1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
|
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Guido Tack <guido.tack@monash.edu>
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <minizinc/ast.hh>
#include <minizinc/astiterator.hh>
#include <minizinc/flatten_internal.hh>
#include <minizinc/hash.hh>
#include <minizinc/prettyprinter.hh>
#include <minizinc/type.hh>
#include <minizinc/typecheck.hh>
namespace MiniZinc {
namespace {
// Type-inst occurrence (indexed into the types vector)
struct TIOcc {
// index in the types vector
unsigned int idx;
// index_set, or -1
int idxSet;
// Constructor
TIOcc(unsigned int idx0, int idxSet0 = -1) : idx(idx0), idxSet(idxSet0) {}
};
typedef std::unordered_map<ASTString, std::vector<TIOcc>> TIOccMap;
Type type_meet(const Type& t0, const Type& t1) {
Type m = t0;
if (t0.bt() == Type::BT_FLOAT || t1.bt() == Type::BT_FLOAT) {
m.bt(Type::BT_FLOAT);
} else if (t0.bt() == Type::BT_INT || t1.bt() == Type::BT_INT) {
m.bt(Type::BT_INT);
if (t0.typeId() != t1.typeId()) {
m.typeId(0);
}
}
return m;
}
/// Return base type of TIId occurrence \a occ
/// If \a occ refers to the domain, return the base type of the variable
/// If \a occ refers to an index, return the enum type or int for that index
Type base_type(EnvI& env, std::vector<Type>& types, const TIOcc& occ) {
Type cur_t;
if (occ.idxSet == -1) {
cur_t = types[occ.idx];
if (cur_t.dim() > 0 && cur_t.typeId() != 0) {
const auto& aes = env.getArrayEnum(cur_t.typeId());
cur_t.typeId(0);
cur_t.dim(0);
cur_t.typeId(aes[aes.size() - 1]);
}
} else {
if (types[occ.idx].typeId() != 0) {
const auto& aes = env.getArrayEnum(types[occ.idx].typeId());
cur_t = Type::parenum(aes[occ.idxSet]);
} else {
cur_t = Type::parint();
}
cur_t.st(types[occ.idx].st());
}
return cur_t;
}
void adapt_to_base_type(EnvI& env, std::vector<Type>& types, const TIOcc& occ, Type bt) {
if (occ.idxSet == -1) {
Type& t = types[occ.idx];
t.bt(bt.bt());
if (t.typeId() != 0 && bt.typeId() == 0) {
if (t.dim() > 0) {
const auto& aes = env.getArrayEnum(types[occ.idx].typeId());
if (aes[aes.size() - 1] != 0) {
std::vector<unsigned int> et = aes;
et[aes.size() - 1] = 0;
t.typeId(env.registerArrayEnum(et));
}
} else {
t.typeId(0);
}
}
} else {
Type& t = types[occ.idx];
if (t.typeId() != 0 && bt.typeId() == 0) {
if (t.dim() > 0) {
const auto& aes = env.getArrayEnum(types[occ.idx].typeId());
if (aes[occ.idxSet] != 0) {
std::vector<unsigned int> et = aes;
et[occ.idxSet] = 0;
t.typeId(env.registerArrayEnum(et));
}
} else {
t.typeId(0);
}
}
}
}
void least_common_supertype(EnvI& env, Call* call, std::vector<Type>& types, TIOccMap& map,
ASTString v, const TIOcc& cur) {
auto& occs = map.emplace(v, std::vector<TIOcc>()).first->second;
Type cur_t = base_type(env, types, cur);
if (!occs.empty()) {
// Invariant: all recorded occurrences are already at the least common supertype
Type prevLcs = base_type(env, types, occs[0]);
Type lcs = type_meet(prevLcs, cur_t);
if (lcs != prevLcs) {
// need to change all other occurrences
for (const auto& o : occs) {
adapt_to_base_type(env, types, o, lcs);
}
}
// change current occurrence
adapt_to_base_type(env, types, cur, lcs);
}
occs.emplace_back(cur);
}
/// Return the types of the concrete instantiation of \a call
std::vector<Type> instantiated_types(EnvI& env, Call* call) {
// For each type-inst variable in the decl of the call,
// compute the common supertype of all arguments of that type-inst variable
FunctionI* decl = call->decl();
std::vector<Type> types(call->argCount());
TIOccMap ti_var_types;
for (unsigned int i = 0; i < call->argCount(); i++) {
types[i] = decl->param(i)->ti()->hasTiVariable() ? Expression::type(call->arg(i))
: decl->param(i)->ti()->type();
if (types[i].isbot()) {
if (decl->param(i)->ti()->type().st() == Type::ST_SET) {
// array of bot can be used for array of set of ... param
types[i].st(Type::ST_SET);
}
auto bt = decl->param(i)->ti()->type().bt();
if (bt != Type::BT_TUPLE && bt != Type::BT_RECORD && bt != Type::BT_TOP) {
types[i].bt(bt);
}
}
TypeInst* ti = decl->param(i)->ti();
for (int j = 0; j < static_cast<int>(ti->ranges().size()); j++) {
if (TIId* tiid = Expression::dynamicCast<TIId>(ti->ranges()[j]->domain())) {
least_common_supertype(env, call, types, ti_var_types, tiid->v(), TIOcc(i, j));
}
}
if (TIId* tiid = Expression::dynamicCast<TIId>(ti->domain())) {
least_common_supertype(env, call, types, ti_var_types, tiid->v(), TIOcc(i));
}
}
return types;
}
struct InstantiatedItem {
ASTString ident;
std::vector<Type> argTypes;
InstantiatedItem() {}
InstantiatedItem(EnvI& env, ASTString ident0, std::vector<Type> argTypes0)
: ident(ident0), argTypes(std::move(argTypes0)) {}
bool operator==(const InstantiatedItem& ia) const {
if (ident != ia.ident || argTypes.size() != ia.argTypes.size()) {
return false;
}
for (unsigned int i = 0; i < argTypes.size(); i++) {
if (argTypes[i] != ia.argTypes[i]) {
return false;
}
if (argTypes[i].typeId() != ia.argTypes[i].typeId()) {
return false;
}
}
return true;
}
};
struct IAHash {
size_t operator()(const InstantiatedItem& ia) const {
/// TODO: better hash function
return ia.ident.hash();
}
};
struct InstanceMapItem {
ASTString baseName;
bool exists;
int instanceId;
std::vector<Type> argTypes;
bool parExists;
std::vector<Type> parTypes;
InstanceMapItem(const ASTString baseName0, bool exists0, int instanceId0,
std::vector<Type> argTypes0, bool parExists0, std::vector<Type> parTypes0)
: baseName(std::move(baseName0)),
exists(exists0),
instanceId(instanceId0),
argTypes(std::move(argTypes0)),
parExists(parExists0),
parTypes(std::move(parTypes0)) {}
};
class InstanceMap {
private:
std::unordered_map<InstantiatedItem, int, IAHash> _map;
std::unordered_set<InstantiatedItem, IAHash> _instances;
int _instanceCount = 0;
public:
InstanceMapItem getOrInsert(EnvI& env, Call* call) {
auto argTypes = instantiated_types(env, call);
for (const auto& t : argTypes) {
assert(t.dim() >= 0);
}
auto baseName = call->id();
if (baseName.endsWith("_reif")) {
std::string reifName(baseName.c_str());
baseName = ASTString(reifName.substr(0, reifName.length() - 5));
argTypes.pop_back();
} else if (baseName.endsWith("_imp")) {
std::string impName(baseName.c_str());
baseName = ASTString(impName.substr(0, impName.length() - 4));
argTypes.pop_back();
}
auto parTypes = argTypes;
for (auto& t : parTypes) {
t.mkPar(env);
}
auto baseArgTypes = parTypes;
for (auto& t : baseArgTypes) {
t.mkPresent(env);
}
auto baseInstance =
_map.emplace(InstantiatedItem(env, call->id(), baseArgTypes), _instanceCount);
if (baseInstance.second) {
// Base instance not created yet, so use new instance ID
_instanceCount++;
}
auto instanceId = baseInstance.first->second;
auto concreteInstance = _instances.emplace(env, call->id(), argTypes);
auto parInstance = _instances.emplace(env, call->id(), parTypes);
return {baseName, !concreteInstance.second, instanceId,
argTypes, !parInstance.second, parTypes};
}
};
class ConcreteCallAgenda {
private:
std::vector<Call*> _agenda;
std::unordered_set<Call*> _seen;
public:
void push(Call* c) {
if (_seen.emplace(c).second) {
_agenda.push_back(c);
}
}
Call* back() const { return _agenda.back(); }
void pop() { _agenda.pop_back(); }
bool empty() const { return _agenda.empty(); }
};
class CollectConcreteCalls : public EVisitor {
public:
ConcreteCallAgenda& agenda;
CollectConcreteCalls(ConcreteCallAgenda& agenda0) : agenda(agenda0) {}
void vCall(Call* c) {
if (c->decl() != nullptr) {
if (c->decl()->e() != nullptr || (c->argCount() == 1 && c->id() == "enum_of")) {
if (c->decl()->isPolymorphic()) {
agenda.push(c);
}
}
}
}
};
class CollectConcreteCallsFromItems : public ItemVisitor {
public:
CollectConcreteCalls ccc;
CollectConcreteCallsFromItems(ConcreteCallAgenda& agenda0) : ccc(agenda0) {}
void vVarDeclI(VarDeclI* vdi) { top_down(ccc, vdi->e()); }
void vAssignI(AssignI* ai) { top_down(ccc, ai->e()); }
void vConstraintI(ConstraintI* ci) { top_down(ccc, ci->e()); }
void vSolveI(SolveI* si) {
if (si->e() != nullptr) {
top_down(ccc, si->e());
}
}
void vOutputI(OutputI* oi) { top_down(ccc, oi->e()); }
void vFunctionI(FunctionI* fi) {
// Check if function is polymorphic. If not, collect calls from body.
if (!fi->isPolymorphic()) {
top_down(ccc, fi->e());
top_down(ccc, fi->ti());
for (unsigned int i = 0; i < fi->paramCount(); i++) {
top_down(ccc, fi->param(i));
}
}
}
};
class Instantiator {
private:
EnvI& _env;
ConcreteCallAgenda& _agenda;
InstanceMap& _instanceMap;
TyperFn& _typer;
std::unique_ptr<Model> _specialised;
public:
Instantiator(EnvI& env, ConcreteCallAgenda& agenda, InstanceMap& instanceMap, TyperFn& typer)
: _env(env),
_agenda(agenda),
_instanceMap(instanceMap),
_typer(typer),
_specialised(new Model) {}
static bool walkTIMap(EnvI& env, ASTStringMap<Type>& ti_map, TypeInst* struct_ti,
StructType* tt) {
auto* al = Expression::cast<ArrayLit>(struct_ti->domain());
assert(al->size() == tt->size() ||
al->size() + 1 == tt->size()); // May have added concrete type for reification
for (unsigned int i = 0; i < al->size(); i++) {
auto* ti = Expression::cast<TypeInst>((*al)[i]);
Type curType = ti->type();
Type concrete_type = (*tt)[i];
curType.bt(concrete_type.bt());
curType.typeId(0);
curType.st(concrete_type.st());
if (curType.dim() == -1) {
curType.dim(concrete_type.dim());
}
if (curType.any()) {
curType.any(false);
if (curType.structBT()) {
curType.ot(Type::OT_PRESENT);
curType.ti(Type::TI_PAR);
curType.cv(false);
} else {
curType.ot(concrete_type.ot());
curType.ti(concrete_type.ti());
curType.cv(concrete_type.cv());
}
}
curType.typeId(concrete_type.typeId());
ti->type(curType);
if (TIId* tiid = Expression::dynamicCast<TIId>(ti->domain())) {
ti_map.emplace(tiid->v(), ti->ranges().empty() ? curType : curType.elemType(env));
if (curType.typeId() == 0) {
// replace tiid with empty domain
ti->domain(nullptr);
} else if (curType.structBT()) {
StructType* ctt = env.getStructType(curType);
// Create new TypeInst domain for struct argument
ti->setStructDomain(env, curType, true);
if (!walkTIMap(env, ti_map, ti, ctt)) {
return false;
}
} else {
auto enumId = curType.typeId();
if (curType.dim() != 0) {
const auto& aet = env.getArrayEnum(curType.typeId());
enumId = aet[aet.size() - 1];
}
if (enumId == 0) {
// replace tiid with empty domain
ti->domain(nullptr);
} else {
VarDeclI* enumVdi = env.getEnum(enumId);
ti->domain(enumVdi->e()->id());
}
}
} else if (curType.structBT()) {
assert(concrete_type.bt() == curType.bt());
assert(concrete_type.typeId() != 0);
if (!walkTIMap(env, ti_map, ti, env.getStructType(ti->type()))) {
return false;
}
}
for (unsigned int j = 0; j < ti->ranges().size(); j++) {
if (TIId* tiid = Expression::dynamicCast<TIId>(ti->ranges()[j]->domain())) {
if (tiid->isEnum()) {
// find concrete enum type
if (curType.typeId() == 0) {
// lct is not an enum type -> turn this one into a simple int
ti->ranges()[j]->domain(nullptr);
ti_map.emplace(tiid->v(), Type::parint());
} else {
const auto& aet = env.getArrayEnum(curType.typeId());
if (aet[j] == 0) {
// lct is not an enum type -> turn this one into a simple int
ti->ranges()[j]->domain(nullptr);
ti_map.emplace(tiid->v(), Type::parint());
} else {
ti->ranges()[j]->domain(nullptr);
ti->ranges()[j]->type(Type::parenum(aet[j]));
ti_map.emplace(tiid->v(), Type::parenum(aet[j]));
}
}
} else {
ti_map.emplace(tiid->v(), Type::parint(curType.dim()));
// add concrete number of ranges
std::vector<TypeInst*> newRanges(curType.dim());
for (int k = 0; k < curType.dim(); k++) {
newRanges[k] = new TypeInst(Location().introduce(), Type::parint());
}
ti->setRanges(newRanges);
break; // only one general tiid allowed in index set
}
}
}
if (ti->type().bt() == Type::BT_TUPLE) {
env.registerTupleType(ti);
} else if (ti->type().bt() == Type::BT_RECORD) {
env.registerRecordType(ti);
}
}
return true;
}
static void updateReturnTypeInst(EnvI& env, ASTStringMap<Type>& ti_map, TypeInst* ti) {
if (ti->type().bt() == Type::BT_TUPLE) {
auto* al = Expression::cast<ArrayLit>(ti->domain());
auto* st = env.getStructType(ti->type());
for (unsigned int i = 0; i < st->size(); i++) {
updateReturnTypeInst(env, ti_map, Expression::cast<TypeInst>((*al)[i]));
}
} else if (ti->type().bt() == Type::BT_RECORD) {
auto* al = Expression::cast<ArrayLit>(ti->domain());
auto* st = env.getStructType(ti->type());
for (unsigned int i = 0; i < st->size(); i++) {
updateReturnTypeInst(env, ti_map, Expression::cast<TypeInst>((*al)[i]));
}
} else if (TIId* tiid = Expression::dynamicCast<TIId>(ti->domain())) {
Type ret_type = ti_map.find(tiid->v())->second;
if (ret_type.dim() != 0 && ti->type().dim() == 0) {
ret_type = ret_type.elemType(env);
}
if (ret_type.structBT()) {
ti->setStructDomain(env, ret_type, false, false);
} else {
Type t = ti->type();
t.bt(ret_type.bt());
if (!tiid->isEnum()) {
t.st(ret_type.st());
}
if (t.any()) {
t.any(false);
t.ot(ret_type.ot());
t.ti(ret_type.ti());
}
ti->domain(nullptr);
auto typeId = ret_type.typeId();
if (typeId != 0 && ret_type.bt() == Type::BT_INT) {
if (ret_type.dim() != 0 && typeId != 0) {
const auto& aet = env.getArrayEnum(typeId);
typeId = aet[aet.size() - 1];
}
if (typeId != 0) {
VarDeclI* enumVdi = env.getEnum(typeId);
ti->domain(enumVdi->e()->id());
}
}
t.typeId(typeId);
ti->type(t);
}
}
// update index sets in return type
for (unsigned int i = 0; i < ti->ranges().size(); i++) {
if (TIId* tiid = Expression::dynamicCast<TIId>(ti->ranges()[i]->domain())) {
Type ret_type = ti_map.find(tiid->v())->second;
if (tiid->isEnum()) {
// find concrete enum type
if (ret_type.typeId() == 0) {
// not an enum type -> turn this one into a simple int
ti->ranges()[i]->domain(nullptr);
} else if (ret_type.dim() != 0) {
const auto& aet = env.getArrayEnum(ret_type.typeId());
if (aet[i] == 0) {
// not an enum type -> turn this one into a simple int
ti->ranges()[i]->domain(nullptr);
} else {
ti->ranges()[i]->domain(nullptr);
ti->ranges()[i]->type(Type::parenum(aet[i]));
}
} else {
ti->ranges()[i]->domain(nullptr);
ti->ranges()[i]->type(Type::parenum(ret_type.typeId()));
}
} else {
// add concrete number of ranges
std::vector<TypeInst*> newRanges(ret_type.dim());
for (int k = 0; k < ret_type.dim(); k++) {
newRanges[k] = new TypeInst(Location().introduce(), Type::parint());
}
auto t = ti->type();
t.typeId(0);
t.dim(ret_type.dim());
// Type ID is actually element type, array will be registered later
t.typeId(ti->type().typeId());
ti->type(t);
ti->setRanges(newRanges);
break; // only one general tiid allowed in index set
}
}
}
if (ti->type().dim() > 0 && !ti->type().structBT()) {
auto t = ti->type();
std::vector<unsigned int> enumIds(ti->type().dim() + 1, 0);
for (unsigned int i = 0; i < ti->ranges().size(); i++) {
enumIds[i] = ti->ranges()[i]->type().typeId();
}
enumIds[ti->type().dim()] = ti->type().typeId();
t.typeId(env.registerArrayEnum(enumIds));
ti->type(t);
} else if (ti->type().bt() == Type::BT_TUPLE) {
env.registerTupleType(ti);
} else if (ti->type().bt() == Type::BT_RECORD) {
env.registerRecordType(ti);
}
}
void operator()(Call* call) {
if (call->id() == _env.constants.ids.enumOf && call->argCount() == 1) {
// Rewrite to enum_of_internal with enum argument
auto enumId = Expression::type(call->arg(0)).typeId();
if (enumId != 0 && Expression::type(call->arg(0)).dim() != 0) {
const auto& enumIds = _env.getArrayEnum(enumId);
enumId = enumIds[enumIds.size() - 1];
}
call->id(ASTString(_env.constants.ids.enumOfInternal));
if (enumId != 0) {
VarDecl* enumDecl = _env.getEnum(enumId)->e();
call->arg(0, enumDecl->id());
} else {
GCLock lock;
IntSetVal* inf = IntSetVal::a(-IntVal::infinity(), IntVal::infinity());
call->arg(0, new SetLit(Location().introduce(), inf));
}
FunctionI* newDecl = _env.model->matchFn(_env, call, false);
call->decl(newDecl);
}
// Check if instance for this call already exists
auto lookup = _instanceMap.getOrInsert(_env, call);
auto instanceId = lookup.instanceId;
if (!lookup.exists) {
// new instance: create copies of non-reif, _reif and _imp function
std::vector<Type> concrete_types = lookup.argTypes;
auto* nonReif = _env.model->matchFn(_env, lookup.baseName, concrete_types, false);
// Push additional var bool for reified versions
concrete_types.push_back(Type::varbool());
auto* reified =
_env.model->matchFn(_env, _env.reifyId(lookup.baseName), concrete_types, false);
auto* halfReif =
_env.model->matchFn(_env, EnvI::halfReifyId(lookup.baseName), concrete_types, false);
assert(call->decl() == nonReif || call->decl() == reified || call->decl() == halfReif);
std::vector<FunctionI*> matches({nonReif, reified, halfReif});
if (!lookup.parExists) {
// Also create par version in case required by output.
// This is needed since if this instance can't be made par by the type checker,
// but we actually have a par version of the polymorphic function, we should use it.
std::vector<Type> concrete_types = lookup.parTypes;
auto* parNonReif = _env.model->matchFn(_env, lookup.baseName, concrete_types, false);
if (nonReif != nullptr && nonReif != parNonReif) {
matches.push_back(parNonReif);
}
concrete_types.push_back(Type::parbool());
auto* parReified =
_env.model->matchFn(_env, _env.reifyId(lookup.baseName), concrete_types, false);
if (parReified != nullptr && reified != parReified) {
matches.push_back(parReified);
}
auto* parHalfReif =
_env.model->matchFn(_env, EnvI::halfReifyId(lookup.baseName), concrete_types, false);
if (parHalfReif != nullptr && halfReif != parHalfReif) {
matches.push_back(parHalfReif);
}
}
for (auto* fi : matches) {
if (fi == nullptr) {
continue;
}
// Copy function (without following Ids or copying other function decls)
_typer.reset(_env, fi);
auto* fi_copy = copy(_env, fi, false, false, false)->cast<FunctionI>();
fi_copy->isMonomorphised(true);
// Rename copy
std::ostringstream oss;
oss << "\\" << instanceId << "@" << fi->id();
fi_copy->id(ASTString(oss.str()));
// Replace type-inst vars by concrete types
std::unordered_map<ASTString, Type> ti_map;
// Update parameter types
TypeList tt(concrete_types);
walkTIMap(_env, ti_map, fi_copy->paramTypes(), &tt);
// Update VarDecl types based on updated TypeInst objects
for (unsigned int i = 0; i < fi_copy->paramCount(); ++i) {
fi_copy->param(i)->type(fi_copy->param(i)->ti()->type());
}
// update return type
updateReturnTypeInst(_env, ti_map, fi_copy->ti());
if (fi_copy->e() == nullptr) {
// built-in function, have to redirect to original polymorphic built-in
std::vector<Expression*> args(fi_copy->paramCount());
for (unsigned int i = 0; i < fi_copy->paramCount(); i++) {
args[i] = fi_copy->param(i)->id();
}
Call* body = Call::a(Location().introduce(), fi->id(), args);
body->decl(fi);
body->type(fi_copy->ti()->type());
fi_copy->e(body);
} else {
// update all types in the body
_typer.retype(_env, fi_copy);
// put calls in the body on the agenda
CollectConcreteCalls ccc(_agenda);
top_down(ccc, fi_copy->e());
}
// TODO: Currently it's possible for us to actually be generating the same
// concrete instance again, even though instantiated_types() gave a different
// result. We should probably fix instantiated_types() to be more accurate.
if (_specialised->registerFn(_env, fi_copy, true, false)) {
_specialised->addItem(fi_copy);
if (call->decl() == fi) {
call->decl(fi_copy);
call->rehash();
}
} else if (call->decl() == fi) {
call->id(fi_copy->id());
FunctionI* newDecl = _specialised->matchFn(_env, call, false);
assert(newDecl != nullptr);
call->decl(newDecl);
call->rehash();
}
_typer.retype(_env, fi);
}
} else {
// match call to previously copied function
std::ostringstream oss;
oss << "\\" << instanceId << "@" << call->decl()->id();
call->id(ASTString(oss.str()));
FunctionI* newDecl = _specialised->matchFn(_env, call, false);
assert(newDecl != nullptr);
call->decl(newDecl);
call->rehash();
}
}
void finish() {
for (auto* it : *_specialised) {
auto* fi = it->cast<FunctionI>();
_env.model->registerFn(_env, fi, true);
_env.model->addItem(fi);
}
}
};
} // namespace
/*
Specialisation of parametric functions
After type checking:
- recursively collect all calls to parametric functions from
- toplevel variable declarations
- constraints
- solve item
- function decls that are not parametric
- all these calls have concrete types
- put these on the todo list, and for each item of the todo list:
- make copies of the parametric functions for the concrete types
- we cannot overload on enum type, so we need to mangle the names
- mangling scheme: prefix identifier with \XXX@, where X is an integer.
- change all occurrences of type-inst variables to the concrete type
- type-check the body of the function again (or at least propagate the concrete type)
- if the body contains calls to parametric functions, put these calls
(with the now concrete types) on the todo list
- change call ids and decls to point to copies
- keep a registry of (name,concrete type) -> instantiated function
*/
void type_specialise(Env& env, Model* model, TyperFn& typer) {
// Don't warn about enum2int emitted from specialised functions
env.envi().warnImplicitEnum2Int = false;
ConcreteCallAgenda agenda;
CollectConcreteCallsFromItems cci(agenda);
iter_items(cci, model);
InstanceMap instanceMap;
Instantiator instantiate(env.envi(), agenda, instanceMap, typer);
while (!agenda.empty()) {
GCLock lock;
Call* call = agenda.back();
agenda.pop();
instantiate(call);
}
instantiate.finish();
}
std::string demonomorphise_identifier(const ASTString& ident) {
if (ident.empty() || ident.c_str()[0] != '\\') {
return std::string(ident.c_str());
}
std::string s(ident.c_str() + 1);
auto s_end = s.find_first_of('@');
if (s_end != std::string::npos) {
return s.substr(s_end + 1);
}
return std::string(ident.c_str());
}
namespace {
class Demonomorphiser : public EVisitor {
public:
// NOLINTNEXTLINE(readability-convert-member-functions-to-static)
void vCall(Call* c) {
if (c->decl() != nullptr && c->decl()->isMonomorphised() && c->decl()->fromStdLib()) {
c->id(ASTString(demonomorphise_identifier(c->id())));
}
}
};
class ItemDemonomorphiser : public ItemVisitor {
public:
Demonomorphiser dm;
void vVarDeclI(VarDeclI* vdi) { top_down(dm, vdi->e()); }
void vAssignI(AssignI* ai) { top_down(dm, ai->e()); }
void vConstraintI(ConstraintI* ci) { top_down(dm, ci->e()); }
void vSolveI(SolveI* si) {
if (si->e() != nullptr) {
top_down(dm, si->e());
}
}
void vOutputI(OutputI* oi) { top_down(dm, oi->e()); }
void vFunctionI(FunctionI* fi) {
top_down(dm, fi->ti());
for (unsigned int i = 0; i < fi->paramCount(); i++) {
top_down(dm, fi->param(i));
}
if (fi->e() != nullptr) {
top_down(dm, fi->e());
}
}
};
} // namespace
void type_demonomorphise_library(Env& e, Model* model) {
std::vector<FunctionI*> toRename;
ASTStringSet functionIds;
for (auto& fi : model->functions()) {
if (!fi.fromStdLib()) {
if (fi.id().beginsWith("\\")) {
toRename.push_back(&fi);
}
if (fi.id().find('@') != std::string::npos) {
functionIds.insert(fi.id());
}
}
}
for (auto* fi : toRename) {
GCLock lock;
std::string ident(fi->id().c_str());
ident[0] = '_';
while (functionIds.find(ASTString(ident)) != functionIds.end()) {
ident = "_" + ident;
}
ASTString new_ident(ident);
fi->id(new_ident);
functionIds.insert(new_ident);
}
ItemDemonomorphiser idm;
iter_items(idm, model);
}
} // namespace MiniZinc
|