [ ");
          for (auto c : coefs) DBGOUT_MIPD_FLUSH(c << ','); DBGOUT_MIPD_FLUSH(" ] * [ ");
          for (auto v : vars) {
            MZN_MIPD_assert_hard(!v->isa<VarDecl>());
            if (v->isa<Id>()) DBGOUT_MIPD_FLUSH(v->dynamicCast<Id>()->str() << ',');
            //             else if ( v->isa<VarDecl>() )
            //               MZN_MIPD_assert_hard ("addLinConstr: only id's as variables allowed");
            else
              DBGOUT_MIPD_FLUSH(mipd.expr2Const(v) << ',');
          } DBGOUT_MIPD(" ] " << (CMPT_EQ == nCmpType ? "== " : "<= ") << rhs););
      std::vector<Expression*> nc_c;
      std::vector<Expression*> nx;
      bool fFloat = false;
      for (auto* v : vars) {
        if (!Expression::type(v).isint()) {
          fFloat = true;
          break;
        }
      }
      auto sName = Constants::constants().ids.float_.lin_eq;  // "int_lin_eq";
      FunctionI* fDecl = mipd.float_lin_eq;
      if (fFloat) {  // MZN_MIPD_assert_hard all vars of same type     TODO
        for (int i = 0; i < vars.size(); ++i) {
          if (fabs(coefs[i]) > 1e-8)  /// Only add terms with non-0 coefs. TODO Eps=param
          {
            nc_c.push_back(FloatLit::a(coefs[i]));
            if (Expression::type(vars[i]).isint()) {
              std::vector<Expression*> i2f_args(1);
              i2f_args[0] = vars[i];
              Call* i2f =
                  Call::a(Location().introduce(), Constants::constants().ids.int2float, i2f_args);
              i2f->type(Type::varfloat());
              i2f->decl(mipd.getEnv()->model()->matchFn(mipd.getEnv()->envi(), i2f, false));
              EE ret = flat_exp(mipd.getEnv()->envi(), Ctx(), i2f, nullptr,
                                Constants::constants().varTrue);
              nx.push_back(ret.r());
            } else {
              nx.push_back(vars[i]);  // ->id();   once passing a general expression
            }
          }
        }
        args[2] = FloatLit::a(rhs);
        Expression::type(args[2], Type::parfloat(0));
        args[0] = new ArrayLit(Location().introduce(), nc_c);
        Expression::type(args[0], Type::parfloat(1));
        args[1] = new ArrayLit(Location().introduce(), nx);
        Expression::type(args[1], Type::varfloat(1));
        if (CMPT_LE == nCmpType) {
          sName = Constants::constants().ids.float_.lin_le;  // "float_lin_le";
          fDecl = mipd.float_lin_le;
        }
      } else {
        for (int i = 0; i < vars.size(); ++i) {
          if (fabs(coefs[i]) > 1e-8)  /// Only add terms with non-0 coefs. TODO Eps=param
          {
            nc_c.push_back(IntLit::a(static_cast<long long int>(coefs[i])));
            nx.push_back(vars[i]);  //->id();
          }
        }
        args[2] = IntLit::a(static_cast<long long int>(rhs));
        Expression::type(args[2], Type::parint(0));
        args[0] = new ArrayLit(Location().introduce(), nc_c);
        Expression::type(args[0], Type::parint(1));
        args[1] = new ArrayLit(Location().introduce(), nx);
        Expression::type(args[1], Type::varint(1));
        if (CMPT_LE == nCmpType) {
          sName = Constants::constants().ids.int_.lin_le;  // "int_lin_le";
          fDecl = mipd.int_lin_le;
        } else {
          sName = Constants::constants().ids.int_.lin_eq;  // "int_lin_eq";
          fDecl = mipd.int_lin_eq;
        }
      }
      if (mipd.getEnv()->envi().cseMapEnd() != mipd.getEnv()->envi().cseMapFind(args[0])) {
        DBGOUT_MIPD_FLUSH(" Found expr ");
        DBGOUT_MIPD_SELF(debugprint(args[0]));
      }
      auto* nc = Call::a(Location().introduce(), ASTString(sName), args);
      nc->type(Type::varbool());
      nc->decl(fDecl);
      mipd.getEnv()->envi().flatAddItem(new ConstraintI(Location().introduce(), nc));
    }

    /// domain / reif set of one variable into that for a!her
    void convertIntSet(Expression* e, SetOfIntvReal& s, VarDecl* varTarget, double A, double B) {
      MZN_MIPD_assert_hard(A != 0.0);
      if (Expression::type(e).isIntSet()) {
        IntSetVal* S = eval_intset(mipd.getEnv()->envi(), e);
        IntSetRanges domr(S);
        for (; domr(); ++domr) {  // * A + B
          IntVal mmin = domr.min();
          IntVal mmax = domr.max();
          if (A < 0.0) {
            std::swap(mmin, mmax);
          }
          s.insert(IntvReal(  // * A + B
              mmin.isFinite() ? rndUpIfInt(varTarget, (static_cast<double>(mmin.toInt()) * A + B))
                              : IntvReal::infMinus(),
              mmax.isFinite() ? rndDownIfInt(varTarget, (static_cast<double>(mmax.toInt()) * A + B))
                              : IntvReal::infPlus()));
        }
      } else {
        assert(Expression::type(e).isFloatSet());
        FloatSetVal* S = eval_floatset(mipd.getEnv()->envi(), e);
        FloatSetRanges domr(S);
        for (; domr(); ++domr) {  // * A + B
          FloatVal mmin = domr.min();
          FloatVal mmax = domr.max();
          if (A < 0.0) {
            std::swap(mmin, mmax);
          }
          s.insert(IntvReal(  // * A + B
              mmin.isFinite() ? rndUpIfInt(varTarget, (mmin.toDouble() * A + B))
                              : IntvReal::infMinus(),
              mmax.isFinite() ? rndDownIfInt(varTarget, (mmax.toDouble() * A + B))
                              : IntvReal::infPlus()));
        }
      }
    }

    /// compute the delta for float strict ineq
    static double computeDelta(VarDecl* var, VarDecl* varOrig, IntvReal bnds, double A, Call* pCall,
                               int nArg) {
      double delta = varOrig->type().isfloat()
                         ? MIPD::expr2Const(pCall->arg(nArg))
                         // * ( bnds.right-bnds.left )   ABANDONED 12.4.18 due to #207
                         : std::fabs(A);  // delta should be scaled as well
      if (var->type().isint()) {          // the projected-onto variable
        delta = std::max(1.0, delta);
      }
      return delta;
    }
  };  // class DomainDecomp

  /// Vars without explicit clique still need a decomposition.
  /// Have !iced all _POSTs, set_in's && eq_encode's to it BEFORE
  /// In each clique, relate all vars to one chosen
  /// Find all "smallest rel. factor" variables, integer && with eq_encode if avail
  /// Re-relate all vars to it
  /// Refer all _POSTs && dom() to it
  /// build domain decomposition
  /// Implement all domain constraints, incl. possible corresp, of eq_encode's
  ///
  /// REMARKS.
  /// ! impose effects of integrality scaling (e.g., int v = int k/3)
  /// BUT when using k's eq_encode?
  /// And when subdividing into intervals
  bool decomposeDomains() {
    //       for (int iClq=0; iClq<_aCliques.size(); ++iClq ) {
    //         TClique& clq = _aCliques[iClq];
    //       }
    bool fRetTrue = true;
    for (int iVar = 0; iVar < _vVarDescr.size(); ++iVar) {
      //         VarDescr& var = _vVarDescr[iVar];
      if (_vVarDescr[iVar].fDomainConstrProcessed == 0U) {
        GCLock lock;
        DomainDecomp dd(this, iVar);
        dd.doProcess();
        _vVarDescr[iVar].fDomainConstrProcessed = 1U;
      }
    }
    // Clean up _POSTs:
    for (auto& vVar : _vVarDescr) {
      for (auto* pCallI : vVar.aCalls) {
        pCallI->remove();
      }
      if (vVar.pEqEncoding != nullptr) {
        vVar.pEqEncoding->remove();
      }
    }
    return fRetTrue;
  }

  static VarDecl* expr2VarDecl(Expression* arg) {
    // The requirement to have actual variable objects
    // might be a limitation if more optimizations are done before...
    // Might need to flexibilize this                       TODO
    //       MZN_MIPD_assert_hard_msg( ! arg->dynamicCast<IntLit>(),
    //                                  "Expression " << *arg << " is an IntLit!" );
    //       MZN_MIPD_assert_hard( ! arg->dynamicCast<FloatLit>() );
    //       MZN_MIPD_assert_hard( ! arg->dynamicCast<BoolLit>() );
    Id* id = Expression::dynamicCast<Id>(arg);
    //       MZN_MIPD_assert_hard(id);
    if (nullptr == id) {
      return nullptr;  // the call using this should be ignored?
    }
    VarDecl* vd = id->decl();
    MZN_MIPD_assert_hard(vd);
    return vd;
  }

  /// Fills the vector of vardecls && returns the least index of the array
  template <class Array>
  long long expr2DeclArray(Expression* arg, Array& aVD) {
    ArrayLit* al = eval_array_lit(getEnv()->envi(), arg);
    checkOrResize(aVD, al->size());
    for (unsigned int i = 0; i < al->size(); i++) {
      aVD[i] = expr2VarDecl((*al)[i]);
    }
    return al->min(0);
  }

  /// Fills the vector of expressions && returns the least index of the array
  template <class Array>
  long long expr2ExprArray(Expression* arg, Array& aVD) {
    ArrayLit* al = eval_array_lit(getEnv()->envi(), arg);
    checkOrResize(aVD, al->size());
    for (unsigned int i = 0; i < al->size(); i++) {
      aVD[i] = ((*al)[i]);
    }
    return al->min(0);
  }

  static double expr2Const(Expression* arg) {
    if (auto* il = Expression::dynamicCast<IntLit>(arg)) {
      return (static_cast<double>(IntLit::v(il).toInt()));
    }
    if (auto* fl = Expression::dynamicCast<FloatLit>(arg)) {
      return (FloatLit::v(fl).toDouble());
    }
    if (auto* bl = Expression::dynamicCast<BoolLit>(arg)) {
      return static_cast<double>(bl->v());
    }
    MZN_MIPD_assert_hard_msg(0, "unexpected expression instead of an int/float/bool literal: eid="
                                    << Expression::eid(arg)
                                    << " while E_INTLIT=" << Expression::E_INTLIT);

    return 0.0;
  }

  template <class Container, class Elem = int, size_t = 0>
  void checkOrResize(Container& cnt, size_t sz) {
    cnt.resize(sz);
  }

  template <class Elem, size_t N>
  void checkOrResize(std::array<Elem, N>& cnt, size_t sz) {
    MZN_MIPD_assert_hard(cnt.size() == sz);
  }

  template <class Array>
  void expr2Array(Expression* arg, Array& vals) {
    ArrayLit* al = eval_array_lit(getEnv()->envi(), arg);
    //       if ( typeid(typename Array::pointer) == typeid(typename Array::iterator) )  // fixed
    //       array
    //         MZN_MIPD_assert_hard( vals.size() == al->v().size() );
    //       else
    //         vals.resize( al->v().size() );
    checkOrResize(vals, al->size());
    for (unsigned int i = 0; i < al->size(); i++) {
      vals[i] = expr2Const((*al)[i]);
    }
  }

  void printStats(std::ostream& os) {
    //       if ( _aCliques.empty() )
    //         return;
    if (_vVarDescr.empty()) {
      return;
    }
    int nc = 0;
    for (auto& cl : _aCliques) {
      if (!cl.empty()) {
        ++nc;
      }
    }
    for (auto& var : _vVarDescr) {
      if (0 > var.nClique) {
        ++nc;  // 1-var cliques
      }
    }
    //       os << "N cliques " << _aCliques.size() << "  total, "
    //          << nc << " final" << std::endl;
    MZN_MIPD_assert_hard(nc);
    MIPD_stats[N_POSTs_eqNmapsize] = static_cast<double>(_mNViews.size());
    double nSubintvAve = MIPD_stats[N_POSTs_NSubintvSum] / nc;
    MZN_MIPD_assert_hard(MIPD_stats[N_POSTs_NSubintvSum]);
    double dSubSizeAve = MIPD_stats[N_POSTs_SubSizeSum] / MIPD_stats[N_POSTs_NSubintvSum];
    os << " " << MIPD_stats[N_POSTs_all]
       << " POSTs"
#ifdef MZN_MIPDOMAINS_PRINTMORESTATS
          " [ ";
    MZN_MIPDOMAINS_PRINTMORESTATS
    for (int i = N_POSTs_intCmpReif; i <= N_POSTs_floatAux; ++i) {
      os << MIPD_stats[i] << ',';
    }
    os << " ], LINEQ [ ";
    for (int i = N_POSTs_eq2intlineq; i <= N_POSTs_eqNmapsize; ++i) {
      os << MIPD_stats[i] << ',';
    }
    os << " ]"
#endif
          ", "
       << MIPD_stats[N_POSTs_varsDirect] << " / " << MIPD_stats[N_POSTs_varsInvolved] << " vars, "
       << nc << " cliques, " << MIPD_stats[N_POSTs_NSubintvMin] << " / " << nSubintvAve << " / "
       << MIPD_stats[N_POSTs_NSubintvMax] << " NSubIntv m/a/m, " << MIPD_stats[N_POSTs_SubSizeMin]
       << " / " << dSubSizeAve << " / " << MIPD_stats[N_POSTs_SubSizeMax] << " SubIntvSize m/a/m, "
       << MIPD_stats[N_POSTs_cliquesWithEqEncode] << "+" << MIPD_stats[N_POSTs_clEEEnforced] << "("
       << MIPD_stats[N_POSTs_clEEFound] << ")" << " clq eq_encoded ";
    //       << std::flush
    if (TCliqueSorter::LinEqGraph::dCoefMax > 1.0) {
      os << TCliqueSorter::LinEqGraph::dCoefMin << "--" << TCliqueSorter::LinEqGraph::dCoefMax
         << " abs coefs";
    }
    os << std::endl;
  }

};  // namespace MiniZinc

template <class N>
template <class N1>
void SetOfIntervals<N>::intersect(const SetOfIntervals<N1>& s2) {
  if (s2.empty()) {
    this->clear();
    return;
  }
  this->cutOut(Interval<N>(Interval<N>::infMinus(), (N)s2.begin()->left));
  for (auto is2 = s2.begin(); is2 != s2.end(); ++is2) {
    auto is2next = is2;
    ++is2next;
    this->cutOut(
        Interval<N>(is2->right, s2.end() == is2next ? Interval<N>::infPlus() : (N)is2next->left));
  }
}
template <class N>
template <class N1>
void SetOfIntervals<N>::cutDeltas(const SetOfIntervals<N1>& s2, N1 delta) {
  if (this->empty()) {
    return;
  }
  // What if distance < delta?                 TODO
  for (auto is2 : s2) {
    if (is2.left > Interval<N1>::infMinus()) {
      this->cutOut(Interval<N>(is2.left - delta, is2.left));
    }
    if (is2.right < Interval<N1>::infPlus()) {
      this->cutOut(Interval<N>(is2.right, is2.right + delta));
    }
  }
}
template <class N>
void SetOfIntervals<N>::cutOut(const Interval<N>& intv) {
  DBGOUT_MIPD_FLUSH("Cutting " << intv << " from " << (*this));
  if (this->empty()) {
    return;
  }
  auto it1 = (Interval<N>::infMinus() == intv.left)
                 ? this->lower_bound(Interval<N>(intv.left, intv.right))
                 : this->upper_bound(Interval<N>(intv.left, intv.right));
  auto it2Del1 = it1;  // from which to delete
  if (this->begin() != it1) {
    --it1;
    const N it1l = it1->left;
    MZN_MIPD_assert_hard(it1l <= intv.left);
    if (it1->right > intv.left) {  // split it
      it2Del1 = split(it1, intv.left).second;
      //         it1->right = intv.left;  READ-ONLY
      //         this->erase(it1);
      //         it1 = this->end();
      //         auto iR = this->insert( Interval<N>( it1l, intv.left ) );
      //         MZN_MIPD_assert_hard( iR.second );
    }
  }
  DBGOUT_MIPD_FLUSH("; after split 1: " << (*this));
  // Processing the right end:
  auto it2 = this->lower_bound(Interval<N>(intv.right, intv.right + 1));
  auto it2Del2 = it2;
  if (this->begin() != it2) {
    --it2;
    MZN_MIPD_assert_hard(it2->left < intv.right);
    const N it2r = it2->right;
    if ((Interval<N>::infPlus() == intv.right) ? (it2r > intv.right)
                                               : (it2r >= intv.right)) {  // >=: split it
      //         it2Del2 = split( it2, intv.right ).second;
      const bool fEEE = (it2Del1 == it2);
      this->erase(it2);
      it2 = this->end();
      it2Del2 = this->insert(Interval<N>(intv.right, it2r));
      if (fEEE) {
        it2Del1 = it2Del2;
      }
    }
  }
  DBGOUT_MIPD_FLUSH("; after split 2: " << (*this));
  DBGOUT_MIPD_FLUSH("; cutting out: " << SetOfIntervals(it2Del1, it2Del2));
#ifdef MZN_DBG_CHECK_ITER_CUTOUT
  {
    auto it = this->begin();
    int nO = 0;
    do {
      if (it == it2Del1) {
        MZN_MIPD_assert_hard(!nO);
        ++nO;
      }
      if (it == it2Del2) {
        MZN_MIPD_assert_hard(1 == nO);
        ++nO;
      }
      if (this->end() == it) {
        break;
      }
      ++it;
    } while (true);
    MZN_MIPD_assert_hard(2 == nO);
  }
#endif
  this->erase(it2Del1, it2Del2);
  DBGOUT_MIPD(" ... gives " << (*this));
}
template <class N>
typename SetOfIntervals<N>::SplitResult SetOfIntervals<N>::split(iterator& it, N pos) {
  MZN_MIPD_assert_hard(pos >= it->left);
  MZN_MIPD_assert_hard(pos <= it->right);
  Interval<N> intvOld = *it;
  this->erase(it);
  auto it_01 = this->insert(Interval<N>(intvOld.left, pos));
  auto it_02 = this->insert(Interval<N>(pos, intvOld.right));
  it = this->end();
  return std::make_pair(it_01, it_02);
}
template <class N>
Interval<N> SetOfIntervals<N>::getBounds() const {
  if (this->empty()) {
    return Interval<N>(Interval<N>::infPlus(), Interval<N>::infMinus());
  }
  auto it2 = this->end();
  --it2;
  return Interval<N>(this->begin()->left, it2->right);
}
template <class N>
bool SetOfIntervals<N>::checkFiniteBounds() {
  if (this->empty()) {
    return false;
  }
  auto bnds = getBounds();
  return bnds.left > Interval<N>::infMinus() && bnds.right < Interval<N>::infPlus();
}
template <class N>
bool SetOfIntervals<N>::checkDisjunctStrict() {
  for (auto it = this->begin(); it != this->end(); ++it) {
    if (it->left > it->right) {
      return false;
    }
    if (this->begin() != it) {
      auto it_1 = it;
      --it_1;
      if (it_1->right >= it->left) {
        return false;
      }
    }
  }
  return true;
}
/// Assumes integer interval bounds
template <class N>
int SetOfIntervals<N>::cardInt() const {
  int nn = 0;
  for (auto it = this->begin(); it != this->end(); ++it) {
    ++nn;
    nn += int(round(it->right - it->left));
  }
  return nn;
}
template <class N>
N SetOfIntervals<N>::maxInterval() const {
  N ll = -1;
  for (auto it = this->begin(); it != this->end(); ++it) {
    ll = std::max(ll, it->right - it->left);
  }
  return ll;
}
/// Assumes integer interval bounds
template <class N>
void SetOfIntervals<N>::split2Bits() {
  Base bsNew;
  for (auto it = this->begin(); it != this->end(); ++it) {
    for (int v = static_cast<int>(round(it->left)); v <= round(it->right); ++v) {
      bsNew.insert(Intv(v, v));
    }
  }
  *(Base*)this = std::move(bsNew);
}

bool MIPD::fVerbose = false;

void mip_domains(Env& env, bool fVerbose, int nmi, double dmd) {
  MIPD mipd(&env, fVerbose, nmi, dmd);
  if (!mipd.doMIPdomains()) {
    GCLock lock;
    env.envi().fail();
  }
}

double MIPD::TCliqueSorter::LinEqGraph::dCoefMin = +1e100;
double MIPD::TCliqueSorter::LinEqGraph::dCoefMax = -1e100;

}  // namespace MiniZinc