1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
(add-var-name "x" "y" (py "alpha"))
(add-predconst-name "Q" (make-arity (py "alpha")))
(set-goal (pf "(all y.((Q y -> F) -> F) -> Q y) ->
exca x.Q x -> all y Q y"))
; Automated proof search for minimal quantifier logic (Miller)
(search)
(dp)
(dpe)
(lambda (u2)
(lambda (u3)
((u3 x) (lambda (u4)
(lambda (y)
((u2 y) (lambda (u5)
((u3 y) (lambda (u8)
(lambda (y17)
((u2 y17) (lambda (u9)
(u5 u8)))))))))))))>
(dp)
; ....all x.(Q x -> all y Q y) -> F by assumption Hyp3
; ....x
; ...(Q x -> all y Q y) -> F by all elim
; .......all y.((Q y -> F) -> F) -> Q y by assumption Hyp2
; .......y
; ......((Q y -> F) -> F) -> Q y by all elim
; .........all x.(Q x -> all y Q y) -> F by assumption Hyp3
; .........y
; ........(Q y -> all y Q y) -> F by all elim
; ............all y.((Q y -> F) -> F) -> Q y by assumption Hyp2
; ............y17
; ...........((Q y17 -> F) -> F) -> Q y17 by all elim
; .............Q y -> F by assumption Hyp5
; .............Q y by assumption Hyp8
; ............F by imp elim
; ...........(Q y17 -> F) -> F by imp intro Hyp9
; ..........Q y17 by imp elim
; .........all y17 Q y17 by all intro
; ........Q y -> all y17 Q y17 by imp intro Hyp8
; .......F by imp elim
; ......(Q y -> F) -> F by imp intro Hyp5
; .....Q y by imp elim
; ....all y Q y by all intro
; ...Q x -> all y Q y by imp intro Hyp4
; ..F by imp elim
; .exca x.Q x -> all y Q y by imp intro Hyp3
; (all y.((Q y -> F) -> F) -> Q y) -> exca x.Q x -> all y Q y by imp intro Hyp2
(dpe)
; (lambda (u2)
; (lambda (u3)
; ((u3 x) (lambda (u4)
; (lambda (y)
; ((u2 y) (lambda (u5)
; ((u3 y) (lambda (u8)
; (lambda (y17)
; ((u2 y17) (lambda (u9)
; (u5 u8)))))))))))))
(set-goal (pf "exca x.Q x -> all y Q y"))
(assume 1)
(use 1 (pt "x"))
(assume 2 "y")
(use "Stab")
(assume 3)
(use 1 (pt "y"))
(assume 4)
(use "Efq")
(use-with 3 4)
(dp)
; ...all x.(Q x -> all y Q y) -> F by assumption Hyp0
; ...x
; ..(Q x -> all y Q y) -> F by all elim
; ......all y.((Q y -> F) -> F) -> Q y by global assumption Stab-Log
; ......y
; .....((Q y -> F) -> F) -> Q y by all elim
; ........all x.(Q x -> all y Q y) -> F by assumption Hyp0
; ........y
; .......(Q y -> all y Q y) -> F by all elim
; .........F -> all y Q y by global assumption Efq-Log
; ..........Q y -> F by assumption Hyp2
; ..........Q y by assumption Hyp3
; .........F by imp elim
; ........all y Q y by imp elim
; .......Q y -> all y Q y by imp intro Hyp3
; ......F by imp elim
; .....(Q y -> F) -> F by imp intro Hyp2
; ....Q y by imp elim
; ...all y Q y by all intro
; ..Q x -> all y Q y by imp intro Hyp1
; .F by imp elim
; excl x.Q x -> all y Q y by imp intro Hyp0
|