File: nl_solverinstance.cpp

package info (click to toggle)
minizinc 2.9.3%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 17,620 kB
  • sloc: cpp: 74,682; ansic: 8,541; python: 3,322; sh: 79; makefile: 13
file content (306 lines) | stat: -rw-r--r-- 10,024 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */

/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#endif

#include <minizinc/file_utils.hh>
#include <minizinc/process.hh>
#include <minizinc/solvers/nl/nl_file.hh>
#include <minizinc/solvers/nl/nl_solreader.hh>
#include <minizinc/solvers/nl/nl_solverinstance.hh>

#include <cstdio>
#include <cstring>
#include <fstream>

using namespace std;

namespace MiniZinc {

/** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
 * **/
// Solver Factory

NLSolverFactory::NLSolverFactory() {
  SolverConfig sc("org.minizinc.mzn-nl",
                  MZN_VERSION_MAJOR "." MZN_VERSION_MINOR "." MZN_VERSION_PATCH);
  sc.name("Generic Non Linear driver");
  sc.mznlibVersion(1);
  sc.description("MiniZinc generic Non Linear solver plugin");
  sc.inputType(SolverConfig::O_NL);
  sc.requiredFlags({"--nl-cmd"});
  sc.tags({"__internal__"});
  SolverConfigs::registerBuiltinSolver(sc);
}

string NLSolverFactory::getDescription(SolverInstanceBase::Options* /*opt*/) {
  string v = "NL solver plugin";
  return v;
}

string NLSolverFactory::getVersion(SolverInstanceBase::Options* /*opt*/) {
  return MZN_VERSION_MAJOR;
}

string NLSolverFactory::getId() { return "org.minizinc.mzn-nl"; }

void NLSolverFactory::printHelp(ostream& os) {
  os << "MZN-NL plugin options" << std::endl
     << "  --nl-cmd , --nonlinear-cmd <exe>\n     The backend solver filename.\n"
     << "  --nl-flags <options>, --backend-flags <options>\n"
        "     Specify option to be passed to the NL solver.\n"
     << "  --nl-flag <option>, --backend-flag <option>\n"
        "     As above, but for a single option string that needs to be quoted in a shell.\n"
     << "  --hexafloat\n     Use hexadecimal format when communicating floating points with the "
        "solver.\n"
     << "  --keepfile\n     Write the nl and sol files next to the input file and don't remove "
        "them.\n"
      // << "  --nl-sigint\n     Send SIGINT instead of SIGTERM.\n"
      // << "  -t <ms>, --solver-time-limit <ms>, --fzn-time-limit <ms>\n     Set time limit (in
      // milliseconds) for solving.\n"
      // << "  -p <n>, --parallel <n>\n     Use <n> threads during search. The default is
      // solver-dependent.\n"
      // << "  -r <n>, --seed <n>, --random-seed <n>\n     For compatibility only: use solver flags
      // instead.\n"
      ;
}

SolverInstanceBase::Options* NLSolverFactory::createOptions() { return new NLSolverOptions; }

SolverInstanceBase* NLSolverFactory::doCreateSI(Env& env, std::ostream& log,
                                                SolverInstanceBase::Options* opt) {
  return new NLSolverInstance(env, log, opt);
}

bool NLSolverFactory::processOption(SolverInstanceBase::Options* opt, int& i,
                                    std::vector<std::string>& argv, const std::string& workingDir) {
  auto& _opt = static_cast<NLSolverOptions&>(*opt);
  CLOParser cop(i, argv);
  string buffer;

  int nn = -1;
  if (cop.getOption("--nl-cmd --nonlinear-cmd", &buffer)) {
    _opt.nlSolver = buffer;
  } else if (cop.getOption("--hexafloat")) {
    _opt.doHexafloat = true;
  } else if (cop.getOption("--nl-flags --backend-flags", &buffer)) {
    auto args = FileUtils::parse_cmd_line(buffer);
    for (const auto& arg : args) {
      _opt.nlFlags.push_back(arg);
    }
  } else if (cop.getOption("--nl-flag --backend-flag", &buffer)) {
    _opt.nlFlags.push_back(buffer);
  } else if (cop.getOption("--keepfile")) {
    _opt.doKeepfile = true;
  } else if (cop.getOption("-s --solver-statistics")) {
    // ignore statistics flags for now
  } else if (cop.getOption("-v --verbose-solving")) {
    _opt.verbose = true;
  } else {
    for (auto& fznf : _opt.nlSolverFlags) {
      if (fznf.t == MZNFZNSolverFlag::FT_ARG && cop.getOption(fznf.n.c_str(), &buffer)) {
        _opt.nlFlags.push_back(fznf.n);
        _opt.nlFlags.push_back(buffer);
        return true;
      }
      if (fznf.t == MZNFZNSolverFlag::FT_NOARG && cop.getOption(fznf.n.c_str())) {
        _opt.nlFlags.push_back(fznf.n);
        return true;
      }
    }
    return false;
  }

  return true;
}

/** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
 * **/
// Solver Instance

NLSolverInstance::NLSolverInstance(Env& env, std::ostream& log,
                                   SolverInstanceBase::Options* options)
    : SolverInstanceBase(env, log, options), _fzn(env.flat()), _ozn(env.output()) {}

NLSolverInstance::~NLSolverInstance() {}

void NLSolverInstance::processFlatZinc() {}

void NLSolverInstance::resetSolver() {}

SolverInstance::Status NLSolverInstance::solve() {
  // Get the options
  auto& opt = static_cast<NLSolverOptions&>(*_options);

  // --- --- --- Prepare the files
  string file_nl;   // Output for the NL, will be the input for the solver
  string file_sol;  // Ouput of the solver
  std::unique_ptr<FileUtils::TmpDir> tmpdir;

  if (opt.doKeepfile) {
    // Keep file: output next to original file
    ASTString file_mzn = _env.envi().originalModel != nullptr
                             ? _env.envi().originalModel->filepath()
                             : _env.envi().model->filepath();
    string file_base = std::string(file_mzn.substr(0, file_mzn.findLastOf('.')));
    file_nl = file_base + ".nl";
    file_sol = file_base + ".sol";
  } else {
    // Don't keep file: create a temp directory
    tmpdir = std::unique_ptr<FileUtils::TmpDir>(new FileUtils::TmpDir());
    file_nl = tmpdir->name() + "/model.nl";
    file_sol = tmpdir->name() + "/model.sol";
  }
  std::ofstream outfile(FILE_PATH(file_nl));
  // Configure floating point output
  if (opt.doHexafloat) {
    outfile << hexfloat;
  } else {
    outfile.precision(numeric_limits<double>::digits10 + 2);
  }

  // --- --- --- Result of the try/catch block
  // Use to talk back to minizinc
  auto* out = getSolns2Out();
  // Manage status
  int exitStatus = -1;

  // --- --- --- All the NL operations in one try/catch
  try {
    // --- --- --- Create the NL data
    // Analyse the variable declarations
    for (VarDeclIterator it = _fzn->vardecls().begin(); it != _fzn->vardecls().end(); ++it) {
      if (!it->removed()) {
        Item& item = *it;
        analyse(&item);
      }
    }
    // Analyse the contraints
    for (ConstraintIterator it = _fzn->constraints().begin(); it != _fzn->constraints().end();
         ++it) {
      if (!it->removed()) {
        Item& item = *it;
        analyse(&item);
      }
    }
    // Analyse the goal
    analyse(_fzn->solveItem());
    // Phase 2
    _nlFile.phase2();
    // Print to the files
    _nlFile.printToStream(outfile);

    // --- --- --- Call the solver
    NLSolns2Out s2o = NLSolns2Out(out, _nlFile, opt.verbose);
    vector<string> cmd_line;

    if (opt.nlSolver.empty()) {
      outfile.close();
      throw Error("No NL solver specified");
    }

    cmd_line.push_back(opt.nlSolver);
    cmd_line.push_back(file_nl);
    cmd_line.emplace_back("-AMPL");

    for (const auto& arg : opt.nlFlags) {
      cmd_line.push_back(arg);
    }

    Process<NLSolns2Out> proc(cmd_line, &s2o, 0, true);
    exitStatus = proc.run();

    if (exitStatus == 0) {
      // Parse the result
      s2o.parseSolution(file_sol);
    }

  } catch (const NLException& e) {
    out->getLog() << e.what();
    exitStatus = -2;
  }

  // --- --- --- Cleanup and exit
  outfile.close();
  return exitStatus == 0 ? out->status : Status::ERROR;
}

// Unused
Expression* NLSolverInstance::getSolutionValue(Id* id) {
  assert(false);
  return nullptr;
}

/** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
 * **/
/** Analyse an item
 * An item is a "top node" in the ast.
 * In flatzinc, we can only have the cases 'variable declaration' and 'constraint'.
 */
void NLSolverInstance::analyse(const Item* i) {
  // Guard
  if (i == nullptr) {
    return;
  }

  // Switch on the id of item
  switch (i->iid()) {
    case Item::II_INC: {
      should_not_happen("include \"" << i->cast<IncludeI>()->f() << "\")");
    } break;

    // Case of the variable declaration.
    // Because it is a variable declaration, the expression associated to the item is necessary a
    // VarDecl. From the VarDecl, we can obtain the type and the RHS expression. Use this to analyse
    // further.
    case Item::II_VD: {
      DEBUG_MSG("II_VD: Variable Declaration.");

      const VarDecl* vd = i->cast<VarDeclI>()->e();
      const auto* ti = Expression::cast<TypeInst>(vd->ti());
      const Expression* rhs = vd->e();
      _nlFile.addVarDecl(vd, ti, rhs);
    } break;

    case Item::II_ASN: {
      should_not_happen("item II_ASN should not be present in NL's input.");
    } break;

    // Case of the constraint.
    // Constraint are expressed through builtin calls.
    // Hence, the expression associated to the item must be a E_CALL.
    case Item::II_CON: {
      DEBUG_MSG("II_CON: Constraint.");
      Expression* e = i->cast<ConstraintI>()->e();
      if (Expression::eid(e) == Expression::E_CALL) {
        const auto* c = Expression::cast<Call>(e);
        DEBUG_MSG("     " << c->id() << " ");
        _nlFile.analyseConstraint(c);
      } else {
        DEBUG_MSG("     Contraint is not a builtin call.");
        assert(false);
      }
    } break;

    // Case of the 'solve' directive
    case Item::II_SOL: {
      const auto* si = i->cast<SolveI>();
      _nlFile.addSolve(si->st(), si->e());
    } break;

    case Item::II_OUT: {
      should_not_happen("Item II_OUT should not be present in NL's input.");
    } break;

    case Item::II_FUN: {
      should_not_happen("Item II_FUN should not be present in NL's input.");
    } break;
  }  // END OF SWITCH
}

}  // namespace MiniZinc