File: ref.tex

package info (click to toggle)
minlog 4.0.99.20100221-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,060 kB
  • sloc: lisp: 112,614; makefile: 231; sh: 11
file content (5370 lines) | stat: -rw-r--r-- 218,471 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
% $Id: ref.tex,v 1.28 2008/01/25 13:30:19 logik Exp $
% was: ea.tex,v 1.68 2001/08/13 12:55:02 schwicht Exp 
% \documentclass[11pt,draft,a4paper]{amsbook}
\documentclass[11pt,a4paper]{amsart}
% \documentclass[11pt,a4paper,fleqn]{article}
\usepackage{amsmath,amssymb,amsthm,bussproofs}

% for pdftex
\usepackage[backref]{hyperref}

\allowdisplaybreaks[4]

\parskip 0pt plus 1pt

% \input{preamb}

\theoremstyle{plain}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{claim*}{Claim}

\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem*{definition*}{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem*{example*}{Example}
\newtheorem{examples}[theorem]{Examples}
\newtheorem*{examples*}{Examples}
\newtheorem{remark}[theorem]{Remark}
\newtheorem*{remark*}{Remark}
\newtheorem*{acknowledgement*}{Acknowledgement}

\def\qedsymbol{{\ \vbox{\hrule\hbox{%
   \vrule height1.3ex\hskip0.8ex\vrule}\hrule}}\par}


% minlog.mac contains the macros for all tex-files of the minlog
% documentation in order to avoid code duplication and different
% notations.
\input{minlog.mac}

% \def\N{\mathbb{N}}

%% Comment out this definition
%% in your main document when preparing the final version
\def\mylabel#1{\label{#1}\marginpar{\tiny #1}}



\makeindex

\title{Minlog reference manual}

% \title{Minimal logic for computable functionals.  Minlog reference manual}
\author{}
% \author{Klaus Aehlig, Martin Ruckert and Helmut Schwichtenberg%
% \thanks{Mathematisches Institut der Universit\"at  M\"unchen,
% Theresienstra{\ss}e 39, D-80333 M\"unchen, Germany.  Phone
% +49 89 2394 4413, Fax +49 89 280 5248, 
% e-mail address \texttt{schwicht@rz.mathematik.uni-muenchen.de}}
% \address{Mathematisches Institut der Universit\"at  M\"unchen\\
% Theresienstra{\ss}e 39\\
% D-80333 M\"unchen, Germany}
% \email{$\{$aehlig,ruckert,schwicht$\}$@rz.mathematik.uni-muenchen.de}
% \urladdr{http://mathematik.uni-muenchen.de/schwicht}
% \thanks{}
% \keywords{extracted programs}
% \subjclass[2000]{Primary: 02Dxx; Secondary: 02Fxx}
\date{\today}

\begin{document}

% \begin{abstract} 
% We define a formal system based on minimal logic and inductively
% defined ground types.% -- Draft of \today
% \end{abstract}

\maketitle

\tableofcontents

\input{acknow}

\section{Introduction}
\mylabel{Intro}
\textsc{Minlog} is intended to reason about computable functionals,
using minimal logic.  It is an interactive prover with the following
features.
\begin{itemize}
\item Proofs are treated as first class objects: they can be normalized
and then used for reading off an instance if the proven formula is
existential, or changed for program development by proof
transformation.
\item To keep control over the complexity of extracted programs, we
follow Kreisel's proposal and aim at a theory with a strong language
and weak existence axioms.  It should be conservative over (a fragment
of) arithmetic.
\item \textsc{Minlog} is based on minimal rather than classical or
intuitionistic logic.  This more general setting makes it possible to
implement program extraction from classical proofs, via a refined
$A$-translation (cf.\ \cite{BergerBuchholzSchwichtenberg02}).
\item Constants are intended to denote computable functionals.
Since their (mathematically correct) domains are the Scott-Ershov
partial continuous functionals, this is the intended range of the
quantifiers.
\item Variables carry (simple) types, with free algebras as base types.
The latter need not be finitary (so we allow e.g.\ countably branching
trees), and can be simultaneously generated.  Type parameters (ML
style) are allowed, but we keep the theory predicative and disallow
type quantification.
\item To simplify equational reasoning, the system identifies
terms with the same normal form.  A rich collection of rewrite rules
is provided, which can be extended by the user.  Decidable predicates
are implemented via boolean valued functions, hence the rewrite
mechanism applies to them as well.
\end{itemize}
We now describe in more details some of these features.

\subsection{Simultaneous free algebras}
A free algebra is given by \emph{constructors}, for instance zero and
successor for the natural numbers.  We want to treat other data types
as well, like lists and binary trees.  When dealing with inductively
defined sets, it will also be useful to explicitely refer to the
generation tree.  Such trees are quite often countably branching, and
hence we allow infinitary free algebras from the outset.

The freeness of the constructors is expressed by requiring that their
ranges are disjoint and that they are injective.  Moreover, we view
the free algebra as a domain and require that its bottom element is
not in the range of the constructors.  Hence the constructors are
total and non-strict.  For the notion of totality cf.\ \cite[Chapter
8.3]{Stoltenberg94}.

In our intended semantics we do not require that every semantic object
is the denotation of a closed term, not even for finitary algebras.
One reason is that for normalization by evaluation (cf.\
\cite{BergerEberlSchwichtenberg03}) we want to allow term families in
our semantics.

% However, if a type $\tau$ is given by a finitary algebra, then we do
% require that every closed term of type $\tau$ whose value is a
% semantic numeral also reduces to the corresponding syntactic numeral;
% this is \textsc{Plotkin}'s adequacy theorem \cite{Plotkin77} (or
% \cite[p.130]{AmadioCurien98}), which holds for a call-by-name
% evaluation strategy.

To make a free algebra into a domain and still have the constructors
injective and with disjoint ranges, we model e.g.\ the natural numbers
as shown in Figure~\ref{F:nat}.
\begin{figure}
% \begin{picture}(168,108)
\begin{picture}(170,120)
\put(48,0){\makebox(0,0){$\bullet$}}
\put(36,0){\makebox(0,0){$\bot$}}
\put(48,0){\line(-1,1){24}}
\put(24,24){\makebox(0,0){$\bullet$}}
\put(12,24){\makebox(0,0){$0$}}
\put(48,0){\line(1,1){24}}
\put(72,24){\makebox(0,0){$\bullet$}}
\put(90,24){\makebox(0,0){$S \bot$}}

\put(72,24){\line(-1,1){24}}
\put(48,48){\makebox(0,0){$\bullet$}}
\put(30,48){\makebox(0,0){$S 0$}}
\put(72,24){\line(1,1){24}}
\put(96,48){\makebox(0,0){$\bullet$}}
\put(120,48){\makebox(0,0){$S(S \bot)$}}

\put(96,48){\line(-1,1){24}}
\put(72,72){\makebox(0,0){$\bullet$}}
\put(48,72){\makebox(0,0){$S(S 0)$}}
\put(96,48){\line(1,1){24}}
\put(120,72){\makebox(0,0){$\bullet$}}
\put(150,72){\makebox(0,0){$S(S(S \bot))$}}

\put(120,72){\line(-1,1){24}}
\put(96,96){\makebox(0,0){$\bullet$}}
\put(66,96){\makebox(0,0){$S(S(S 0))$}}
\put(120,72){\line(1,1){24}}
\put(147,99){\makebox(0,0){.}}
\put(150,102){\makebox(0,0){.}}
\put(153,105){\makebox(0,0){.}}
\put(159,111){\makebox(0,0){$\bullet$}}
\put(181,111){\makebox(0,0){$\infty$}}
\end{picture}
\caption{The domain of natural numbers}
\label{F:nat}
\end{figure}
Notice that for more complex algebras we usually need many more
\inquotes{infinite} elements; this is a consequence of the closure of
domains under suprema.  To make dealing with such complex structures
less annoying, we will normally restrict attention to the \emph{total}
elements of a domain, in this case -- as expected -- the elements
labelled $0$, $S 0$, $S(S 0)$ etc.


\subsection{Partial continuous functionals}
As already mentioned, the (mathematically correct) domains of
computable functionals have been identified by Scott and Ershov as the
partial continuous functionals; cf.\ \cite{Stoltenberg94}.  Since we
want to deal with computable functionals in our theory, we consider it
as mandatory to accommodate their domains.  This is also true if one
is interested in total functionals only; they have to be treated as
particular partial continuous functionals.  We will make use of
predicate constants $\Total_{\rho}$ with the total functionals of type
$\rho$ as the intended meaning.  To make formal arguments with
quantifiers relativized to total objects more managable, we use a
special sort of variables intended to range over such objects only.
For example, $\texttt{n0}, \texttt{n1}, \texttt{n2}, \dots,
\texttt{m0}, \dots$ range over total natural numbers, and $\verb#n^0#,
\verb#n^1#, \verb#n^2#, \dots$ are general variables.  This amounts to
an abbreviation of
\begin{alignat*}{2}
&\forall \hat{x}.\Total_{\rho}(\hat{x}) \to A &\quad\hbox{by}\quad& 
\forall x A,\\
&\exists \hat{x}.\Total_{\rho}(\hat{x}) \land A &\quad\hbox{by}\quad& 
\exists x A.
\end{alignat*}


\subsection{Primitive recursion, computable functionals}
The elimination constants corresponding to the constructors are called
primitive recursion operators $\rec$.  They are described in detail in
Section \ref{Pconst}.  In this setup, every closed term reduces to a
numeral.  

However, we shall also use constants for rather arbitrary computable
functionals, and axiomatize them according to their intended meaning
by means of rewrite rules.  An example is the general fixed point
operator $\fix$, which is axiomatized by $\fix F = F(\fix F)$.
Clearly then it cannot be true any more that every closed term reduces
to a numeral.  We may have non-terminating terms, but this just means
that not always it is a good idea to try to normalize a term.

An important consequence of admitting non-terminating terms is that
our notion of proof is not decidable: when checking e.g.\ whether two
terms are equal we may run into a non-terminating computation.  But we
still have semi-decidability of proofs, i.e., an algorithm to check
the correctness of a proof that can only give correct results, but may
not terminate.  In practice this is sufficient.

To avoid this somewhat unpleasant undecidability phenomenon, we may
also view our proofs as abbreviated forms of full proofs, with certain
equality arguments left implicit.  If some information sufficient to
recover the full proof (e.g.\ for each node a bound on the number of
rewrite steps needed to verify it) is stored as part of the proof,
then we retain decidability of proofs.


\subsection{Decidable predicates, axioms for predicates}
As already mentioned, decidable predicates are viewed via boolean
valued functions, hence the rewrite mechanism applies to them as well.

Equality is decidable for finitary algebras only; infinitary algebras
are to be treated similarly to arrow types.  For infinitary algebras
(extensional) equality\index{equality} is a predicate constant, with
appropriate axioms.  In a finitary algebra equality is a (recursively
defined) program constant.  Similarly, existence (or totality) is a
decidable predicate for finitary algebras, and given by predicate
constants $\Total_{\rho}$ for infinitary algebras as well as composed
types.  The axioms are listed in Subsection \ref{SS:AxiomConst}
of Section~\ref{S:AssumptionVarConst}.


\subsection{Minimal logic, proof transformation}
For generalities about minimal logic cf.\ \cite{TroelstraSchwichtenberg00}.
A concise description of the theory behind the present implementation
can be found in \inquotes{Minimal Logic for Computable Functions}
which is available on the \textsc{Minlog} page \texttt{www.minlog-system.de}.


\subsection{Comparison with Coq and Isabelle}
\mylabel{SS:Coq} \textsc{Coq} (cf.\ \texttt{coq.inria.fr}) has evolved
from a calculus of constructions defined by \textsc{Huet} \index{Huet}
and \textsc{Coquand}\index{Coquand}.  It is a constructive, but
impredicative system based on type theory.  More recently it has been
extended by \textsc{Paulin-Mohring}\index{Paulin-Mohring} to also
include inductively defined predicates.  Program extraction from
proofs has been implemented by \textsc{Paulin-Mohring},
\textsc{Filliatre}\index{Filliatre} and
\textsc{Letouzey}\index{Letouzey}, in the sense that \textsc{Ocaml}
programs are extracted from proofs.

The \textsc{Isabelle/HOL} system of \textsc{Paulson}\index{Paulson}
and \textsc{Nipkow}\index{Nipkow} has its roots in \textsc{Church}'s
theory of simple types and \textsc{Hilbert}'s Epsilon calculus.  It is
an inherently classical system; however, since many proofs in fact use
constructive arguments, in is conceivable that program extraction can
be done there as well.  This has been explored by \textsc{Berghofer}
in his thesis \cite{Berghofer03}.

Compared with the \textsc{Minlog} system, the following points are of
interest.
\begin{itemize}
\item The fact that in \textsc{Coq} a formula is just a map into the
type \texttt{Prop} (and in \textsc{Isabelle} into the type
\texttt{bool}) can be used to define such a function by what is called
\indexentry{strong elimination}, say by $f(\true) := A$ and $f(\false)
:= B$ with fixed formulas $A$ and $B$.  The problem is that then it is
impossible to assign an ordinary type (say in the sense of
\textsc{ML}) to a proof.  It is not clear how this problem for program
extraction can be avoided (in a clean way) for both \textsc{Coq} and
\textsc{Isabelle}.  In \textsc{Minlog} it does not exist due to the
separation of terms and formulas.
\item The impredicativity (in the sense of quantification over
predicate variables) built into \textsc{Coq} and \textsc{Isabelle} has
as a consequence that extracted programs need to abstract over type
variables, which is not allowed in program languages of the
\textsc{ML} family.  Therefore one can only allow outer universal
quantification over type and predicate variables in proofs to be used
for program extraction; this is done in the \textsc{Minlog} system
from the outset.  However, many uses of quantification over predicate
variables (like defining the logical connectives apart from $\to$ and
$\forall$) can be achieved by means of inductively defined predicates.
This feature is available in all three systems.
\item The distinction between properties with and without
computational content seems to be crucial for a reasonable program
extraction environment; this feature is available in all three
systems.  However, it also seems to be necessary to distinguish
between universal quantifiers with and without computational content,
as in \textsc{Berger}'s \cite{Berger93a}.  At present this feature is
availble in the \textsc{Minlog} system only.
\item \textsc{Coq} has records, whose fields may contain proofs and
may depend on earlier fields.  This can be useful, but does not seem
to be really essential.  If desired, in \textsc{Minlog} one can use
products for this purpose; however, proof objects have to be
introduced explicitely via assumptions.
\item \textsc{Minlog}'s automated proof search \texttt{search} tool is
based on \textsc{Miller}'s\index{Miller} \cite{Miller91b}; it produces
proofs in minimal logic.  In addition, \textsc{Coq} has many strong
tactics, for instance \texttt{Omega} for quantifier free
\textsc{Presburger}\index{Presburger} arithmetic, \texttt{Arith} for
proving simple arithmetic properties and \texttt{Ring} for proving
consequences of the ring axioms.  Similar tactics exist in
\textsc{Isabelle}.  These tactics tend to produce rather long proofs,
which is due to the fact that equality arguments are carried out
explicitely.  This is avoided in \textsc{Minlog} by relativizing every
proof to a set of rewrite rules, and identifyling terms and formulas
with the same normal form w.r.t.\ these rules.
\item In \textsc{Isabelle} as well as in \textsc{Minlog} the extracted
programs are provided as terms within the language, and a soundness
proof can be generated automatically.  For \textsc{Coq} (and similarly
for \textsc{Nuprl}) such a feature could at present only be achived by
means of some form of reflection.
\end{itemize}


\section{Types, with simultaneous free algebras as base types}
\mylabel{S:Types}
Generally we consider typed theories only.  Types are built from type
variables and type constants by algebra type formation \texttt{(alg
$\rho_1 \dots \rho_n$)}, arrow type formation $\rho \to \sigma$ and
product type formation $\rho \times \sigma$ (and possibly other type
constructors).

We have type constants \texttt{atomic}, \texttt{existential},
\texttt{prop} and \texttt{nulltype}.  They will be used to assign
types to formulas.  E.g.\ $\forall n\,n=0$ receives the type
$\texttt{nat} \to \texttt{atomic}$, and $\forall n,m \ex k\,n+m=k$
receives the type $\texttt{nat} \to \texttt{nat} \to
\texttt{existential}$.  The type \texttt{prop} is used for predicate
variables, e.g.\ $R$ of arity \texttt{nat,nat -> prop}.  Types of
formulas will be necessary for normalization by evaluation of proof
terms.  The type \texttt{nulltype} will be useful when assigning to a
formula the type of a program to be extracted from a proof of this
formula.  Types not involving the types \texttt{atomic},
\texttt{existential}, \texttt{prop} and \texttt{nulltype} are called
object types.

% \subsection{Type variables and constants}
Type variable\index{type variable} names are $\texttt{alpha},
\texttt{beta} \dots$; $\texttt{alpha}$ is provided by default.  To
have infinitely many type variables available, we allow appended
indices: $\texttt{alpha}1, \texttt{alpha}2, \texttt{alpha}3 \dots$
will be type variables.  The only type constants\index{type constant}
are $\texttt{atomic}, \texttt{existential}, \texttt{prop}$ and
$\texttt{nulltype}$.

\subsection{Generalitites for substitutions, type substitutions}
\mylabel{SS:GenSubst}
Generally, a substitution is a list $((x_1\ t_1) \dots (x_n\ t_n))$ of
lists of length two, with distinct variables $x_i$ and such that for
each $i$, $x_i$ is different from $t_i$.  It is understood as
simultaneous substitution.  The default equality is \texttt{equal?};
however, in the versions ending with \texttt{-wrt} (for \inquotes{with
respect to}) one can provide special notions of equality.  To construct
substitutions we have
\begin{alignat*}{2}
&\texttt{(make-substitution \textsl{args} \textsl{vals})}%
\index{make-substitution@\texttt{make-substitution}} 
\\
&\texttt{(make-substitution-wrt \textsl{arg-val-equal?}\ \textsl{args} 
\textsl{vals})}%
\index{make-substitution-wrt@\texttt{make-substitution-wrt}} 
\\
&\texttt{(make-subst \textsl{arg} \textsl{val})}%
\index{make-subst@\texttt{make-subst}} 
\\
&\texttt{(make-subst-wrt \textsl{arg-val-equal?}\ \textsl{arg} \textsl{val})}%
\index{make-subst-wrt@\texttt{make-subst-wrt}} 
\\
&\texttt{empty-subst}\index{empty-subst@\texttt{empty-subst}} 
\end{alignat*}
Accessing a substitution is done via the usual access operations
for association list: \texttt{assoc} and \texttt{assoc-wrt}.
We also provide
\begin{alignat*}{2}
&\texttt{(restrict-substitution-wrt \textsl{subst} \textsl{test?})}%
\index{restrict-substitution-wrt@\texttt{restrict-substitution-wrt}} 
\\
&\texttt{(restrict-substitution-to-args \textsl{subst} \textsl{args})}%
\index{restrict-substitution-to-args@\texttt{restrict-substitution-to-args}} 
\\
&\texttt{(substitution-equal?\ \textsl{subst1} \textsl{subst2})}%
\index{substitution-equal?@\texttt{substitution-equal?}} 
\\
&\texttt{(substitution-equal-wrt?\ \textsl{arg-equal?}\ \textsl{val-equal?}\ 
\textsl{subst1} \textsl{subst2})}%
\index{substitution-equal-wrt?@\texttt{substitution-equal-wrt?}} 
\\
&\texttt{(subst-item-equal-wrt?\ \textsl{arg-equal?}\ \textsl{val-equal?}\ 
\textsl{item1} \textsl{item2})}%
\index{subst-item-equal-wrt?@\texttt{subst-item-equal-wrt?}} 
\\
&\texttt{(consistent-substitutions-wrt?}
\\
&\qquad\texttt{\textsl{arg-equal?}\ 
\textsl{val-equal?}\ \textsl{subst1} \textsl{subst2})}%
\index{consistent-substitutions-wrt?@\texttt{consistent-substitutions-wrt?}} 
\end{alignat*}

\emph{Composition}\index{composition} $\vartheta \sigma$ of two
substitutions
\begin{align*}
\vartheta &= ((x_1\ s_1) \dots (x_m\ s_m)),
\\
\sigma &= ((y_1\ t_1) \dots (y_n\ t_n))
\end{align*}
is defined as follows.  In the list $((x_1\ s_1\sigma) \dots (x_m\
s_m\sigma)\ (y_1\ t_1) \dots (y_n\ t_n))$ remove all bindings $(x_i\
s_i\sigma)$ with $s_i\sigma = x_i$, and also all bindings $(y_j\ t_j)$
with $y_j \in \{x_1, \dots, x_n\}$.  It is easy to see that
composition is associative, with the empty substitution as unit.
We provide
\begin{alignat*}{2}
\texttt{(compose-substitutions-wrt}\ 
&\texttt{\textsl{substitution-proc} \textsl{arg-equal?}}
\\
&\texttt{\textsl{arg-val-equal?}\ \textsl{subst1} \textsl{subst2}})%
\index{compose-substitutions-wrt@\texttt{compose-substitutions-wrt}} 
\end{alignat*}

We shall have occasion to use these general substitution procedures
for the following kinds of substitutions
\[
\begin{tabular}{|l|l|l|l|}
\hline
for                  
&called          
&domain equality 
&arg-val-equality
\\
\hline
type variables       
&\texttt{tsubst}\index{tsubst@\texttt{tsubst}}
&\texttt{equal?}
&\texttt{equal?}
\\
object variables     
&\texttt{osubst}\index{osubst@\texttt{osubst}}
&\texttt{equal?}
&\texttt{var-term-equal?}\index{var-term-equal?@\texttt{var-term-equal?}}
\\
predicate variables  
&\texttt{psubst}\index{psubst@\texttt{psubst}}
&\texttt{equal?}
&\texttt{pvar-cterm-equal?}%
\index{pvar-cterm-equal?@\texttt{pvar-cterm-equal?}}
\\
assumption variables
&\texttt{asubst}\index{asubst@\texttt{asubst}}
&\texttt{avar=?}\index{avar=?@\texttt{avar=?}}
&\texttt{avar-proof-equal?}%
\index{avar-proof-equal?@\texttt{avar-proof-equal?}}
\\
\hline
\end{tabular}
\]
The following substitutions will make sense for a
\[
\begin{tabular}{|l|l|}
\hline
type
&\texttt{tsubst}
\\
term
&\texttt{tsubst} and \texttt{osubst}
\\
formula
&\texttt{tsubst} and \texttt{osubst} and \texttt{psubst}
\\
proof
&\texttt{tsubst} and \texttt{osubst} and \texttt{psubst} and \texttt{asubst}
\\
\hline
\end{tabular}
\]

In particular, for \indexentry{type substitutions} \texttt{tsubst}
we have
\begin{alignat*}{2}
&\texttt{(type-substitute \textsl{type} \textsl{tsubst})}%
\index{type-substitute@\texttt{type-substitute}} 
\\
&\texttt{(type-subst \textsl{type} \textsl{tvar} \textsl{type1})}%
\index{type-subst@\texttt{type-subst}} 
\\
&\texttt{(compose-t-substitutions \textsl{tsubst1} \textsl{tsubst2})}%
\index{compose-t-substitutions@\texttt{compose-t-substitutions}} 
\end{alignat*}
A display function for type substitutions is
\begin{align*}
&\texttt{(display-t-substitution \textsl{tsubst})}%
\index{display-t-substitution@\texttt{display-t-substitution}} 
\end{align*}

\subsection{Simultaneous free algebras as base types}
We allow the formation of inductively generated types $\mu
\vec{\alpha}\,\vec{\kappa}$, where $\vec{\alpha} =
\alpha_1,\dots,\alpha_n$ is a list of distinct type variables, and
$\vec{\kappa}$ is a list of \inquotes{constructor types} whose
argument types contain $\alpha_1,\dots,\alpha_n$ in strictly positive
positions only.

For instance, $\mu\alpha(\alpha, \alpha \to \alpha)$ is the type of
natural numbers; here the list $(\alpha, \alpha \to \alpha)$ stands
for two generation principles: $\alpha$ for \inquotes{there is a
natural number} (the number $0$), and $\alpha \to \alpha$ for
\inquotes{for every natural number there is another one} (its
successor).

Let an infinite supply of \emph{type variables} $\alpha, \beta$ be
given.  Let $\vec{\alpha} = (\alpha_j)_{j=1,\dots,m}$ be a list of
distinct type variables.  \emph{Types} $\rho, \sigma, \tau, \mu, \nu
\in \Types$ and \emph{constructor types} $\kappa \in
\constrtypes(\vec{\alpha})$ are defined inductively as follows.
\begin{align*}
&\frac{\vec{\rho}, \vec{\sigma}_1, \dots, \vec{\sigma}_n \in \Types}
{\vec{\rho} \to (\vec{\sigma}_1 \to \alpha_{j_1}) \to \dots
\to (\vec{\sigma}_n \to \alpha_{j_n}) \to \alpha_j \in 
\constrtypes(\vec{\alpha})} \quad\hbox{($n \ge 0$)}
\\
&\frac{\kappa_1, \dots, \kappa_n \in \constrtypes(\vec{\alpha})}
{(\mu \vec{\alpha}\,(\kappa_1, \dots, \kappa_n))_j \in \Types} 
\quad\hbox{($n \ge 1$, $j=1,\dots,m$)}\qquad
\frac{\rho, \sigma \in \Types}{\rho \to \sigma \in \Types}
\end{align*}
Here $\vec{\rho}$ is short for a list $\rho_1,\dots,\rho_k$ ($k\ge 0$)
of types and $\vec{\rho} \to \sigma$ means $\rho_1 \to \dots \to
\rho_k \to \sigma$, associated to the right.  We shall use $\mu, \nu$
for types of the form $(\mu \vec{\alpha}\,(\kappa_1, \dots,
\kappa_n))_j$ only, and for types $\vec{\tau}=
(\tau_j)_{j=1,\dots,m}$ and a constructor type $\kappa = \vec{\rho}
\to (\vec{\sigma}_1 \to \alpha_{j_1}) \to \dots \to (\vec{\sigma}_n
\to \alpha_{j_n}) \to \alpha_j \in \constrtypes(\vec{\alpha})$ let
\[
\kappa[\vec{\tau}] :=
\vec{\rho} \to (\vec{\sigma}_1 \to \tau_{j_1}) \to \dots \to
(\vec{\sigma}_n \to \tau_{j_n}) \to \tau_j.
\]

\begin{examples*}
\begin{alignat*}{2}
&\unit &&:= \mu \alpha\,\alpha,
\\
&\boole &&:= \mu \alpha\,(\alpha,\alpha),
\\
&\nat &&:= \mu \alpha\,(\alpha,\alpha \to \alpha),
\\
&\ytensor(\alpha_1)(\alpha_2) &&:= 
\mu \alpha.  \alpha_1 \to \alpha_2 \to \alpha,
\\
&\ypair(\alpha_1)(\alpha_2) &&:= 
\mu \alpha.  (\unit \to \alpha_1) \to (\unit \to \alpha_2) \to \unit \to 
\alpha,
\\
&\yplus(\alpha_1)(\alpha_2) &&:= 
\mu \alpha.  (\alpha_1 \to \alpha, \alpha_2 \to \alpha),
\\
&\lst(\alpha_1) &&:= \mu \alpha\,(\alpha,\alpha_1 \to \alpha \to \alpha),
\\
% &\rho \times \sigma &&:= \mu \alpha.\rho \to \sigma \to \alpha,
% \\
% &\rho + \sigma &&:= \mu \alpha\,(\rho \to \alpha, \sigma \to \alpha),
% \\
&(\tree, \tlist) &&:= \mu (\alpha,\beta)\,
(\alpha, \beta \to \alpha, \beta, \alpha \to \beta \to \beta),
\\
&\btree &&:= \mu \alpha\,(\alpha, \alpha \to \alpha \to \alpha),
\\
&\C{O} &&:= \mu \alpha\,
(\alpha, \alpha \to \alpha, (\nat \to \alpha) \to \alpha),
\\
&\C{T}_0 &&:= \nat,
\\
&\C{T}_{n+1} &&:= \mu \alpha\,(\alpha, (\C{T}_n \to \alpha) \to \alpha).
\end{alignat*}
Note that we could have defined our primitive $\rho \times \sigma$ by
$\mu \alpha.\rho \to \sigma \to \alpha$.  However, this may lead to
complex terms when it comes to extract programs from proofs.
Therefore we stick to using $\rho \times \sigma$ as a primitive.
\end{examples*}

% \subsection{Types of formulas}
% % We also have ground types \texttt{atomic}, \texttt{existential},
% \texttt{prop} and \texttt{top}; they will be used to assign types to
% formulas.  E.g.\ $\forall n\,n=0$ receives the type $\texttt{nat} \to
% \texttt{atomic}$, and $\forall n,m \ex k\,n+m=k$ receives the type
% $\texttt{nat} \to \texttt{nat} \to \texttt{existential}$.  (Logical)
% falsity $\bot$\index{falsity!logical} receives the type \texttt{top}.
% The ground type \texttt{prop} is used for predicate variables, e.g.\
% $R$ of arity \texttt{nat,nat -> prop}.  Types of formulas will be
% necessary for normalization by evaluation of proof terms.  Types not
% involving the ground types \texttt{atomic}, \texttt{existential},
% \texttt{prop} and \texttt{top} are called object types.

To add and remove names for type variables, we use
\begin{align*}
&\texttt{(add-tvar-name \textsl{name1} \dots)} 
\index{add-tvar-name@\texttt{add-tvar-name}}
\\
&\texttt{(remove-tvar-name \textsl{name1} \dots)} 
\index{remove-tvar-name@\texttt{remove-tvar-name}}
\end{align*}
We need a constructor, accessors and a test for type variables. 
\begin{alignat*}{2}
&\texttt{(make-tvar \textsl{index} \textsl{name})} 
&\quad& \text{constructor}
\\
&\texttt{(tvar-to-index \textsl{tvar})} && \text{accessor}
\index{tvar-to-index@\texttt{tvar-to-index}}
\\
&\texttt{(tvar-to-name \textsl{tvar})} && \text{accessor}
\index{tvar-to-name@\texttt{tvar-to-name}}
\\
&\texttt{(tvar?\ \textsl{x}).}
\index{tvar?@\texttt{tvar?}}
\end{alignat*}
To generate new type variables we use
\begin{align*}
&\texttt{(new-tvar \textsl{type})}
\index{new-tvar@\texttt{new-tvar}}
\end{align*}

% Ground types are added and removed by
% \begin{align*}
% % &\texttt{(add-ground-type \textsl{symbol} \textsl{symbol1} \dots)}
% \index{add-ground-type@\texttt{add-ground-type}}
% \\
% % &\texttt{(remove-ground-type \textsl{type})}.
% \index{remove-ground-type@\texttt{remove-ground-type}}
% % \end{align*}
% Executing \texttt{(add-ground-type \textsl{symbol} \textsl{symbol1}
% \dots)} causes \texttt{symbol} to be ad\-ded as name for the newly
% created ground type, and the optional symbols \textsl{symbol1} \dots
% to be reserved as names for variables of that type.  

To introduce simultaneous free algebras we use
\[
\texttt{add-algebras-with-parameters}
\index{add-algebras-with-parameters@\texttt{add-algebras-with-parameters}}, 
\quad \hbox{abbreviated
\texttt{add-param-algs}
\index{add-param-algs@\texttt{add-param-algs}}}.
\]
An example is
\begin{verbatim}
(add-param-algs 
  (list "labtree" "labtlist") 'alg-typeop 2
  '("LabLeaf" "alpha1=>labtree")
  '("LabBranch" "labtlist=>alpha2=>labtree")
  '("LabEmpty" "labtlist")
  '("LabTcons" "labtree=>labtlist=>labtlist" pairscheme-op))
\end{verbatim}
This simultaneously introduces the two free algebras \texttt{labtree}
and \texttt{labtlist}, both finitary, whose constructors are
\texttt{LabLeaf}, \texttt{LabBranch}, \texttt{LabEmpty} and
\texttt{LabTcons} (written as an infix pair operator, hence right
associative).  The constructors are introduced as
\inquotes{self-evaluating} constants; they play a special role in our
semantics for normalization by evaluation.

In case there are no parameters we use \texttt{add-algs}%
\index{add-algs@\texttt{add-algs}}, and in case there is no
need for a simultaneous definition we use \texttt{add-alg}%
\index{add-alg@\texttt{add-alg}} or \texttt{add-param-alg}%
\index{add-param-alg@\texttt{add-param-alg}}.

For already introduced algebras we need constructors and accessors
\begin{align*}
&\texttt{(make-alg \textsl{name} \textsl{type1} \dots)}
\index{make-alg@\texttt{make-alg}}
\\
&\texttt{(alg-form-to-name \textsl{alg})}
\index{alg-form-to-name@\texttt{alg-form-to-name}}
\\
&\texttt{(alg-form-to-types \textsl{alg})}
\index{alg-form-to-types@\texttt{alg-form-to-types}}
\\
&\texttt{(alg-name-to-simalg-names \textsl{alg-name})}
\index{alg-name-to-simalg-names@\texttt{alg-name-to-simalg-names}}
\\
&\texttt{(alg-name-to-token-types \textsl{alg-name})}
\index{alg-name-to-token-types@\texttt{alg-name-to-token-types}}
\\
&\texttt{(alg-name-to-typed-constr-names \textsl{alg-name})}
\index{alg-name-to-typed-constr-names@\texttt{alg-name-to-typed-constr-names}}
\\
&\texttt{(alg-name-to-tvars \textsl{alg-name})}
\index{alg-name-to-tvars@\texttt{alg-name-to-tvars}}
\\
&\texttt{(alg-name-to-arity \textsl{alg-name})}
\index{alg-name-to-arity@\texttt{alg-name-to-arity}}
\end{align*}
We also provide the tests
\begin{alignat*}{2}
&\texttt{(alg-form?\ \textsl{x})} &\quad& \text{incomplete test}
\index{alg-form?@\texttt{alg-form?}}
\\
&\texttt{(alg?\ \textsl{x})} && \text{complete test}
\index{alg?@\texttt{alg?}}
\\
&\texttt{(finalg?\ \textsl{type})} && \text{incomplete test}
\index{finalg?@\texttt{finalg?}}
\\
&\texttt{(ground-type?\ \textsl{x})} && \text{incomplete test}
\index{ground-type?@\texttt{ground-type?}}
\end{alignat*}

We require that there is at least one nullary constructor in every
free algebra; hence, it has a \inquotes{canonical inhabitant}.  For
arbitrary types this need not be the case, but occasionally
(e.g.\ for general logical problems, like to prove the drinker
formula) it is useful.  Therefore
\begin{align*}
&\texttt{(make-inhabited \textsl{type} \textsl{term1} \dots)}
\index{make-inhabited@\texttt{make-inhabited}}
\end{align*}
marks the optional term as the canonical inhabitant if it is provided,
and otherwise creates a new constant of that type, which is taken to
be the canonical inhabitant.  We also have
\[
\texttt{(type-to-canonical-inhabitant \textsl{type})},
\]
which returns the canonical inhabitant; it is an error to apply this
procedure to a non-inhabited type.  We do allow non-inhabited types to
be able to implement some aspects of
\cite{Hofmann99,AehligSchwichtenberg00}

To remove names for algebras we use
\begin{align*}
&\texttt{(remove-alg-name \textsl{name1} \dots)} 
\index{remove-alg-name@\texttt{remove-alg-name}}
\end{align*}

\textbf{Examples.}
Standard examples for finitary free algebras are the type \texttt{nat}
of unary natural numbers, and the type \texttt{btree} of binary
trees.  The domain $\C{I}_{\texttt{nat}}$ of unary natural
numbers is defined (as in \cite{BergerEberlSchwichtenberg03}) as a
solution to a domain equation.

We always provide the finitary free algebra \texttt{unit} consisting
of exactly one element, and \texttt{boole} of booleans; objects of
the latter type are (cf.\ loc.\ cit.)\ \texttt{true}, \texttt{false} and
families of terms of this type, and in addition the bottom object of
type \texttt{boole}.

Tests:
\begin{align*}
% &\texttt{(alg?\ \textsl{type})%
% \index{alg?@\texttt{alg?}}} \\
% %
% &\texttt{(finalg?\ \textsl{type})%
% \index{finalg?@\texttt{finalg?}}}\\
%
% &\texttt{(ground-type?\ \textsl{type})}
% \index{ground-type?@\texttt{ground-type?}}\\
&\texttt{(arrow-form?\ \textsl{type})}
\index{arrow-form?@\texttt{arrow-form?}}
\\
&\texttt{(star-form?\ \textsl{type})}
\index{star-form?@\texttt{star-form?}}
\\
&\texttt{(object-type?\ \textsl{type})}    
\index{object-type?@\texttt{object-type?}}
\end{align*}

We also need constructors and accessors for arrow types 
\begin{alignat*}{2}
&\texttt{(make-arrow \textsl{arg-type} \textsl{val-type})}      
\index{make-arrow@\texttt{make-arrow}}
&\quad& \text{constructor} 
\\
&\texttt{(arrow-form-to-arg-type \textsl{arrow-type})} 
\index{arrow-form-to-arg-type@\texttt{arrow-form-to-arg-type}}
&& \text{accessor} 
\\
&\texttt{(arrow-form-to-val-type \textsl{arrow-type})} 
\index{arrow-form-to-val-type@\texttt{arrow-form-to-val-type}}
&& \text{accessor}
\end{alignat*}
and star types
\begin{alignat*}{2}
&\texttt{(make-star \textsl{type1} \textsl{type2})}             
\index{make-star@\texttt{make-star}}
&\quad& \text{constructor} 
\\
&\texttt{(star-form-to-left-type \textsl{star-type})}  
\index{star-form-to-left-type@\texttt{star-form-to-left-type}}
&& \text{accessor} 
\\
&\texttt{(star-form-to-right-type star-type)} 
\index{star-form-to-right-type@\texttt{star-form-to-right-type}}
&& \text{accessor.}   
\end{alignat*}
For convenience we also have
\begin{alignat*}{2}
&\texttt{(mk-arrow \textsl{type1} \dots\ \textsl{type})}
\index{mk-arrow@\texttt{mk-arrow}}
\\
&\texttt{(arrow-form-to-arg-types \textsl{type} <\textsl{n}>)} 
\index{arrow-form-to-arg-types@\texttt{arrow-form-to-arg-types}}
&\quad& \text{all (first $n$) argument types} 
\\
&\texttt{(arrow-form-to-final-val-type \textsl{type})}     
\index{arrow-form-to-final-val-type@\texttt{arrow-form-to-final-val-type}}
&& \text{type of final value.}
\end{alignat*}
To check and to display a type we have
\begin{align*}
&\texttt{(type?\ \textsl{x})}
\index{type?@\texttt{type?}}
\\
&\texttt{(type-to-string \textsl{type}).}
\index{type-to-string@\texttt{type-to-string}}
\end{align*}

\textbf{Implementation.}
Type variables are implemented as lists:
\[
\texttt{(tvar \textsl{index} \textsl{name})}.
\]


\section{Variables}
\mylabel{Variables}
A variable of an object type is interpreted by a continuous functional
(object) of that type.  We use the word \inquotes{variable} and not
\inquotes{program variable}, since continuous functionals are not
necessarily computable.  For readable in- and output, and also for
ease in parsing, we may reserve certain strings as names for variables of
a given type, e.g.\ $\texttt{n}, \texttt{m}$ for variables of type
\texttt{nat}.  Then also $\texttt{n0}, \texttt{n1}, \texttt{n2}, \dots,
\texttt{m0}, \dots$ can be used for the same purpose. 

In most cases we need to argue about existing (i.e.\ total) objects
only.  For the notion of totality we have to refer to \cite[Chapter
8.3]{Stoltenberg94}; particularly relevant here is exercise 8.5.7.  To
make formal arguments with quantifiers relativized to total objects
more managable, we use a special sort of variables intended to range
over such objects only.  For example, $\texttt{n0}, \texttt{n1},
\texttt{n2}, \dots, \texttt{m0}, \dots$ range over total natural
numbers, and $\verb#n^0#, \verb#n^1#, \verb#n^2#, \dots$ are general
variables.  We say that the \emph{degree of totality}\index{degree of
totality} for the former is $1$, and for the latter $0$.

% \subsection*{Interface}
% To add and remove names for variables of a given type (e.g.\
$\texttt{n}, \texttt{m}$ for variables of type \texttt{nat}), we use
\begin{align*}
&\texttt{(add-var-name \textsl{name1} \dots\ \textsl{type})} 
\index{add-var-name@\texttt{add-var-name}}
\\
&\texttt{(remove-var-name \textsl{name1} \dots\ \textsl{type})} 
\index{remove-var-name@\texttt{remove-var-name}}
\\
&\texttt{(default-var-name \textsl{type}).}
\index{default-var-name@\texttt{default-var-name}}
\end{align*}
The first variable name added for any given type becomes the default
variable name.  If the system creates new variables of this type, they
will carry that name.  For complex types it sometimes is necessary to
talk about variables of a certain type without using a specific name.
In this case one can use the empty string to create a so called
numerated variable (see below).  The parser is able to produce this
kind of canonical variables from type expressions.

We need a constructor, accessors and tests for variables. 
\begin{alignat*}{2}
&\texttt{(make-var \textsl{type} \textsl{index} \textsl{t-deg} \textsl{name})} &\quad& \text{constructor}
\\
&\texttt{(var-to-type \textsl{var})} && \text{accessor}
\index{var-to-type@\texttt{var-to-type}}
\\
&\texttt{(var-to-index \textsl{var})} && \text{accessor}
\index{var-to-index@\texttt{var-to-index}}
\\
&\texttt{(var-to-t-deg \textsl{var})} && \text{accessor}
\index{var-to-t-deg@\texttt{var-to-t-deg}}
\\
&\texttt{(var-to-name \textsl{var})} && \text{accessor}
\index{var-to-name@\texttt{var-to-name}}
\\
&\texttt{(var-form?\ \textsl{x})} && \text{incomplete test}
\index{var-form?@\texttt{var-form?}}
\\
&\texttt{(var?\ \textsl{x}).} && \text{complete test}
\index{var?@\texttt{var?}}
\end{alignat*}
It is guaranteed that \texttt{equal?} is a valid test for equality of
variables.  Moreover, it is guaranteed that parsing a displayed
variable reproduces the variable; the converse need not be the case
(we may want to convert it into some canonical form).

For convenience we have the function 
\begin{alignat*}{2}
&\texttt{(mk-var \textsl{type} <\textsl{index}> <\textsl{t-deg}>
 <\textsl{name}>).}
\index{mk-var@\texttt{mk-var}}
\end{alignat*}
The type is a required argument; however, the remaining arguments are
optional.  The default for the name string is the value returned by
\begin{alignat*}{2}
&\texttt{(default-var-name \textsl{type})}
\index{default-var-name@\texttt{default-var-name}}
\end{alignat*}
If there is no default name, a numerated variable is created.  The
default for the totality is \inquotes{total}.

Using the empty string as the name, we can create so called numerated
variables.  We further require that we can test whether a given
variable belongs to those special ones, and that from every numerated
variable we can compute its index:
\begin{align*}
&\texttt{(numerated-var?\ \textsl{var})}
\index{numerated-var?@\texttt{numerated-var}}
\\
&\texttt{(numerated-var-to-index \textsl{numerated-var}).}
\index{numerated-var-to-index@\texttt{numerated-var-to-index}}
\end{align*}
It is guaranteed that \texttt{make-var} used with the empty name string 
is a bijection
\[
\Types \times \D{N} \times \TDegs \to \NumVars
\]
with inverses \texttt{var-to-type}, \texttt{numerated-var-to-index}
and \texttt{var-to-t-deg}.
% \footnote{Here equality is to be understood as equality for the
% respective \inquotes{types}, e.g.\ the first equation is to be understood as
% % {\tt 
% (equal-vars?\ 
%  (type-and-index-to-var
%   (var-to-type numerated-var)
%   (numerated-var-to-index numerated-var)) 
%  numerated-var)
% }
% % is a truth value for every scheme object {\tt numerated-var} such that
% {\tt (numerated-var?\ numerated-var)} is a truth value.
% }% :
% % \begin{verbatim}
% (type-and-index-to-var
%  (var-to-type numerated-var)
%  (numerated-var-to-index numerated-var)) = numerated-var

% (var-to-type (type-and-index-to-var type index)) = type
% (numerated-var-to-index 
%  (type-and-index-to-var type index)) = index

% (numerated-var?\ (type-and-index-to-var type index)) = }t
% \end{verbatim}
Although these functions look like an ad hoc extension of the
interface that is convenient for normalization by evaluation, there is
also a deeper background: these functions can be seen as the
\inquotes{computational content} of the well-known phrase \inquotes{we
assume that there are infinitely many variables of every type}.
Giving a constructive proof for this statement would require to give
infinitely many examples of variables for every type.  This of course
can only be done by specifying a function (for every type) that
enumerates these examples.  To make the specification finite we
require the examples to be given in a uniform way, i.e.\ by a function
of two arguments.  To make sure that all these examples are in fact
different, we would have to require \texttt{make-var} to
be injective.  Instead, we require (classically equivalent)
\texttt{make-var} to be a bijection on its image, as
again, this can be turned into a computational statement by requiring
that a witness (i.e.\ an inverse function) is given.

Finally, as often the exact knowledge of infinitely many variables of
every type is not needed we require that, either by using the above
functions or by some other form of definition, functions
\begin{align*}
&\texttt{(type-to-new-var \textsl{type})}
\index{type-to-new-var@\texttt{type-to-new-var}}
\\
&\texttt{(type-to-new-partial-var \textsl{type})}
\index{type-to-new-partial-var@\texttt{type-to-new-partial-var}}
\end{align*}
are defined that return a (total or partial) variable of the requested
type, different from all variables that have ever been returned by any
of the specified functions so far.

Occasionally we may want to create a new variable with the same name
(and degree of totality) as a given one.  This is useful e.g.\ for
bound renaming.  Therefore we supply
\begin{align*}
&\texttt{(var-to-new-var \textsl{var}).}
\index{var-to-new-var@\texttt{var-to-new-var}}
\end{align*}

\textbf{Implementation.}
Variables are implemented as lists:
\[
\texttt{(var \textsl{type} \textsl{index} \textsl{t-deg} \textsl{name})}.
\]


\section{Constants}
\mylabel{Pconst}
Every constant (or more precisely, object constant) has a type and
denotes a computable (hence continuous) functional of that type.  We
have the following three kinds of constants:
\begin{itemize}
\item constructors, kind \texttt{constr},
\item constants with user defined rules (also called program(mable)
  constant, or pconst), kind \texttt{pconst},
\item constants whose rules are fixed, kind \texttt{fixed-rules}.
\end{itemize}
The latter are built into the system: recursion operators for
arbitrary algebras, equality and existence operators for finitary
algebras, and existence elimination.  They are typed in parametrized
form, with the actual type (or formula) given by a type (or type and
formula) substitution that is also part of the constant.  For
instance, equality is typed by $\alpha \to \alpha \to \boole$ and a
type substitution $\alpha \mapsto \rho$.  This is done for clarity
(and brevity, e.g.\ for large $\rho$ in the example above), since one
should think of the type of a constant in this way.

For constructors and for constants with fixed rules, by efficiency
reasons we want to keep the object denoted by the constant (as needed
for normalization by evaluation) as part of it.  It depends on the
type of the constant, hence must be updated in a given proof whenever
the type changes by a type substitution.

\subsection{Rewrite and computation rules for program constants}
\mylabel{SS:RewCompRules}
For every program constant $c^\rho$ we assume that some rewrite rules
of the form $c\vec{K} \cnv N$ are given, where $\FV(N) \subseteq
\FV(\vec{K})$ and $c\vec{K}$, $N$ have the same type (not necessarily
a ground type).  Moreover, for any two rules $c\vec{K} \cnv N$ and
$c\vec{K}' \cnv N'$ we require that $\vec{K}$ and $\vec{K}'$ are of
the same length, called the \emph{arity}\index{arity!of a program
constant} of $c$.  The rules are divided into \emph{computation
rules}\index{computation rule} and proper \emph{rewrite
rules}\index{rewrite rule}.  They must satisfy the requirements listed
in \cite{BergerEberlSchwichtenberg03}.  The idea is that a computation
rule can be understood as a description of a computation in a suitable
\emph{semantical} model, provided the syntactic constructors
correspond to semantic ones in the model, whereas the other rules
describe \emph{syntactic} transformations.

There a more general approach was used: one may enter into components
of products.  Then instead of one arity one needs several
\inquotes{type informations} $\vec{\rho} \to \sigma$ with $\vec{\rho}$
a list of types, $0$'s and $1$'s indicating the left or right part of
a product type.  For example, if $c$ is of type $\tau \to (\tau \to
\tau \to \tau) \times (\tau \to \tau)$, then the rules $cy0xx \cnv a$
and $cy1 \cnv b$ are admitted, and $c$ comes with the type
informations $(\tau,0,\tau,\tau \to \tau) \to \tau$ and $(\tau,1) \to
(\tau \to \tau)$. -- However, for simplicity we only deal with a
single arity here.

Given a set of rewrite rules, we want to treat some rules - which we
call \indexentry{computation rules} - in a different, more efficient
way.  The idea is that a computation rule can be understood as a
description of a computation in a suitable 
\indexentry{semantical model}, provided the syntactic constructors 
correspond to semantic ones in the model, whereas the other rules
describe \emph{syntactic} transformations.

In order to define what we mean by computation rules, we need the
notion of a \indexentry{constructor pattern}.  These are special terms
defined inductively as follows.
\begin{itemize}
\item  Every variable is a constructor pattern.
\item If $c$ is a constructor and $P_1,\dots,P_n$ are constructor
patterns (or projection markers 0 or 1), such that $c \vec{P}$ is of
ground type, then $c\vec{P}$ is a constructor pattern.
\end{itemize}
From the given set of rewrite rules we choose a subset $\Comp$
with the following properties.
\begin{itemize}
\item If $c\vec{P} \cnv Q \in \Comp$, then $P_1,\dots,P_n$ are constructor 
patterns or projection markers.
\item The rules are left-linear, i.e.\ if $c\vec{P} \cnv Q \in \Comp$,
then every variable in $c\vec{P}$ occurs only once in $c\vec{P}$.
\item The rules are non-overlapping, i.e.~for different rules 
$c\vec{K}\cnv M$ and $c\vec{L}\cnv N$ in $\Comp$ the left hand sides
$c\vec{K}$ and $c\vec{L}$ are non-unifiable.
\end{itemize}
We write $c\vec{M} \cnv_{\comp} Q$ to indicate that the rule is in
$\Comp$.  All other rules will be called (proper) rewrite rules,
written $c\vec{M} \cnv_{\rew} K$.

In our reduction strategy computation rules will always be applied
first, and since they are non-overlapping, this part of the reduction
is unique.  However, since we allowed almost arbitrary rewrite rules,
it may happen that in case no computation rule applies a term may be
rewritten by different rules $\notin \Comp$.  In order to obtain a
deterministic procedure we then select the first applicable rewrite rule
(This is a slight simplification of \cite{BergerEberlSchwichtenberg03},
where special functions $\select_c$ were used for this purpose).

\subsection{Recursion over simultaneous free algebras}
\mylabel{SS:RecSFA}
We now explain what we mean by recursion\index{recursion} over
simultaneous free algebras.  The inductive structure of the types
$\vec{\mu} = \mu\vec{\alpha}\,\vec{\kappa}$ corresponds to two sorts
of constants.  With the \emph{constructors} $\constr_i^{\vec{\mu}}
\colon \kappa_i[\vec{\mu}]$ we can construct elements of a type
$\mu_j$, and with the \emph{recursion operators}\index{recursion
operator} $\rec_{\mu_j}^{\vec{\mu}, \vec{\tau}}$ we can construct
mappings from $\mu_j$ to $\tau_j$ by recursion on the structure of
$\vec{\mu}$.  So in \texttt{(Rec arrow-types)},
\texttt{arrow-types} is a list $\mu_1 \to \tau_1, \dots, \mu_k \to
\tau_k$.  Here $\mu_1, \dots, \mu_k$ are the algebras defined
simultaneously and $\tau_1, \dots, \tau_k$ are the result types.

For convenience in our later treatment of proofs (when we want to
normalize a proof by (1) translating it into a term, (2) normalizing
this term and (3) translating the normal term back into a proof), we
also allow all-formulas $\forall x_1^{\mu_1} A_1, \dots, \forall
x_k^{\mu_k} A_k$ instead of \texttt{arrow-types}: they are treated as
$\mu_1 \to \tau(A_1)$, \dots, $\mu_k \to \tau(A_k)$ with $\tau(A_j)$
the type of $A_j$.

Recall the definition of types and constructor types in
Section~\ref{S:Types}, and the examples given there.  In order to define
the type of the recursion operators w.r.t.\ $\vec{\mu} =
\mu\vec{\alpha}\, \vec{\kappa}$ and result types $\vec{\tau}$, we
first define for
\[
\kappa_i = \vec{\rho} \to (\vec{\sigma}_1 \to \alpha_{j_1}) \to \dots \to
(\vec{\sigma}_n \to \alpha_{j_n}) \to \alpha_j \in
\constrtypes(\vec{\alpha})
\]
the \emph{step type}
\begin{align*}
\ST_i^{\vec{\mu}, \vec{\tau}} := \vec{\rho} \to 
&(\vec{\sigma}_1 \to \mu_{j_1}) \to \dots \to
(\vec{\sigma}_n \to \mu_{j_n}) \to 
\\
&(\vec{\sigma}_1 \to \tau_{j_1}) \to \dots \to
(\vec{\sigma}_n \to \tau_{j_n}) \to \tau_j.
\end{align*}
Here $\vec{\rho}, (\vec{\sigma}_1 \to \mu_{j_1}), \dots,
(\vec{\sigma}_n \to \mu_{j_n})$ correspond to the \emph{components}
% (or \emph{parameters}) 
of the object of type $\mu_j$ under
consideration, and $(\vec{\sigma}_1 \to \tau_{j_1}), \dots,
(\vec{\sigma}_n \to \tau_{j_n})$ to the previously defined values.
The recursion operator $\rec_{\mu_j}^{\vec{\mu}, \vec{\tau}}$ has type
\[
\rec_{\mu_j}^{\vec{\mu}, \vec{\tau}} \colon
\ST_1^{\vec{\mu}, \vec{\tau}} \to \dots \to \ST_k^{\vec{\mu}, \vec{\tau}}
\to \mu_j \to \tau_j.
\]

We will often write $\rec_j^{\vec{\mu}, \vec{\tau}}$ for
$\rec_{\mu_j}^{\vec{\mu}, \vec{\tau}}$, and omit the upper indices
$\vec{\mu}, \vec{\tau}$ when they are clear from the context.  In case
of a non-simultaneous free algebra, i.e.\ of type $\mu
\alpha\,(\kappa)$, for $\rec_\mu^{\mu, \tau}$ we normally write
$\rec_\mu^\tau$.

A simple example for simultaneous free algebras is
\[
(\tree, \tlist) := \mu (\alpha,\beta)\,
(\alpha, \beta \to \alpha, \beta, \alpha \to \beta \to \beta).
\]
The constructors are
\begin{align*}
&\leaf^{\tree} := \constr_1^{(\tree, \tlist)},
\\
&\branch^{\tlist \to \tree} := \constr_2^{(\tree, \tlist)},
\\
&\empt^{\tlist} := \constr_3^{(\tree, \tlist)},
\\
&\tcons^{\tree \to \tlist \to \tlist} := \constr_4^{(\tree, \tlist)}.
\end{align*}
An example for a recursion constant is
\begin{alignat*}{2}
&\texttt{(const Rec $\delta_1 \to \delta_2 \to \delta_3 \to \delta_4 \to 
\tree \to \alpha_1$}
\\
&\qquad \qquad \qquad 
\texttt{$(\alpha_1 \mapsto \tau_1, \alpha_2 \mapsto \tau_2)$)} 
\index{Rec@\texttt{Rec}}
\\
\intertext{with}
&\delta_1 := \alpha_1,
\\
&\delta_2 := \tlist \to \alpha_2 \to \alpha_1,
\\
&\delta_3 := \alpha_2,
\\
&\delta_4 := \tree \to \tlist \to \alpha_1 \to \alpha_2 \to \alpha_2.
\end{alignat*}
Here the fact that we deal with a simultaneous recursion (over
\texttt{tree} and \texttt{tlist}), and that we define a constant of
type $\tree \to \dots$, can all be inferred from what is given: the
type $\tree \to \dots$ is right there, and for \texttt{tlist} we can
look up the simultaneously defined algebras.

For the external representation (i.e.\ display) we use the shorter
notation
\[
\texttt{(Rec $\tree \to \tau_1$ $\tlist \to \tau_2$)}.
\]
% $$\texttt{(Rec $\tree \to \alpha_1$ $\tlist \to \alpha_2$ $(\alpha_1
% \mapsto \tau_1, \alpha_2 \mapsto \tau_2)$)}.$$

% A simplified version (without the recursive calls) of the recursion
% operator is the following generalized if-then-else operator.
% \begin{alignat*}{2}
% % &\texttt{(const If $\alpha_1 \to \alpha_1 \to \tree \to \alpha_1$
% $(\alpha_1 \mapsto \tau_1)$).} 
% \index{If@\texttt{If}}
% % \end{alignat*}
% A shorter notation would be $\texttt{(if-at $\tree \to \tau_1$)}$, but
% again we prefer the more systematic one above.

As already mentioned, it is also possible that the object constant
\texttt{Rec} comes with formulas instead of types, as the assumption
constant \texttt{Ind} below.  This is due to our desire not to
duplicate code when normalizing proofs, but rather translate the proof
into a term first, normalize the term and then translate back into a
proof.  For the last step we must have the original formulas of the
induction operator available.

To see a concrete example, let us recursively define addition $+
\colon \tree \to \tree \to \tree$ and $\oplus \colon \tlist \to \tree
\to \tlist$.  The recursion equations to be satisfied are
\begin{alignat*}{2}
&+\,\leaf &&= \lambda a a,
\\
&+(\branch\,\bs) &&= \lambda a.\branch(\oplus\,\bs\,a),\\[6pt]
&\oplus\,\empt &&= \lambda a\,\empt,
\\
&\oplus(\tcons\,b\,\bs) &&= \lambda a.\tcons(+\,b\,a)(\oplus\,\bs\,a).
\end{alignat*}
We define $+$ and $\oplus$ by means of the recursion operators
$\rec_{\tree}$ and
$\rec_{\tlist}$ with result types
\begin{align*}
\tau_1 &:= \tree \to \tree,
\\
\tau_2 &:= \tree \to \tlist.
\end{align*}
The step terms are
\begin{align*}
M_1 &:= \lambda a a,
\\
M_2 &:= \lambda \bs \lambda g^{\tau_2} \lambda a.\branch(g\,a),
\\
M_3 &:= \lambda a\,\empt,
\\
M_4 &:= \lambda b \lambda \bs \lambda f^{\tau_1} \lambda g^{\tau_2} \lambda a.
\tcons(f\,a)(g\,a).
\end{align*}
Then
\begin{align*}
+ &:= \rec_{\tree} \vec{M} \colon 
\tree \to \tree \to \tree,
\\
\oplus &:= \rec_{\tlist} \vec{M} \colon 
\tlist \to \tree \to \tlist.
\end{align*}

To explain the \emph{conversion relation}\index{conversion relation},
it will be useful to employ the following notation.  Let
$\vec{\mu} = \mu \vec{\alpha}\,\vec{\kappa}$,
\[
\kappa_i = \rho_1 \to \dots \to \rho_m \to 
(\vec{\sigma}_1 \to \alpha_{j_1}) \to \dots \to
(\vec{\sigma}_n \to \alpha_{j_n}) \to \alpha_j \in
\constrtypes(\vec{\alpha}),
\]
and consider $\constr_i^{\vec{\mu}} \vec{N}$.  Then we write
$\vec{N}^P = N_1^P, \dots, N_m^P$ for the \emph{parameter arguments}
$N_1^{\rho_1}, \dots, N_m^{\rho_m}$ and $\vec{N}^R = N_1^R, \dots,
N_n^R$ for the \emph{recursive arguments} $N_{m+1}^{\vec{\sigma}_1 \to
\mu_{j_1}}, \dots, N_{m+n}^{\vec{\sigma}_n \to \mu_{j_n}}$, and
$n^R$ for the number $n$ of recursive arguments.

We define a \emph{conversion relation} $\cnv_\rho$ between terms of
type $\rho$ by
\begin{align}
(\lambda xM)N &\cnv \subst{M}{x}{N}\label{betaconv}
\\
\lambda x.Mx &\cnv M\quad\hbox{if $x \notin \FV(M)$,
$M$ not an abstraction}\label{etaconv}
\\
(\rec_j^{\vec{\mu}, \vec{\tau}} \vec{M})^{\mu_j \to \tau_j}
(\constr_i^{\vec{\mu}} \vec{N}) &\cnv
M_i \vec{N}
\bigl( (\rec_{j_1}^{\vec{\mu}, \vec{\tau}} \vec{M}) \circ N_1^R\bigr) \dots
\bigl( (\rec_{j_n}^{\vec{\mu}, \vec{\tau}} \vec{M}) \circ N_n^R\bigr)
\label{recconv}
\end{align}
Here we have written $\rec_j^{\vec{\mu}, \vec{\tau}}$ for
$\rec_{\mu_j}^{\vec{\mu}, \vec{\tau}}$, and $\circ$ means composition.

\subsection{Internal representation of constants}
Every object constant has the internal representation
\begin{align*}
\texttt{(const\ } 
&\hbox{ \textsl{object-or-arity} \textsl{name} \textsl{uninst-type-or-formula} 
\textsl{subst}}
\\
&\hbox{\textsl{t-deg} \textsl{token-type} 
\textsl{arrow-types-or-repro-formulas}\texttt{)},}
\end{align*}
where \textsl{subst} may have type, object and assumption variables in
its domain.  The type of the constant is the result of carrying out
this substitution in \textsl{uninst-type-or-formula} (if this is a
type; otherwise first substitute and then convert the formula into a
type); free type variables may again occur in this type.  Note that a
formula will occur if \textsl{name} is \texttt{Ex-Intro} or
\texttt{Ex-Elim}, and may occur if it is \texttt{Rec}.
Examples for object constants are
\begin{alignat*}{2}
&\texttt{(const Compose $(\alpha {\to} \beta) {\to} (\beta {\to} \gamma) {\to}
\alpha {\to} \gamma$ 
$(\alpha \mapsto \rho, \beta \mapsto \sigma, \gamma \mapsto \tau)$ \dots)}
\index{Compose@\texttt{Compose}}
\\
&\texttt{(const Eq $\alpha \to \alpha \to \boole$ 
$(\alpha \mapsto \textsl{finalg})$ \dots)} 
\index{Eq@\texttt{Eq}}
\\
&\texttt{(const E $\alpha \to \boole$ 
$(\alpha \mapsto \textsl{finalg} \dots)$)} 
\index{E@\texttt{E}}
\\
&\texttt{(const Ex-Elim $\ex x^\alpha P(x) \to (\forall x^\alpha.  P(x)
\to Q) \to Q$}
\\ 
&\qquad\qquad\qquad\quad \texttt{$(\alpha \mapsto \tau, P^{(\alpha)}
\mapsto \set{z^\tau}{A}, Q \mapsto \set{}{B})$ \dots)}
\index{Ex-Elim@\texttt{Ex-Elim}}
\end{alignat*}
\textsl{object-or-arity} is an object if this object cannot be
changed, e.g.\ by allowing user defined rules for the constant;
otherwise, the associated object needs to be updated whenever a new
rule is added, and we have the arity of those rules instead.  The
rules are of crucial importance for the correctness of a proof, and
should not be invisibly buried in the denoted object taken as part of
the constant (hence of any term involving it).  Therefore we keep the
rules of a program constant and also its denoted objects (depending on
type substitutions) at a central place, a global variable
\texttt{PROGRAM-CONSTANTS} which assigns to every name of such a
constant the constant itself (with uninstantiated type), the rules
presently chosen for it and also its denoted objects (as association
list with type substitutions as keys).  When a new rule has been
added, the new objects for the program constant are computed, and the
new list to be associated with the program constant is written in
\texttt{PROGRAM-CONSTANTS} instead.  All information on a program
constant exept its denoted object and its computation and rewrite
rules (i.e.\ its type, degree of totality, arity and token type) is
stable and hence can be kept as part of it.  The \emph{token
type}\index{token type} can be either \texttt{const} (i.e.\ constant
written as application) or one of: \texttt{postfix-op},
\texttt{prefix-op}, \texttt{binding-op}, \texttt{add-op},
\texttt{mul-op}, \texttt{rel-op}, \texttt{and-op}, \texttt{or-op},
\texttt{imp-op} and \texttt{pair-op}.

Constructor, accessors and tests for all kinds of constants:
\begin{alignat*}{2}
&\texttt{(make-const \textsl{obj-or-arity} \textsl{name} \textsl{kind} 
\textsl{uninst-type} \textsl{tsubst}}
\\
&\quad \texttt{\textsl{t-deg} \textsl{token-type}
. \textsl{arrow-types-or-repro-formulas})}%
\index{make-const@\texttt{make-const}}
% &\quad& \text{constructor} 
\\
&\texttt{(const-to-object-or-arity \textsl{const})}%
\index{const-to-object-or-arity@\texttt{const-to-object-or-arity}}
% && \text{accessor} 
\\
&\texttt{(const-to-name \textsl{const})}%
\index{const-to-name@\texttt{const-to-name}}
% && \text{accessor} 
\\
&\texttt{(const-to-kind \textsl{const})}%
\index{const-to-kind@\texttt{const-to-kind}}
% && \text{accessor} 
\\
&\texttt{(const-to-uninst-type \textsl{const})}%
\index{const-to-uninst-type@\texttt{const-to-uninst-type}}
% && \text{accessor} 
\\
&\texttt{(const-to-tsubst \textsl{const})}%
\index{const-to-tsubst@\texttt{const-to-tsubst}}
% && \text{accessor} 
\\
&\texttt{(const-to-t-deg \textsl{const})}%
\index{const-to-t-deg@\texttt{const-to-t-deg}}
% && \text{accessor} 
\\
&\texttt{(const-to-token-type \textsl{const})}%
\index{const-to-token-type@\texttt{const-to-token-type}}
% && \text{accessor} 
\\
&\texttt{(const-to-arrow-types-or-repro-formulas \textsl{const})}%
\index{const-to-arrow-types-or-repro-formulas@\texttt{const-to-arrow-types-or{\dots}}}
% && \text{accessor} 
\\
&\texttt{(const?\ \textsl{x})}%
\index{const?@\texttt{const?}}
% && \text{test} 
\\
&\texttt{(const=?\ \textsl{x} \textsl{y})}                       
\index{const=?@\texttt{const=?}}
% && \text{test.}
\end{alignat*}
The type substitution \textsl{tsubst} must be restricted to the type
variables in \texttt{uninst-type}.
\texttt{arrow-types-or-repro-formulas} are only present for the
\texttt{Rec} constants.  They are needed for the reproduction case.

From these we can define
\begin{alignat*}{2}
&\texttt{(const-to-type \textsl{const})}%
\index{const-to-type@\texttt{const-to-type}} 
\\
&\texttt{(const-to-tvars \textsl{const})}%
\index{const-to-tvars@\texttt{const-to-tvars}}
\end{alignat*}

A \emph{constructor}\index{constructor} is a special constant with no
rules.  We maintain an association list \texttt{CONSTRUCTORS}
assigning to every name of a constructor an association list
associating with every type substitution (restricted to the type
parameters) the corresponding instance of the constructor.  We provide
\begin{alignat*}{2}
&\texttt{(constr-name? \textsl{string})}%
\index{constr-name?@\texttt{constr-name?}}
\\ 
&\texttt{(constr-name-to-constr \textsl{name} <\textsl{tsubst}>)}%
\index{constr-name-to-constr@\texttt{constr-name-to-constr}}
\\ 
&\texttt{(constr-name-and-tsubst-to-constr \textsl{name} \textsl{tsubst})}%
\index{constr-name-and-tsubst-to-constr@\texttt{constr-name-and-tsubst{\dots}}},
\end{alignat*}
where in \texttt{(constr-name-to-constr \textsl{name}
<\textsl{tsubst}>)}, \textsl{name} is a string or else of the
form \texttt{(Ex-Intro \textsl{formula})}.  If the optional
\textsl{tsubst} is not present, the empty substitution is used.

For given algebras one can display the associated constructors with their
types by calling
\begin{alignat*}{2}
&\texttt{(display-constructors \textsl{alg-name1} \dots)}%
\index{display-constructors@\texttt{display-constructors}}.
\end{alignat*}

We also need procedures recovering information from the string denoting
a program constant (via \texttt{PROGRAM-CONSTANTS}):
\begin{alignat*}{2}
&\texttt{(pconst-name-to-pconst \textsl{name})}%
\index{pconst-name-to-pconst@\texttt{pconst-name-to-pconst}}
\\
&\texttt{(pconst-name-to-comprules \textsl{name})}%
\index{pconst-name-to-comprules@\texttt{pconst-name-to-comprules}}
\\
&\texttt{(pconst-name-to-rewrules \textsl{name})}%
\index{pconst-name-to-rewrules@\texttt{pconst-name-to-rewrules}}
\\
&\texttt{(pconst-name-to-inst-objs \textsl{name})}%
\index{pconst-name-to-inst-objs@\texttt{pconst-name-to-inst-objs}}
\\
&\texttt{(pconst-name-and-tsubst-to-object \textsl{name} \textsl{tsubst})}%
% \index{pconst-name-and-tsubst-to-object@\texttt{pconst-name-and-tsubst-to-object}}
\\
&\texttt{(pconst-name-to-object \textsl{name})}%
\index{pconst-name-to-object@\texttt{pconst-name-to-object}}.
\end{alignat*}

One can display the program constants together with their current
computation and rewrite rules by calling
\begin{alignat*}{2}
&\texttt{(display-program-constants \textsl{name1} \dots)}%
\index{display-program-constants@\texttt{display-program-constants}}.
\end{alignat*}

To add and remove program constants we use
\begin{align*}
&\texttt{(add-program-constant \textsl{name} \textsl{type} <\textsl{rest}>)}
\index{add-program-constant@\texttt{add-program-constant}}
\\
&\texttt{(remove-program-constant \textsl{symbol})};
\index{remove-program-constant@\texttt{remove-program-constant}}
\end{align*}
\textsl{rest} consists of an initial segment of the following list:
\texttt{t-deg} (default $0$), \texttt{token-type} (default
\texttt{const}) and \texttt{arity} (default maximal number of argument
types).

To add and remove computation and rewrite rules we have
\begin{align*}
&\texttt{(add-computation-rule \textsl{lhs} \textsl{rhs})} 
\index{add-computation-rule@\texttt{add-computation-rule}}
\\
&\texttt{(add-rewrite-rule \textsl{lhs} \textsl{rhs})}
\index{add-rewrite-rule@\texttt{add-rewrite-rule}}
\\
&\texttt{(remove-computation-rules-for \textsl{lhs})}
\index{remove-computation-rules-for@\texttt{remove-computation-rules-for}}
\\
&\texttt{(remove-rewrite-rules-for \textsl{lhs}).}
\index{remove-rewrite-rules-for@\texttt{remove-rewrite-rules-for}}
\end{align*}

To generate our constants with fixed rules we use
\begin{alignat*}{2}
&\texttt{(finalg-to-=-const \textsl{finalg})}            
\index{finalg-to-=-const@\texttt{finalg-to-=-const}}
&\quad& \text{equality} 
\\
&\texttt{(finalg-to-e-const \textsl{finalg})}            
\index{finalg-to-e-const@\texttt{finalg-to-e-const}}
&& \text{existence} 
\\
&\texttt{(arrow-types-to-rec-const .\ \textsl{arrow-types})}            
\index{arrow-types-to-rec-const@\texttt{arrow-types-to-rec-const}}
&& \text{recursion} 
\\
&\texttt{(ex-formula-and-concl-to-ex-elim-const }
\\
&\texttt{\qquad \textsl{ex-formula}
\textsl{concl})}%
\index{ex-formula-and-concl-to-ex-elim-const@\texttt{ex-for{\dots}-to-ex-elim-const}}
\end{alignat*}

Similarly to \texttt{arrow-types-to-rec-const} we also define the
procedure \texttt{all-formulas-to-rec-const}.  It will be used in to
achieve normalization of proofs via translating them in terms.

[Noch einf\"ugen: \texttt{arrow-types-to-cases-const} und zur
Behandlung von Beweisen \texttt{all-formulas-to-cases-const}]


\section{Predicate variables and constants}
\mylabel{S:Psyms}
\subsection{Predicate variables}
\mylabel{SS:PredVars}
A predicate variable of arity\index{arity!of a predicate variable}
$\rho_1, \dots, \rho_n$ is a placeholder for a formula $A$
with distinguished (different) variables $x_1, \dots, x_n$ of types
$\rho_1, \dots, \rho_n$.  Such an entity is called a
\indexentry{comprehension term}, written $\set{x_1, \dots, x_n}{A}$.
% We also allow predicate constants
% with a fixed intended meaning (e.g.\ $\bot$\index{bottom}).  Predicate
% variables and constants are both called predicate symbols.

Predicate variable names are provided in the form of an association
list, which assigns to the names their arities.  By default we have
the predicate variable \texttt{bot}\index{bottom} of arity
\texttt{(arity)}, called (logical) falsity.  It is viewed as a
predicate variable rather than a predicate constant, since (when
translating a classical proof into a constructive one) we want to
substitute for \texttt{bot}.

Often we will argue about \emph{Harrop formulas}\index{Harrop formula}
only, i.e.\ formulas without computational content.  For convenience
we use a special sort of predicate variables intended to range over
comprehension terms with Harrop formulas only.  For example,
$\texttt{P0}, \texttt{P1}, \texttt{P2}, \dots, \texttt{Q0}, \dots$
range over comprehension terms with Harrop formulas, and $\verb#P^0#,
\verb#P^1#, \verb#P^2#, \dots$ are general predicate variables.  We
say that \emph{Harrop degree}\index{Harrop degree} for the former is
$1$, and for the latter $0$.

% \subsection*{Interface}
We need constructors and accessors for arities
\begin{align*}
&\texttt{(make-arity \textsl{type1} \dots)}
\index{make-arity@\texttt{make-arity}}
\\
&\texttt{(arity-to-types \textsl{arity})}
\index{arity-to-types@\texttt{arity-to-types}}
\end{align*}
To display an arity we have
\[
\texttt{(arity-to-string \textsl{arity})}
\index{arity-to-string@\texttt{arity-to-string}}
\]

We can test whether a string is a name for a predicate variable, and
if so compute its associated arity:
\begin{align*}
&\texttt{(pvar-name?\ \textsl{string})}
\index{pvar-name?@\texttt{pvar-name?}}
\\
&\texttt{(pvar-name-to-arity \textsl{pvar-name})}
\index{pvar-name-to-arity@\texttt{pvar-name-to-arity}}
\end{align*}

To add and remove names for predicate variables of a given arity
(e.g.\ $\texttt{Q}$ for predicate variables of arity \texttt{nat}), we
use
\begin{align*}
&\texttt{(add-pvar-name \textsl{name1} \dots\ \textsl{arity})}%
\index{add-pvar-name@\texttt{add-pvar-name}}
\\
&\texttt{(remove-pvar-name \textsl{name1} \dots)}%
\index{remove-pvar-name@\texttt{remove-pvar-name}}
\end{align*}

We need a constructor, accessors and tests for predicate variables.
% Note that the arity is not necessary as an argument for
% \texttt{make-pvar}, since it can be read off from
% \texttt{pvar-name}.
\begin{alignat*}{2}
&\texttt{(make-pvar \textsl{arity} \textsl{index} \textsl{h-deg} 
\textsl{name})}
\index{make-pvar@\texttt{make-pvar}}
&\quad& \text{constructor}
\\
&\texttt{(pvar-to-arity \textsl{pvar})}
\index{pvar-to-arity@\texttt{pvar-to-arity}} 
&& \text{accessor}
\\
&\texttt{(pvar-to-index \textsl{pvar})} 
\index{pvar-to-index@\texttt{pvar-to-index}} 
&& \text{accessor}
\\
&\texttt{(pvar-to-h-deg \textsl{pvar})} 
\index{pvar-to-h-deg@\texttt{pvar-to-h-deg}} 
&& \text{accessor}
\\
&\texttt{(pvar-to-name \textsl{pvar})} 
\index{pvar-to-name@\texttt{pvar-to-name}} 
&& \text{accessor}
\\
&\texttt{(pvar?\ \textsl{x})} 
\index{pvar?@\texttt{pvar?}} 
\\
&\texttt{(equal-pvars?\ \textsl{pvar1} \textsl{pvar2})}
\index{equal-pvars?@\texttt{equal-pvars?}} 
\end{alignat*}

For convenience we have the function 
\begin{alignat*}{2}
&\texttt{(mk-pvar \textsl{arity} <\textsl{index}> <\textsl{h-deg}> 
<\textsl{name}>)}
\end{alignat*}
The arity is a required argument; the remaining arguments are
optional.  The default for \textsl{index} is $-1$, for \textsl{h-deg}
is $1$ (i.e.\ Harrop-formula) and for \textsl{name} it is given by
\texttt{(default-pvar-name \textsl{arity})}.

It is guaranteed that parsing a displayed predicate variable
reproduces the predicate variable; the converse need not be the case
(we may want to convert it into some canonical form).


\subsection{Predicate constants}
\mylabel{SS:PredConsts} 
We also allow \emph{predicate constants}\index{predicate constant}.
The general reason for having them is that we need predicates to be
axiomatized, e.g.\ \texttt{Equal} and \texttt{Total} (which are
\emph{not} placeholders for formulas).  Prime formulas built from
predicate constants do not give rise to extracted terms, and cannot be
substituted for.

Notice that a predicate constant does not change its name under a type
substitution; this is in contrast to predicate (and other) variables.
Notice also that the parser can infer from the arguments the types
$\rho_1 \dots \rho_n$ to be substituted for the type variables in the
uninstantiated arity of $P$.

% Discarded 01-08-20
% We also allow \indexentry{predicate constants}; they are viewed as
% constants with fixed rules.  For equality \texttt{Eq} and existence
% \texttt{Ex} there are such rules (e.g.\ $x=x \cnv T$), but for
% predicate constants intended to be axiomatized there are no such
% rules.  The need for predicate constants comes up when e.g.\ an
% inductively defined set is expressed via a formula stating the
% existence of a generation tree; the kernel of this formula is to be
% axiomatized, using the tree constructors.  Since predicate constants
% are constants with fixed rules, they do not give rise to extracted
% terms, and cannot be substituted for.

% A predicate constant does not change its name under a type
% substitution; this is in contrast to predicate (and other) variables.
% To enable the parser to infer its type, generally a predicate constant
% is to be displayed in the form $(P \rho_1 \dots \rho_n)$, where
% $\rho_1 \dots \rho_n$ are the types to be substituted for the type
% variables in the uninstantiated type of $P$.  However, quite often the
% type substitution can be inferred by the parser from the types of the
% arguments.  This is the case e.g.\ for equality and existence, where
% we can parse $x^{\alpha} = x^{\alpha}$ and $E x$ as well as $n^{\nat}
% = n^{\nat}$ and $E n$.  This happens quite regularly for all constants
% whose type involves type variables (i.e.\ of token type
% \texttt{constscheme} rather than \texttt{const}).

% \subsection*{Interface}
% 
To add and remove names for predicate constants of a given arity, we
use
\begin{align*}
&\texttt{(add-predconst-name \textsl{name1} \dots\ \textsl{arity})}%
\index{add-predconst-name@\texttt{add-predconst-name}}
\\
&\texttt{(remove-predconst-name \textsl{name1} \dots)}%
\index{remove-predconst-name@\texttt{remove-predconst-name}}
\end{align*}
We need a constructor, accessors and tests for predicate constants.
\begin{alignat*}{2}
&\texttt{(make-predconst \textsl{uninst-arity} \textsl{tsubst} \textsl{index} 
\textsl{name})}
\index{make-predconst@\texttt{make-predconst}}
&\quad& \text{constructor}
\\
&\texttt{(predconst-to-uninst-arity \textsl{predconst})}
\index{predconst-to-uninst-arity@\texttt{predconst-to-uninst-arity}} 
&& \text{accessor}
\\
&\texttt{(predconst-to-tsubst \textsl{predconst})} 
\index{predconst-to-tsubst@\texttt{predconst-to-tsubst}} 
&& \text{accessor}
\\
&\texttt{(predconst-to-index \textsl{predconst})} 
\index{predconst-to-index@\texttt{predconst-to-index}} 
&& \text{accessor}
\\
&\texttt{(predconst-to-name \textsl{predconst})} 
\index{predconst-to-name@\texttt{predconst-to-name}} 
&& \text{accessor}
\\
&\texttt{(predconst?\ \textsl{x})} 
\index{predconst?@\texttt{predconst?}} 
\end{alignat*}
Moreover we need
\begin{alignat*}{2}
&\texttt{(predconst-name? \textsl{name})}%
\index{predconst-name?@\texttt{predconst-name?}}
\\
&\texttt{(predconst-name-to-arity \textsl{predconst-name})}.%
\index{predconst-name-to-arity@\texttt{predconst-name-to-arity}}
\\
&\texttt{(predconst-to-string \textsl{predconst})}.%
\index{predconst-to-string@\texttt{predconst-to-string}}
\end{alignat*}


\subsection{Inductively defined predicate constants}
\mylabel{SS:IDPredConsts} 
As we have seen, type variables allow for a general treatment of
inductively generated types $\mu \vec{\alpha} \,\vec{\kappa}$.
Similarly, we can use predicate variables to inductively generate
predicates $\mu \vec{X} \,\vec{K}$.  

More precisely, we allow the formation of inductively generated
predicates $\mu \vec{X} \,\vec{K}$, where $\vec{X} =
(X_j)_{j=1,\dots,N}$ is a list of distinct predicate variables, and
$\vec{K} = (K_i)_{i=1,\dots,k}$ is a list of constructor formulas (or
\inquotes{clauses}\index{clause}) containing $X_1,\dots,X_N$ in
strictly positive positions only.

To introduce inductively defined predicates we use
\[
\texttt{add-ids}\index{add-ids@\texttt{add-ids}}.
\]
An example is
\begin{verbatim}
(add-ids (list (list "Ev" (make-arity (py "nat")) "algEv")
               (list "Od" (make-arity (py "nat")) "algOd"))
         '("Ev 0" "InitEv")
         '("allnc n.Od n -> Ev(n+1)" "GenEv")
         '("Od 1" "InitOd")
         '("allnc n.Ev n -> Od(n+1)" "GenOd"))
\end{verbatim}
This simultaneously introduces the two inductively defined predicate
constants \texttt{Ev} and \texttt{Od}, by the clauses given.  The
presence of an algebra name after the arity (here \texttt{algEv} and
\texttt{algOd}) indicates that this inductively defined predicate
constant is to have computational content.  Then all clauses with this
constant in the conclusion must provide a constructor name (here
\texttt{InitEv}, \texttt{GenEv}, \texttt{InitOd}, \texttt{GenOd}).  If
the constant is to have no computational content, then all its clauses
must be invariant (under realizability, a.k.a.\ \inquotes{negative}).

Here are some further examples of inductively defined predicates:
\begin{verbatim}
(add-ids 
  (list (list "Even" (make-arity (py "nat")) "algEven"))
  '("Even 0" "InitEven")
  '("allnc n.Even n -> Even(n+2)" "GenEven"))

(add-ids 
  (list (list "Acc" (make-arity (py "nat")) "algAcc"))
  '("allnc n.(all m.m<n -> Acc m) -> Acc n" "GenAccSup"))

(add-ids (list (list "OrID" (make-arity) "algOrID"))
         '("P^1 -> OrID" "InlOrID")
         '("P^2 -> OrID" "InrOrID"))

(add-ids 
  (list (list "EqID" (make-arity (py "alpha") (py "alpha")) 
              "algEqID"))
  '("allnc x^ EqID x^ x^" "GenEqID"))

(add-ids (list (list "ExID" (make-arity) "algExID"))
         '("allnc x^.Q^ x^ -> ExID" "GenExID"))

(add-ids 
  (list (list "FalsityID" (make-arity) "algFalsityID")))
\end{verbatim}


\section{Terms and objects}
\mylabel{Terms}
Terms are built from (typed) variables and constants by abstraction,
application, pairing, formation of left and right components (i.e.\
projections) and the \texttt{if}-construct.

The \texttt{if}-construct\index{if-construct@\texttt{if}-construct}
distinguishes cases according to the outer constructor form; the
simplest example (for the type \texttt{boole}) is \emph{if-then-else}.
Here we do not want to evaluate all arguments right away, but rather
evaluate the test argument first and depending on the result evaluate
at most one of the other arguments.  This phenomenon is well known in
functional languages; e.g.\ in \textsc{Scheme} the
\texttt{if}-construct is called a \emph{special form} as opposed to an
operator.  In accordance with this terminology we also call our
\texttt{if}-construct a special form\index{special form}.  It will be
given a special treatment in \texttt{nbe-term-to-object}.

Usually it will be the case that every closed term of an sfa ground
type reduces via the computation rules to a constructor term, i.e.\ a
closed term built from constructors only.  However, we do not require
this.

% \subsection*{Interface}
We have constructors, accessors and tests for variables
\begin{alignat*}{2}
&\texttt{(make-term-in-var-form var)}        
\index{make-term-in-var-form@\texttt{make-term-in-var-form}}
&\quad& \text{constructor} 
\\
% &\texttt{(term-in-var-form-to-string \textsl{term})}  
% \index{term-in-var-form-to-string@\texttt{term-in-var-form-to-string}}
% && \text{accessor,} \\
&\texttt{(term-in-var-form-to-var \textsl{term})}     
\index{term-in-var-form-to-var@\texttt{term-in-var-form-to-var}}
&& \text{accessor,} 
\\
&\texttt{(term-in-var-form?\ \textsl{term})}          
\index{term-in-var-form?@\texttt{term-in-var-form?}}
&& \text{test,}
\end{alignat*}
for constants
\begin{alignat*}{2}
&\texttt{(make-term-in-const-form \textsl{const})}    
\index{make-term-in-const-form@\texttt{make-term-in-const-form}}
&\quad& \text{constructor} 
\\
&\texttt{(term-in-const-form-to-const \textsl{term})} 
\index{term-in-const-form-to-const@\texttt{term-in-const-form-to-const}}
&& \text{accessor} 
\\
&\texttt{(term-in-const-form?\ \textsl{term})}         
\index{term-in-const-form?@\texttt{term-in-const-form?}}
&& \text{test,}
\end{alignat*}
for abstractions
\begin{alignat*}{2}
&\texttt{(make-term-in-abst-form \textsl{var} \textsl{term})}   
\index{make-term-in-abst-form@\texttt{make-term-in-abst-form}}
&\quad& \text{constructor} 
\\
&\texttt{(term-in-abst-form-to-var \textsl{term})}     
\index{term-in-abst-form-to-var@\texttt{term-in-abst-form-to-var}}
&& \text{accessor} 
\\
&\texttt{(term-in-abst-form-to-kernel \textsl{term})}  
\index{term-in-abst-form-to-kernel@\texttt{term-in-abst-form-to-kernel}}
&& \text{accessor} 
\\
&\texttt{(term-in-abst-form?\ \textsl{term})}          
\index{term-in-abst-form?@\texttt{term-in-abst-form?}}
&& \text{test,}
\end{alignat*}
for applications
\begin{alignat*}{2}
&\texttt{(make-term-in-app-form \textsl{term1} \textsl{term2})} 
\index{make-term-in-app-form@\texttt{make-term-in-app-form}}
&\quad& \text{constructor} 
\\
&\texttt{(term-in-app-form-to-op \textsl{term})}       
\index{term-in-app-form-to-op@\texttt{term-in-app-form-to-op}}
&& \text{accessor} 
\\
&\texttt{(term-in-app-form-to-arg \textsl{term})}      
\index{term-in-app-form-to-arg@\texttt{term-in-app-form-to-arg}}
&& \text{accessor} 
\\
&\texttt{(term-in-app-form?\ \textsl{term})}           
\index{term-in-app-form?@\texttt{term-in-app-form?}}
&& \text{test,}
\end{alignat*}
for pairs
\begin{alignat*}{2}
&\texttt{(make-term-in-pair-form \textsl{term1} \textsl{term2})}  
\index{make-term-in-pair-form@\texttt{make-term-in-pair-form}}
&\quad& \text{constructor} 
\\
&\texttt{(term-in-pair-form-to-left \textsl{term})}      
\index{term-in-pair-form-to-left@\texttt{term-in-pair-form-to-left}}
&& \text{accessor} 
\\
&\texttt{(term-in-pair-form-to-right \textsl{term})}     
\index{term-in-pair-form-to-right@\texttt{term-in-pair-form-to-right}}
&& \text{accessor} 
\\
&\texttt{(term-in-pair-form?\ \textsl{term})}            
\index{term-in-pair-form?@\texttt{term-in-pair-form?}}
&& \text{test,}
\end{alignat*}
for the left and right component of a pair
\begin{alignat*}{2}
&\texttt{(make-term-in-lcomp-form \textsl{term})}        
\index{make-term-in-lcomp-form@\texttt{make-term-in-lcomp-form}}
&\quad& \text{constructor} 
\\
&\texttt{(make-term-in-rcomp-form \textsl{term})}        
\index{make-term-in-rcomp-form@\texttt{make-term-in-rcomp-form}}
&& \text{constructor} 
\\
&\texttt{(term-in-lcomp-form-to-kernel \textsl{term})}   
\index{term-in-lcomp-form-to-kernel@\texttt{term-in-lcomp-form-to-kernel}}
&& \text{accessor} 
\\
&\texttt{(term-in-rcomp-form-to-kernel \textsl{term})}   
\index{term-in-rcomp-form-to-kernel@\texttt{term-in-rcomp-form-to-kernel}}
&& \text{accessor} 
\\
&\texttt{(term-in-lcomp-form?\ \textsl{term})}           
\index{term-in-lcomp-form?@\texttt{term-in-lcomp-form?}}
&& \text{test} 
\\
&\texttt{(term-in-rcomp-form?\ \textsl{term})}           
\index{term-in-rcomp-form?@\texttt{term-in-rcomp-form?}}
&& \text{test}
\end{alignat*}
and for \texttt{if}-constructs
\begin{alignat*}{2}
&\texttt{(make-term-in-if-form \textsl{test} \textsl{alts} .\ \textsl{rest})}
\index{make-term-in-if-form@\texttt{make-term-in-if-form}}
&\quad& \text{constructor} 
\\
&\texttt{(term-in-if-form-to-test \textsl{term})}         
\index{term-in-if-form-to-test@\texttt{term-in-if-form-to-test}}
&& \text{accessor} 
\\
&\texttt{(term-in-if-form-to-alts \textsl{term})}         
\index{term-in-if-form-to-alts@\texttt{term-in-if-form-to-alts}}
&& \text{accessor} 
\\
&\texttt{(term-in-if-form-to-rest \textsl{term})}         
\index{term-in-if-form-to-rest@\texttt{term-in-if-form-to-rest}}
&& \text{accessor} 
\\
&\texttt{(term-in-if-form?\ \textsl{term})}               
\index{term-in-if-form?@\texttt{term-in-if-form?}}
&& \text{test.}
\end{alignat*}
where in \texttt{make-term-in-if-form}, \textsl{rest} is either empty
or an all-formula.

It is convenient to have more general application constructors and
accessors available, where application takes arbitrary many arguments
and works for ordinary application as well as for component formation.
\begin{alignat*}{2}
&\texttt{(mk-term-in-app-form \textsl{term} \textsl{term1} \dots)}
\index{mk-term-in-app-form@\texttt{mk-term-in-app-form}}
&\quad& \text{constructor} 
\\
&\texttt{(term-in-app-form-to-final-op \textsl{term})} 
\index{term-in-app-form-to-final-op@\texttt{term-in-app-form-to-final-op}}
&& \text{accessor} 
\\
&\texttt{(term-in-app-form-to-args \textsl{term})} 
\index{term-in-app-form-to-args@\texttt{term-in-app-form-to-args}}
&& \text{accessor,}
\end{alignat*}
Also for abstraction it is convenient to have a more general constructor
taking arbitrary many variables to be abstracted one after the other
\begin{alignat*}{2}
&\texttt{(mk-term-in-abst-form \textsl{var1} \dots\ \textsl{term})}.
\index{mk-term-in-abst-form@\texttt{mk-term-in-abst-form}}
\end{alignat*}
We also allow vector notation for recursion (cf.\ Joachimski and Matthes
\cite{JoachimskiMatthes03}).

Moreover we need
\begin{alignat*}{2}
&\texttt{(term?\ \textsl{x})}
\index{term?@\texttt{term?}}
\\
&\texttt{(term=?\ \textsl{term1} \textsl{term2})}
\index{term=?@\texttt{term=?}}
\\
&\texttt{(terms=?\ \textsl{terms1} \textsl{terms2})}
\index{terms=?@\texttt{terms=?}}
\\
&\texttt{(term-to-type \textsl{term})}
\index{term-to-type@\texttt{term-to-type}}
\\
&\texttt{(term-to-free \textsl{term})}
\index{term-to-free@\texttt{term-to-free}}
\\
&\texttt{(term-to-bound \textsl{term})}
\index{term-to-bound@\texttt{term-to-bound}}
\\
&\texttt{(term-to-t-deg \textsl{term})}
\index{term-to-t-deg@\texttt{term-to-t-deg}}
\\
&\texttt{(synt-total?\ \textsl{term})}
\index{synt-total?@\texttt{synt-total?}}
\\
&\texttt{(term-to-string \textsl{term})}.
\index{term-to-string@\texttt{term-to-string}}
\end{alignat*}

% To take care of arithmetical terms, we use
% \begin{alignat*}{2}
% %
% &\texttt{(mk-+ <terms>)}               \\
% &\texttt{(mk-- <terms>)}               \\
% &\texttt{(mk-max <terms>)}             \\
% &\texttt{(mk-min <terms>)}             \\
% &\texttt{(mk-* <terms>)} 
% %
% \end{alignat*}

\subsection{Normalization}
We need an operation which transforms a term into its normal form
w.r.t.\ the given computation and rewrite rules.  Here we base our
treatment on \emph{normalization by evaluation} introduced in
\cite{BergerSchwichtenberg91a}, and extended to arbitrary computation
and rewrite rules in \cite{BergerEberlSchwichtenberg03}.

For normalization by evaluation we need semantical \emph{objects}.
For an arbitrary ground type every term family of that type is an
object.  For an sfa ground type, in addition the constructors have
semantical counterparts.  The freeness of the constructors is
expressed by requiring that their ranges are disjoint and that they
are injective.  Moreover, we view the free algebra as a domain and
require that its bottom element is not in the range of the
constructors.  Hence the constructors are total and non-strict.  Then
by applying \texttt{nbe-reflect} followed by \texttt{nbe-reify} we can
normalize every term, where normalization refers to the computation as
well as the rewrite rules.

% \subsection*{Interface}
An object consists of a semantical value and a type.  
\begin{alignat*}{2}
&\texttt{(nbe-make-object \textsl{type} \textsl{value})} 
\index{nbe-make-object@\texttt{nbe-make-object}}
&\quad& \text{constructor} 
\\
&\texttt{(nbe-object-to-type \textsl{object})}  
\index{nbe-object-to-type@\texttt{nbe-object-to-type}}
&& \text{accessor} 
\\
&\texttt{(nbe-object-to-value \textsl{object})} 
\index{nbe-object-to-value@\texttt{nbe-object-to-value}}
&& \text{accessor} 
\\
&\texttt{(nbe-object?\ \textsl{x})}             
\index{nbe-object?@\texttt{nbe-object?}}
&& \text{test.}
\end{alignat*}
To work with objects, we need
\begin{alignat*}{2}
&\texttt{(nbe-object-apply \textsl{function-obj} \textsl{arg-obj})}
\index{nbe-object-apply@\texttt{nbe-object-apply}}
\end{alignat*}
Again it is convenient to have a more general application operation
available, which takes arbitrary many arguments and works for ordinary
application as well as for component formation. We also need an
operation composing two unary function objects.
\begin{alignat*}{2}
&\texttt{(nbe-object-app \textsl{function-obj} \textsl{arg-obj1} \dots)} 
\index{nbe-object-app@\texttt{nbe-object-app}} 
\\
&\texttt{(nbe-object-compose \textsl{function-obj1} \textsl{function-obj2})}
\index{nbe-object-compose@\texttt{nbe-object-compose}} 
\end{alignat*}
For ground type values we need constructors, accessors and tests.  To
make constructors \inquotes{self-evaluating}, a constructor value has
the form 
\[
\hbox{\texttt{(constr-value \textsl{name} \textsl{objs}
\textsl{delayed-constr})},}
\]
where \textsl{delayed-constr} is a procedure of zero arguments which
evaluates to this very same constructor.  This is necessary to avoid
having a cycle (for nullary constructors, and only for those).
\begin{alignat*}{2}
&\texttt{(nbe-make-constr-value \textsl{name} \textsl{objs})} 
\index{nbe-make-constr-value@\texttt{nbe-make-constr-value}}
&\quad& \text{constructor} 
\\
&\texttt{(nbe-constr-value-to-name \textsl{value})}    
\index{nbe-constr-value-to-name@\texttt{nbe-constr-value-to-name}}
&& \text{accessor} \\
&\texttt{(nbe-constr-value-to-args \textsl{value})}    
&& \text{accessor} 
\\
&\texttt{(nbe-constr-value-to-constr \textsl{value})}  
\index{nbe-constr-value-to-constr@\texttt{nbe-constr-value-to-constr}}
&& \text{accessor} 
\\
&\texttt{(nbe-constr-value?\ \textsl{value})}          
\index{nbe-constr-value?@\texttt{nbe-constr-value?}}
&& \text{test} 
\\
&\texttt{(nbe-fam-value?\ \textsl{value})}             
\index{nbe-fam-value?@\texttt{nbe-fam-value?}}
&& \text{test.}
\end{alignat*}
The essential function which \inquotes{animates}\index{animation} the
program constants according to the given computation and rewrite rules
is
\begin{align*}
&\texttt{(nbe-pconst-and-tsubst-and-rules-to-object}
\index{nbe-pconst-and-tsubst-and-rules-to-object@\texttt{nbe-pconst-{\dots}-to-object}}
\\
&\qquad \texttt{\textsl{pconst}\ \textsl{tsubst}\ \textsl{comprules}\  
\textsl{rewrules})}
\end{align*}
Using it we can the define an \indexentry{evaluation} function, which
assigns to a term and an environment a semantical object:
\begin{alignat*}{2}
&\texttt{(nbe-term-to-object \textsl{term} \textsl{bindings})} 
\index{nbe-term-to-object@\texttt{nbe-term-to-object}}
&\quad& \text{evaluation.}
\end{alignat*}
Here \textsl{bindings} is an association list assigning objects of the
same type to variables.  In case a variable is not assigned anything
in \textsl{bindings}, by default we assign the constant term family of
this variable, which always is an object of the correct type.

The interpretation of the program constants requires some auxiliary
functions (cf.\ \cite{BergerEberlSchwichtenberg03}):
\begin{alignat*}{2}
&\texttt{(nbe-constructor-pattern?\ \textsl{term})} 
\index{nbe-constructor-pattern?@\texttt{nbe-constructor-pattern?}}
&\quad& \text{test} 
\\
&\texttt{(nbe-inst?\ \textsl{constr-pattern} \textsl{obj})}  
\index{nbe-inst?@\texttt{nbe-inst?}}
&& \text{test} 
\\
&\texttt{(nbe-genargs \textsl{constr-pattern} \textsl{obj})} 
\index{nbe-genargs@\texttt{nbe-genargs}}
&& \text{generalized arguments} 
\\
% &\texttt{(nbe-select \textsl{pconst} \textsl{term})} 
% && \text{selects a rewrite rule} \\
&\texttt{(nbe-extract \textsl{termfam})} 
\index{nbe-extract@\texttt{nbe-extract}}
&& \text{extracts a term from a family} 
\\
&\texttt{(nbe-match \textsl{pattern} \textsl{term})}
\index{nbe-match@\texttt{nbe-match}}
\end{alignat*}
Then we can define
\begin{alignat*}{2}
&\texttt{(nbe-reify \textsl{object})}
\index{nbe-reify@\texttt{nbe-reify}}
&\quad& \text{reification} 
\\
&\texttt{(nbe-reflect \textsl{term})} 
\index{nbe-reflect@\texttt{nbe-reflect}}
&& \text{reflection}
\end{alignat*}
and by means of these
\begin{alignat*}{2}
&\texttt{(nbe-normalize-term \textsl{term})}
\index{nbe-normalize-term@\texttt{nbe-normalize-term}}
&\quad& \text{normalization,} 
\end{alignat*}
abbreviated \texttt{nt}\index{nt@\texttt{nt}}.

The \texttt{if}-form needs a special treatment.  In particular, for a
full normalization of terms (including permutative conversions), we
define a preprocessing step that $\eta$ expands the alternatives of
all \texttt{if}-terms.  The result contains \texttt{if}-terms with
ground type alternatives only.

\subsection{Substitution}
Recall the generalities on substitutions in Section~\ref{SS:GenSubst}.

We define simultaneous substitution for type and object variables in a
term, via \texttt{tsubst} and \texttt{subst}.  It is assumed that
\texttt{subst} only affects those vars whose type is not changed by 
\texttt{tsubst}.

In the abstraction case of the recursive definition, the abstracted
variable may need to be renamed.  However, its type can be affected by
\texttt{tsubst}.  Then the renaming cannot be made part of
\texttt{subst}, because the condition above would be violated.
Therefore we carry along a procedure renaming variables, which
remembers the renaming of variables done so far.
\begin{alignat*}{2}
&\texttt{(term-substitute \textsl{term} \textsl{tosubst})}%
\index{term-substitute@\texttt{term-substitute}} 
\\
&\texttt{(term-subst \textsl{term} \textsl{arg} \textsl{val})}%
\index{term-subst@\texttt{term-subst}} 
\\
&\texttt{(compose-o-substitutions \textsl{subst1} \textsl{subst2})}%
\index{compose-o-substitutions@\texttt{compose-o-substitutions}} 
\end{alignat*}
The \texttt{o} in \texttt{compose-o-substitutions} indicates that we
substitute for \emph{object} variables.  However, since this is the
most common form of substitution, we also write
\texttt{compose-substitutions}%
\index{compose-substitutions@\texttt{compose-substitutions}} instead.

Display functions for substitutions are
\begin{align*}
&\texttt{(display-substitution \textsl{subst})}%
\index{display-substitution@\texttt{display-substitution}} 
\\
&\texttt{(substitution-to-string \textsl{subst})}%
\index{substitution-to-string@\texttt{substitution-to-string}} 
\end{align*}


\section{Formulas and comprehension terms}
\mylabel{S:Formulas}
A prime formula\index{formula!prime} can have the form
\begin{itemize}
\item \texttt{(atom r)} with a term r of type boole, 
\item \texttt{(predicate a r1 ... rn)} with a predicate variable or
constant \texttt{a} and terms \texttt{r1} \dots \texttt{rn}.
\end{itemize}
Formulas are built from prime formulas by
\begin{itemize}
\item  implication \texttt{(imp \textsl{formula1} \textsl{formula2})}
\item  conjunction \texttt{(and \textsl{formula1} \textsl{formula2})}
\item  tensor \texttt{(tensor \textsl{formula1} \textsl{formula2})}
\item  all quantification  \texttt{(all \textsl{x} \textsl{formula})}
\item  existential quantification  \texttt{(ex \textsl{x} \textsl{formula})}
\item all quantification \texttt{(allnc \textsl{x} \textsl{formula})}
without computational content
\item existential quantification \texttt{(exnc \textsl{x}
\textsl{formula})} without computational content
\end{itemize}
Moreover we have classical existential quantification in an arithmetical
and a logical form:
\begin{alignat*}{2}
&\texttt{(exca (\textsl{x1}\dots) \textsl{formula})} 
\index{exca@\texttt{exca}}
&\quad& \text{arithmetical version} 
\\
&\texttt{(excl (\textsl{x1} \dots) \textsl{formula})} 
\index{excl@\texttt{excl}}
&& \text{logical version.}
\end{alignat*}
Here we allow that the quantified variable is formed without \verb#^#,
i.e.\ ranges over total objects only.

Formulas can be \emph{unfolded}\index{formula!unfolded} in the sense
that the all classical existential quantifiers are replaced according
to their definiton.  Inversely a formula can be
\emph{folded}\index{formula!folded} in the sense that classical
existential quantifiers are introduced wherever possible.

\emph{Comprehension terms}\index{comprehension term} have the form
\texttt{(cterm \textsl{vars} \textsl{formula})}.  Note that
\textsl{formula} may contain further free variables.

% \subsection*{Interface}
Tests:
\begin{align*}
&\texttt{(atom-form?\ \textsl{formula})} 
\index{atom-form?@\texttt{atom-form?}}
\\
% &\texttt{(pvar-form?\ \textsl{formula})}
% \index{pvar-form?@\texttt{pvar-form?}}
% \\
% &\texttt{(predconst-form?\ \textsl{formula})}
% \index{predconst-form?@\texttt{predconst-form?}}
% \\
&\texttt{(predicate-form?\ \textsl{formula})}
\index{predicate-form?@\texttt{predicate-form?}}
\\
&\texttt{(prime-form?\ \textsl{formula})}
\index{prime-form?@\texttt{prime-form?}}
\\
&\texttt{(imp-form?\ \textsl{formula})}
\index{imp-form?@\texttt{imp-form?}}
\\
&\texttt{(and-form?\ \textsl{formula})}
\index{and-form?@\texttt{and-form?}}
\\
&\texttt{(tensor-form?\ \textsl{formula})}
\index{tensor-form?@\texttt{tensor-form?}}
\\
&\texttt{(all-form?\ \textsl{formula})}
\index{all-form?@\texttt{all-form?}}
\\
&\texttt{(ex-form?\ \textsl{formula})}
\index{ex-form?@\texttt{ex-form?}}
\\
&\texttt{(allnc-form?\ \textsl{formula})}
\index{allnc-form?@\texttt{allnc-form?}}
\\
&\texttt{(exnc-form?\ \textsl{formula})}
\index{exnc-form?@\texttt{exnc-form?}}
\\
&\texttt{(exca-form?\ \textsl{formula})}
\index{exca-form?@\texttt{exca-form?}}
\\
&\texttt{(excl-form?\ \textsl{formula})}
\index{excl-form?@\texttt{excl-form?}}
\end{align*}
and also
\begin{align*}
&\texttt{(quant-prime-form?\ \textsl{formula})}
\index{quant-prime-form?@\texttt{quant-prime-form?}}
\\
&\texttt{(quant-free?\ \textsl{formula}).}
\index{quant-free?@\texttt{quant-free?}}
\end{align*}

We need constructors and accessors for prime formulas
\begin{alignat*}{2}
&\texttt{(make-atomic-formula \textsl{boolean-term})}
\index{make-atomic-formula@\texttt{make-atomic-formula}}
\\
&\texttt{(make-predicate-formula \textsl{predicate} \textsl{term1} \dots)}
\index{make-predicate-formula@\texttt{make-predicate-formula}}
\\
&\texttt{atom-form-to-kernel}
\index{atom-form-to-kernel@\texttt{atom-form-to-kernel}}
\\
&\texttt{predicate-form-to-predicate}
\index{predicate-form-to-predicate@\texttt{predicate-form-to-predicate}}
\\
&\texttt{predicate-form-to-args.}
\index{predicate-form-to-args@\texttt{predicate-form-to-args}}
\end{alignat*}
We also have constructors for special atomic formulas
\begin{alignat*}{2}
&\texttt{(make-eq \textsl{term1} \textsl{term2})} 
\index{make-eq@\texttt{make-eq}}
&\quad& \text{constructor for equalities}
\\
&\texttt{(make-= \textsl{term1} \textsl{term2})} 
\index{make-=@\texttt{make-=}}
&\quad& \text{constructor for equalities on finalgs}
\\
&\texttt{(make-total \textsl{term})} 
\index{make-total@\texttt{make-total}}
&\quad& \text{constructor for totalities}
\\
&\texttt{(make-e \textsl{term})} 
\index{make-e@\texttt{make-e}}
&\quad& \text{constructor for existence on finalgs}
\\
&\texttt{truth}
\index{truth@\texttt{truth}}
\\
&\texttt{falsity}
\index{falsity@\texttt{falsity}}
\\
&\texttt{falsity-log.}
\index{falsity-log@\texttt{falsity-log}}
\end{alignat*}
We need constructors and accessors for implications
\begin{alignat*}{2}
&\texttt{(make-imp \textsl{premise} \textsl{conclusion})}       
\index{make-imp@\texttt{make-imp}}
&\quad& \text{constructor} 
\\
&\texttt{(imp-form-to-premise \textsl{imp-formula})}   
\index{imp-form-to-premise@\texttt{imp-form-to-premise}}
&& \text{accessor} 
\\
&\texttt{(imp-form-to-conclusion \textsl{imp-formula})}
\index{imp-form-to-conclusion@\texttt{imp-form-to-conclusion}}
&& \text{accessor,}
\end{alignat*}
conjunctions
\begin{alignat*}{2}
&\texttt{(make-and \textsl{formula1} \textsl{formula2})}    
\index{make-and@\texttt{make-and}}
&\quad& \text{constructor} 
\\
&\texttt{(and-form-to-left \textsl{and-formula})}   
\index{and-form-to-left@\texttt{and-form-to-left}}
&& \text{accessor} 
\\
&\texttt{(and-form-to-right \textsl{and-formula})}
\index{and-form-to-right@\texttt{and-form-to-right}}
&& \text{accessor,}
\end{alignat*}
tensors
\begin{alignat*}{2}
&\texttt{(make-tensor \textsl{formula1} \textsl{formula2})}    
\index{make-tensor@\texttt{make-tensor}}
&\quad& \text{constructor} 
\\
&\texttt{(tensor-form-to-left \textsl{tensor-formula})}   
\index{tensor-form-to-left@\texttt{tensor-form-to-left}}
&& \text{accessor} 
\\
&\texttt{(tensor-form-to-right \textsl{tensor-formula})}
\index{tensor-form-to-right@\texttt{tensor-form-to-right}}
&& \text{accessor,}
\end{alignat*}
universally quantified formulas
\begin{alignat*}{2}
&\texttt{(make-all \textsl{var} \textsl{formula})}           
\index{make-all@\texttt{make-all}}
&\quad& \text{constructor} 
\\
&\texttt{(all-form-to-var \textsl{all-formula})}    
\index{all-form-to-var@\texttt{all-form-to-var}}
&& \text{accessor} 
\\
&\texttt{(all-form-to-kernel \textsl{all-formula})} 
\index{all-form-to-kernel@\texttt{all-form-to-kernel}}
&& \text{accessor,} 
\end{alignat*}
existentially quantified formulas
\begin{alignat*}{2}
&\texttt{(make-ex \textsl{var} \textsl{formula})}           
\index{make-ex@\texttt{make-ex}}
&\quad& \text{constructor} 
\\
&\texttt{(ex-form-to-var \textsl{ex-formula})}    
\index{ex-form-to-var@\texttt{ex-form-to-var}}
&& \text{accessor} 
\\
&\texttt{(ex-form-to-kernel \textsl{ex-formula})} 
\index{ex-form-to-kernel@\texttt{ex-form-to-kernel}}
&& \text{accessor,} 
\end{alignat*}
universally quantified formulas without computational content
\begin{alignat*}{2}
&\texttt{(make-allnc \textsl{var} \textsl{formula})}           
\index{make-allnc@\texttt{make-allnc}}
&\quad& \text{constructor} 
\\
&\texttt{(allnc-form-to-var \textsl{allnc-formula})}    
\index{allnc-form-to-var@\texttt{allnc-form-to-var}}
&& \text{accessor} 
\\
&\texttt{(allnc-form-to-kernel \textsl{allnc-formula})} 
\index{allnc-form-to-kernel@\texttt{allnc-form-to-kernel}}
&& \text{accessor,} 
\end{alignat*}
existentially quantified formulas without computational content
\begin{alignat*}{2}
&\texttt{(make-exnc \textsl{var} \textsl{formula})}           
\index{make-exnc@\texttt{make-exnc}}
&\quad& \text{constructor} 
\\
&\texttt{(exnc-form-to-var \textsl{exnc-formula})}    
\index{exnc-form-to-var@\texttt{exnc-form-to-var}}
&& \text{accessor} 
\\
&\texttt{(exnc-form-to-kernel \textsl{exnc-formula})} 
\index{exnc-form-to-kernel@\texttt{exnc-form-to-kernel}}
&& \text{accessor,} 
\end{alignat*}
existentially quantified formulas in the sense of classical arithmetic
\begin{alignat*}{2}
&\texttt{(make-exca \textsl{var} \textsl{formula})}           
\index{make-exca@\texttt{make-exca}}
&\quad& \text{constructor} 
\\
&\texttt{(exca-form-to-var \textsl{exca-formula})}    
\index{exca-form-to-var@\texttt{exca-form-to-var}}
&& \text{accessor} 
\\
&\texttt{(exca-form-to-kernel \textsl{exca-formula})} 
\index{exca-form-to-kernel@\texttt{exca-form-to-kernel}}
&& \text{accessor,} 
\end{alignat*}
existentially quantified formulas in the sense of classical logic
\begin{alignat*}{2}
&\texttt{(make-excl \textsl{var} \textsl{formula})}           
\index{make-excl@\texttt{make-excl}}
&\quad& \text{constructor} 
\\
&\texttt{(excl-form-to-var \textsl{excl-formula})}    
\index{excl-form-to-var@\texttt{excl-form-to-var}}
&& \text{accessor} 
\\
&\texttt{(excl-form-to-kernel \textsl{excl-formula})} 
\index{excl-form-to-kernel@\texttt{excl-form-to-kernel}}
&& \text{accessor.} 
\end{alignat*}
For convenience we also have as generalized constructors
\begin{alignat*}{2}
&\texttt{(mk-imp \textsl{formula} \textsl{formula1} {\dots})} 
\index{mk-imp@\texttt{mk-imp}}
&\quad&\text{implication} 
\\
&\texttt{(mk-neg \textsl{formula1} {\dots})} 
\index{mk-neg@\texttt{mk-neg}}
&& \text{negation} 
\\
&\texttt{(mk-neg-log \textsl{formula1} {\dots})} 
\index{mk-neg-log@\texttt{mk-neg-log}}
&& \text{logical negation} 
\\
&\texttt{(mk-and \textsl{formula} \textsl{formula1} {\dots})} 
\index{mk-and@\texttt{mk-and}}
&& \text{conjunction} 
\\
&\texttt{(mk-tensor \textsl{formula} \textsl{formula1}\! {\dots}\!)} 
\index{mk-tensor@\texttt{mk-tensor}}
&& \text{tensor} 
\\
&\texttt{(mk-all \textsl{var1} {\dots}\ \textsl{formula})} 
\index{mk-all@\texttt{mk-all}}
&& \text{all-formula} 
\\
&\texttt{(mk-ex \textsl{var1} {\dots}\ \textsl{formula})} 
\index{mk-ex@\texttt{mk-ex}}
&& \text{ex-formula} 
\\
&\texttt{(mk-allnc \textsl{var1} {\dots}\ \textsl{formula})} 
\index{mk-allnc@\texttt{mk-allnc}}
&& \text{allnc-formula} 
\\
&\texttt{(mk-exnc \textsl{var1} {\dots}\ \textsl{formula})} 
\index{mk-exnc@\texttt{mk-exnc}}
&& \text{exnc-formula} 
\\
&\texttt{(mk-exca \textsl{var1} {\dots}\ \textsl{formula})} 
\index{mk-exca@\texttt{mk-exca}}
&& \text{classical ex-formula (arithmetical)} 
\\
&\texttt{(mk-excl \textsl{var1} {\dots}\ \textsl{formula})} 
\index{mk-excl@\texttt{mk-excl}}
&& \text{classical ex-formula (logical)}
\end{alignat*}
and as generalized accessors
\begin{alignat*}{2}
&\texttt{(imp-form-to-premises-and-final-conclusion \textsl{formula})}
\\
%\index{imp-form-to-premises-and-final-conclusion@\texttt{imp-form-to-premises-and-final-conclusion}}\\
&\texttt{(tensor-form-to-parts \textsl{formula})}
\index{tensor-form-to-parts@\texttt{tensor-form-to-parts}}
\\
&\texttt{(all-form-to-vars-and-final-kernel \textsl{formula})}
\index{all-form-to-vars-and-final-kernel@\texttt{all-form-to-vars-and{\dots}}}
\\
&\texttt{(ex-form-to-vars-and-final-kernel \textsl{formula})}
\index{ex-form-to-vars-and-final-kernel@\texttt{ex-form-to-vars-and{\dots}}}
\end{alignat*}
and similarly for \texttt{exca}-forms and \texttt{excl}-forms.
Occasionally it is convenient to have
\begin{alignat*}{2}
&\texttt{(imp-form-to-premises \textsl{formula} <\textsl{n}>)}
\index{imp-form-to-premises@\texttt{imp-form-to-premises}}
&\quad& \text{all (first $n$) premises} 
\\
&\texttt{(imp-form-to-final-conclusion \textsl{formula} <\textsl{n}>)}
\index{imp-form-to-final-conclusion@\texttt{imp-form-to-final-conclusion}}
\end{alignat*}
where the latter computes the final conclusion (conclusion after
removing the first $n$ premises) of the formula.

It is also useful to have some general procedures working for
arbitrary quantified formulas.  We provide
\begin{alignat*}{2}
&\texttt{(make-quant-formula \textsl{quant} \textsl{var1} \dots\ 
\textsl{kernel})} 
\index{make-quant-formula@\texttt{make-quant-formula}}
&\quad& \text{constructor} 
\\
&\texttt{(quant-form-to-quant \textsl{quant-form})}       
\index{quant-form-to-quant@\texttt{quant-form-to-quant}}
&& \text{accessor} 
\\
&\texttt{(quant-form-to-vars \textsl{quant-form})}        
\index{quant-form-to-vars@\texttt{quant-form-to-vars}}
&& \text{accessor} 
\\
&\texttt{(quant-form-to-kernel \textsl{quant-form})}      
\index{quant-form-to-kernel@\texttt{quant-form-to-kernel}}
&& \text{accessor} 
\\
&\texttt{(quant-form?\ \textsl{x})}                       
\index{quant-form?@\texttt{quant-form?}}
&& \text{test.}
\end{alignat*}
and for convenience also
\[
\texttt{(mk-quant \textsl{quant} \textsl{var1} \dots\
\textsl{formula})\index{mk-quant@\texttt{mk-quant}}.}
\]
To fold and unfold formulas we have
\begin{align*}
&\texttt{(fold-formula \textsl{formula})} 
\index{fold-formula@\texttt{fold-formula}}
\\
&\texttt{(unfold-formula \textsl{formula}).}
\index{unfold-formula@\texttt{unfold-formula}}
\end{align*}
To test equality of formulas up to normalization and $\alpha$-equality
we use
\begin{align*}
&\texttt{(classical-formula=?\ \textsl{formula1} \textsl{formula2})} 
\index{classical-formula=?@\texttt{classical-formula=?}}
\\
&\texttt{(formula=?\ \textsl{formula1} \textsl{formula2}),}
\index{formula=?@\texttt{formula=?}}
% &\texttt{(formulas=?\\textsl{formulas1} \textsl{formulas2}),}
\end{align*}
where in the first procedure we unfold before comparing.

Morever we need
\begin{align*}
&\texttt{(formula-to-free\ \textsl{formula}),} 
\index{formula-to-free@\texttt{formula-to-free}}
\\
&\texttt{(nbe-formula-to-type\ \textsl{formula}),}
\index{nbe-formula-to-type@\texttt{nbe-formula-to-type}}
\\
&\texttt{(formula-to-prime-subformulas\ \textsl{formula}),} 
\index{formula-to-prime-subformulas@\texttt{formula-to-prime-subformulas}}
\end{align*}

Constructors, accessors and a test for comprehension terms are
\begin{alignat*}{2}
&\texttt{(make-cterm \textsl{var1} \dots\ \textsl{formula})} 
\index{make-cterm@\texttt{make-cterm}}
&\quad& \text{constructor} 
\\
&\texttt{(cterm-to-vars \textsl{cterm})}       
\index{cterm-to-vars@\texttt{cterm-to-vars}}
&& \text{accessor} 
\\
&\texttt{(cterm-to-formula \textsl{cterm})}    
\index{cterm-to-formula@\texttt{cterm-to-formula}}
&& \text{accessor} 
\\
&\texttt{(cterm?\ \textsl{x})}                 
\index{cterm?@\texttt{cterm?}}
&& \text{test.}
\end{alignat*}
Moreover we need
\begin{align*}
&\texttt{(cterm-to-free \textsl{cterm})}    
\index{cterm-to-free@\texttt{cterm-to-free}} 
\\
&\texttt{(cterm=?\ \textsl{x})}                 
\index{cterm=?@\texttt{cterm=?}} 
\\
&\texttt{(classical-cterm=?\ \textsl{x})}                 
\index{classical-cterm=?@\texttt{classical-cterm=?}}
\\
&\texttt{(fold-cterm \textsl{cterm})} 
\index{fold-cterm@\texttt{fold-cterm}}
\\
&\texttt{(unfold-cterm \textsl{cterm}).}
\index{unfold-cterm@\texttt{unfold-cterm}}
\end{align*}

Normalization of formulas is done with
\begin{alignat*}{2}
&\texttt{(normalize-formula \textsl{formula})}
\index{normalize-formula@\texttt{normalize-formula}}
&\quad& \text{normalization,} 
\end{alignat*}
abbreviated \texttt{nf}\index{nt@\texttt{nf}}.

To check equality of formulas we use
\begin{alignat*}{2}
&\texttt{(classical-formula=? \textsl{formula1} \textsl{formula2})}
\index{classical-formula=?@\texttt{classical-formula=?}}
\\
&\texttt{(formula=? \textsl{formula1} \textsl{formula2})}
\index{formula=?@\texttt{formula=?}}
\end{alignat*}
where the former unfolds the classical existential quantifiers and
normalizes all subterms in its formulas.

Display functions for formulas and comprehension terms are
\begin{alignat*}{2}
&\texttt{(formula-to-string \textsl{formula})}
\index{formula-to-string@\texttt{formula-to-string}}
\\
&\texttt{(cterm-to-string \textsl{cterm})}.
\index{cterm-to-string@\texttt{cterm-to-string}}
\end{alignat*}
The former is abbreviated \texttt{nf}\index{nf@\texttt{nf}}.

We can define simultaneous substitution for type, object and predicate
variables in a formula, via \texttt{tsubst}, \texttt{subst} and
\texttt{psubst}.  It is assumed that \texttt{subst} only affects those
variables whose type is not changed by \texttt{tsubst}, and that
\texttt{psubst} only affects those predicate variables whose arity is
not changed by \texttt{tsubst}.

In the quantifier case of the recursive definition, the abstracted
variable may need to be renamed.  However, its type can be affected by
\texttt{tsubst}.  Then the renaming cannot be made part of
\texttt{subst}, because then the condition above would be violated.
Therefore we carry along a procedure \texttt{rename}\index{rename}
renaming variables, which remembers the renaming of variables done so
far.

We will also need formula substitution to compute the formula of an
assumption constant.  However, there (type and) predicate variables
are (implicitely) considered to be bound.  Therefore, we also have to
carry along a procedure
\texttt{prename}\index{prename@\texttt{prename}} renaming predicate
variables, which remembers the renaming of predicate variables done so
far.
\begin{alignat*}{2}
&\texttt{(formula-substitute \textsl{formula} \textsl{topsubst})}%
\index{formula-substitute@\texttt{formula-substitute}} 
\\
&\texttt{(formula-subst \textsl{formula} \textsl{arg} \textsl{val})}%
\index{formula-subst@\texttt{formula-subst}} 
\\
&\texttt{(cterm-substitute \textsl{cterm} \textsl{topsubst})}%
\index{cterm-substitute@\texttt{cterm-substitute}} 
\\
&\texttt{(cterm-subst \textsl{cterm} \textsl{arg} \textsl{val})}%
\index{cterm-subst@\texttt{cterm-subst}} 
\end{alignat*}

Display functions for predicate substitutions are
\begin{align*}
&\texttt{(display-p-substitution \textsl{psubst})}%
\index{display-p-substitution@\texttt{display-p-substitution}} 
\\
&\texttt{(p-substitution-to-string \textsl{psubst})}%
\index{p-substitution-to-string@\texttt{p-substitution-to-string}} 
\end{align*}


\section{Assumption variables and constants}
\mylabel{S:AssumptionVarConst}
\subsection{Assumption variables}
Assumption variables are for proofs what variables are for terms.  The
main difference, however, is that assumption variables have formulas
as types, and that formulas may contain free variables.  Therefore we
must be careful when substituting terms for variables in assumption
variables.  Our solution (as in Matthes' thesis \cite{Matthes98}) is
to consider an assumption variable as a pair of a (typefree)
identifier and a formula, and to take equality of assumption variables
to mean that both components are equal.  Rather than using symbols as
identifiers we prefer to use numbers (i.e.\ indices).  However,
sometimes it is useful to provide an optional string as name for
display purposes.

% \subsection*{Interface}
We need a constructor, accessors and tests for assumption variables.
\begin{alignat*}{2}
&\texttt{(make-avar \textsl{formula} \textsl{index} \textsl{name})}
\index{make-avar@\texttt{make-avar}}
&\quad& \text{constructor} 
\\
&\texttt{(avar-to-formula \textsl{avar})} 
\index{avar-to-formula@\texttt{avar-to-formula}}
&& \text{accessor} 
\\
&\texttt{(avar-to-index \textsl{avar})}   
\index{avar-to-index@\texttt{avar-to-index}}
&& \text{accessor} 
\\
&\texttt{(avar-to-name \textsl{avar})}    
\index{avar-to-name@\texttt{avar-to-name}}
&& \text{accessor} 
\\
&\texttt{(avar?\ \textsl{x})}             
\index{avar?@\texttt{avar?}}
&& \text{test} 
\\
&\texttt{(avar=?\ \textsl{avar1} \textsl{avar2})}  
\index{avar?@\texttt{avar=?}}
&& \text{test.}
\end{alignat*}
For convenience we have the function 
\begin{alignat*}{2}
&\texttt{(mk-avar \textsl{formula} <\textsl{index}> <\textsl{name}>)}
\end{alignat*}
The formula is a required argument; however, the remaining arguments
are optional.  The default for the name string is \texttt{u}.  We also
require that a function
\begin{align*}
&\texttt{(formula-to-new-avar \textsl{formula})}
\end{align*}
is defined that returns an assumption variable of the requested
formula different from all assumption variables that have ever been
returned by any of the specified functions so far.

% \textbf{Implementation.}
% %
% Assumption variables are implemented as lists:
% %
% $$\texttt{(avar \textsl{formula} \textsl{index} \textsl{name})}.$$


% \subsection*{Assumption constants}
% \mylabel{S:Aconst}

An assumption constant appears in a proof, as an axiom, a theorem or a
global assumption.  Its formula is given as an
\inquotes{uninstantiated formula}, where only type and predicate
variables can occur freely; these are considered to be bound in the
assumption constant.  In the proof the bound type variables are
implicitely instantiated by types, and the bound predicate variables
by comprehension terms (the arity of a comprehension term is the
type-instantiated arity of the corresponding predicate variable).
Since we do not have type and predicate quantification in formulas,
the assumption constant contains these parts left implicit in the
proof: \texttt{tsubst} and \texttt{pinst} (which will become a
\texttt{psubst}, once the arities of predicate variables are
type-instantiated with \texttt{tsubst}).

So we have assumption constants of the following kinds:
\begin{itemize}
\item axioms,
\item theorems, and
\item global assumptions.
\end{itemize}

To normalize a proof we will first translate it into a term, then
normalize the term and finally translate the normal term back into a
proof.  To make this work, in case of axioms we pass to the term
appropriate formulas: all-formulas for induction, an existential
formula for existence introduction, and an existential formula
together with a conclusion for existence elimination.  During
normalization of the term these formulas are passed along.  When the
normal form is reached, we have to translate back into a proof.  Then
these formulas are used to reconstruct the axiom in question.

Internally, the formula of an assumption constant is split into an
uninstantiated formula where only type and predicate variables can
occur freely, and a substitution for at most these type and predicate
variables.  The formula assumed by the constant is the result of
carrying out this substitution in the uninstantiated formula.  Note
that free variables may again occur in the assumed formula.  For
example, assumption constants axiomatizing the existential quantifier
will internally have the form
\begin{alignat*}{2}
&\texttt{(aconst Ex-Intro $\forall \hat{x}^\alpha.\hat{P}(\hat{x}) \to 
\ex \hat{x}^\alpha \hat{P}(\hat{x})$
$(\alpha \mapsto \tau, \hat{P}^{(\alpha)} \mapsto \set{\hat{z}^\tau}{A})$)}
\index{Ex-Intro@\texttt{Ex-Intro}}
\\
&\texttt{(aconst Ex-Elim $\ex \hat{x}^\alpha \hat{P}(\hat{x}) \to 
(\forall \hat{x}^\alpha.  \hat{P}(\hat{x})
\to \hat{Q}) \to \hat{Q}$}
\\ 
&\qquad\qquad\qquad\qquad \texttt{$(\alpha \mapsto \tau, \hat{P}^{(\alpha)}
\mapsto \set{\hat{z}^\tau}{A}, \hat{Q} \mapsto \set{}{B})$)}
\index{Ex-Elim@\texttt{Ex-Elim}}
\end{alignat*}

\textbf{Interface for general assumption constants.}
To avoid duplication of code it is useful to formulate some procedures
generally for arbitrary assumption constants\index{assumption
constant}, i.e.\ for all of the forms listed above.
\begin{alignat*}{2}
&\texttt{(make-aconst \textsl{name} \textsl{kind} \textsl{uninst-formula}
\textsl{tpsubst}}
\\
&\qquad \texttt{\textsl{repro-formula1} \dots)}       
\index{make-aconst@\texttt{make-aconst}}
&\quad& \text{constructor} 
\\
&\texttt{(aconst-to-name \textsl{aconst})}       
\index{aconst-to-name@\texttt{aconst-to-name}}
&& \text{accessor} 
\\
&\texttt{(aconst-to-kind \textsl{aconst})}       
\index{aconst-to-kind@\texttt{aconst-to-kind}}
&& \text{accessor} 
\\
&\texttt{(aconst-to-uninst-formula \textsl{aconst})}       
\index{aconst-to-uninst-formula@\texttt{aconst-to-uninst-formula}}
&& \text{accessor} 
\\
&\texttt{(aconst-to-tpsubst \textsl{aconst})}       
\index{aconst-to-tpsubst@\texttt{aconst-to-tpsubst}}
&& \text{accessor} 
\\
&\texttt{(aconst-to-repro-formulas \textsl{aconst})}       
\index{aconst-to-repro-formulas@\texttt{aconst-to-repro-formulas}}
&& \text{accessor} 
\\
&\texttt{(aconst?\ \textsl{x})}                     
\index{aconst?@\texttt{aconst?}}
&& \text{test.}
\end{alignat*}
To construct the formula associated with an aconst, it is useful to
separate the instantiated formula from the variables to be
generalized.  The latter can be obtained as free variables in
inst-formula.  We therefore provide
\begin{alignat*}{2}
&\texttt{(aconst-to-inst-formula \textsl{aconst})}       
\index{aconst-to-inst-formula@\texttt{aconst-to-inst-formula}} 
\\
&\texttt{(aconst-to-formula \textsl{aconst})}       
\index{aconst-to-formula@\texttt{aconst-to-formula}} 
\end{alignat*}
We also provide
\begin{alignat*}{2}
&\texttt{(aconst? \textsl{aconst})}       
\index{aconst?@\texttt{aconst?}} 
\\
&\texttt{(aconst=?\ \textsl{aconst1} \textsl{aconst2})}       
\index{aconst=?@\texttt{aconst=?}}
\\
&\texttt{(aconst-without-rules?\ \textsl{aconst})}       
\index{aconst-without-rules?@\texttt{aconst-without-rules?}}
\\
&\texttt{(aconst-to-string\ \textsl{aconst})}       
\index{aconst-to-string@\texttt{aconst-to-string}}
\end{alignat*}

\subsection{Axiom constants}
\mylabel{SS:AxiomConst}
% \paragraph{Axioms}
% \mylabel{SS:Ax}
We use the natural numbers as a prototypical finitary algebra; recall
Figure~\ref{F:nat}.  Assume that $n$, $p$ are variables of type
$\nat$, $\boole$.  Let $\Eq$ denote the equality relation in the
model.  Recall the domain of type $\boole$, consisting of $\true$,
$\false$ and the bottom element $\bottom$.  The boolean valued
functions equality $=_{nat} \colon \nat \to \nat \to \boole$ and
existence (definedness, totality) $e_{nat} \colon \nat \to \boole$
need to be continuous.  So we have
\begin{align*}
\eqrel{0}{0} &\Eq \true          
\\
\eqrel{0}{S \hat{n}} \Eq \eqrel{S \hat{n}}{0} &\Eq \false 
&e(0) &\Eq \true
\\
\eqrel{S \hat{n}_1}{S \hat{n}_2} &\Eq \eqrel{\hat{n}_1}{\hat{n}_2}
&e(S \hat{n}) &\Eq e(\hat{n})
\\
\eqrel{\bottom_{nat}}{\hat{n}} \Eq \eqrel{\hat{n}}{\bottom_{nat}} &\Eq \bottom
&e(\bottom_{\nat}) &\Eq \bottom
\\
\eqrel{\infty_{nat}}{\hat{n}} \Eq \eqrel{\hat{n}}{\infty_{nat}} &\Eq \bottom
&e(\infty_{\nat}) &\Eq \bottom
\end{align*}
Write $T$, $F$ for $\atom(\true)$, $\atom(\false)$, $r=s$ for
$\atom(\eqrel{r}{s})$ and $E(r)$ for $\atom(e(r))$.  We stipulate as
axioms
\begin{alignat*}{2}
&T
&\quad&\texttt{Truth-Axiom}\index{Truth-Axiom@\texttt{Truth-Axiom}}
\\[1ex]
&\hat{x} \Eq \hat{x}
&\quad&\text{\texttt{Eq-Refl}\index{Eq-Refl@\texttt{Eq-Refl}}}
\\
&\hat{x}_1 \Eq \hat{x}_2 \to \hat{x}_2 \Eq \hat{x}_1
&\quad&\text{\texttt{Eq-Symm}\index{Eq-Symm@\texttt{Eq-Symm}}}
\\
&\hat{x}_1 \Eq \hat{x}_2 \to \hat{x}_2 \Eq \hat{x}_3 \to 
\hat{x}_1 \Eq \hat{x}_3
&\quad&\text{\texttt{Eq-Trans}\index{Eq-Trans@\texttt{Eq-Trans}}}
\\[1ex]
&\forall \hat{x} \hat{f}_1 \hat{x} \Eq \hat{f}_2 \hat{x} \to
\hat{f}_1 \Eq \hat{f}_2
&&\text{\texttt{Eq-Ext}%
\index{Extensionality@\texttt{Extensionality}}}
\\
&\hat{x}_1 \Eq \hat{x}_2 \to \hat{P}(\hat{x}_1) \to \hat{P}(\hat{x}_2)
&\quad&\text{\texttt{Eq-Compat}%
\index{Compatibility@\texttt{Compatibility}}}
% \\[1ex]
% &\hat{n}_1 \Eq \hat{n}_2 \to E(\hat{n}_1) \to E(\hat{n}_2) \to
% \hat{n}_1 = \hat{n}_2
% &&\text{\texttt{Eq-to-=}}\index{Eq-to-=@\texttt{Eq-to-=}}
% \\
% &\hat{n}_1 = \hat{n}_2 \to \hat{n}_1 \Eq \hat{n}_2
% &&\text{\texttt{=-to-Eq}}\index{equals-to-Eq@\texttt{=-to-Eq}}
% \\[1ex]
% &\Total(\hat{n}) \to E(\hat{n})
% &&\text{\texttt{Total-to-E}}\index{Total-to-E@\texttt{Total-to-E}}
% \\
% &E(\hat{n}) \to \Total(\hat{n})
% &&\text{\texttt{E-to-Total}}\index{E-to-Total@\texttt{E-to-Total}}
% \\[1ex]
% &c_1 \vec{\hat{x}}_1 \Eq c_2 \vec{\hat{x}}_2 \to F
% &&\text{\texttt{Constr-Disjoint}}%
% \index{Constr-Disjoint@\texttt{Constr-Disjoint@}}
% \\
% &c \vec{\hat{x}}_1 \Eq c \vec{\hat{x}}_2 \to \hat{x}_{1i} \Eq \hat{x}_{2i}
% &&\text{\texttt{Constr-Inj}}%
% \index{Constr-Inj@\texttt{Constr-Inj@}}
\\[1ex]
&\Total_{\rho \to\sigma}(\hat{f}) \leftrightarrow
\forall \hat{x}.\Total_{\rho}(\hat{x}) \to \Total_{\sigma}(\hat{f} \hat{x})
&&\text{\texttt{Total}}\index{Total@\texttt{Total}}
\\
&\Total_{\rho}(c)
&&\text{\texttt{Constr-Total}}\index{Constr-Total@\texttt{Constr-Total}}
\\
&\Total(c \vec{\hat{x}}) \to \Total(\hat{x}_i)
&&\text{\texttt{Constr-Total-Args}}%
\index{Constr-Total-Args@\texttt{Constr-Total-Args}}
% \\
% &\Total_{\rho}(\bottom) \to F
% &&\text{\texttt{Bottom-not-Total}}%
% \index{Bottom-Not-Total@\texttt{Bottom-Not-Total}}
\\
\intertext{and for every finitary algebra, e.g.\ \texttt{nat}}
&\hat{n}_1 \Eq \hat{n}_2 \to E(\hat{n}_1) \to
\hat{n}_1 = \hat{n}_2
&&\text{\texttt{Eq-to-=-1-nat}\index{Eq-to-=-1-nat@\texttt{Eq-to-=-1-nat}}}
\\
&\hat{n}_1 \Eq \hat{n}_2 \to E(\hat{n}_2) \to
\hat{n}_1 = \hat{n}_2
&&\text{\texttt{Eq-to-=-2-nat}\index{Eq-to-=-2-nat@\texttt{Eq-to-=-2-nat}}}
\\
&\hat{n}_1 = \hat{n}_2 \to \hat{n}_1 \Eq \hat{n}_2
&&\text{\texttt{=-to-Eq-nat}\index{equals-to-Eq-nat@\texttt{=-to-Eq-nat}}}
\\
&\hat{n}_1 = \hat{n}_2 \to E(\hat{n}_1)
&&\text{\texttt{=-to-E-1-nat}\index{equals-to-E-1-nat@\texttt{=-to-E-1-nat}}}
\\
&\hat{n}_1 = \hat{n}_2 \to E(\hat{n}_2)
&&\text{\texttt{=-to-E-2-nat}\index{equals-to-E-2-nat@\texttt{=-to-E-2-nat}}}
\\
&\Total(\hat{n}) \to E(\hat{n})
&&\text{\texttt{Total-to-E-nat}\index{Total-to-E-nat@\texttt{Total-to-E-nat}}}
\\
&E(\hat{n}) \to \Total(\hat{n})
&&\text{\texttt{E-to-Total-nat}\index{E-to-Total-nat@\texttt{E-to-Total-nat}}}
\end{alignat*}
Here $c$ is a constructor.  Notice that in $\Total(c \vec{\hat{x}})
\to \Total(\hat{x}_i)$, the type of $(c \vec{\hat{x}})$ need not be a
finitary algebra, and hence $\hat{x}_i$ may have a function type.
% Further notice that $\Total_{\rho}(\bottom) \to F$ is also necessary
% for $\rho$ an infinitary ground type.

\begin{remark*}
  $(E(\hat{n}_1) \to \hat{n}_1 = \hat{n}_2) \to (E(\hat{n}_2) \to
  \hat{n}_1 = \hat{n}_2) \to \hat{n}_1 \Eq \hat{n}_2$ is \emph{not}
  valid in our intended model (see Figure~\ref{F:nat}), since we have
  \emph{two} distinct undefined objects $\bottom_{nat}$ and
  $\infty_{nat}$.
\end{remark*}

We abbreviate
\begin{alignat*}{2}
&\forall \hat{x}.\Total_{\rho}(\hat{x}) \to A &\quad\hbox{by}\quad& 
\forall x A,\\
&\exists \hat{x}.\Total_{\rho}(\hat{x}) \land A &\quad\hbox{by}\quad& 
\exists x A.
\end{alignat*}
Formally, these abbreviations appear as axioms
\begin{alignat*}{2}
&\forall x \hat{P}(x) \to
\forall \hat{x}. \Total(\hat{x}) \to \hat{P}(\hat{x})
&\quad&\texttt{All-AllPartial}\index{All-AllPartial@\texttt{All-AllPartial}}
\\
&(\forall \hat{x}. \Total(\hat{x}) \to \hat{P}(\hat{x})) \to
\forall x \hat{P}(x)
&\quad&\texttt{AllPartial-All}\index{AllPartial-All@\texttt{AllPartial-All}}
\\
&\exists x \hat{P}(x) \to
\exists \hat{x}. \Total(\hat{x}) \land \hat{P}(\hat{x})
&\quad&\texttt{Ex-ExPartial}\index{Ex-ExPartial@\texttt{Ex-ExPartial}}
\\
&(\exists \hat{x}. \Total(\hat{x}) \land \hat{P}(\hat{x})) \to
\exists x \hat{P}(x)
&\quad&\texttt{ExPartial-Ex}\index{ExPartial-Ex@\texttt{ExPartial-Ex}}
\\
\intertext{and for every finitary algebra, e.g.\ \texttt{nat}}
&\forall n \hat{P}(n) \to
\forall \hat{n}. E(\hat{n}) \to \hat{P}(\hat{n})
&\quad&\texttt{All-AllPartial-nat}%
\index{All-AllPartial-nat@\texttt{All-AllPartial-nat}}
\\
&(\exists \hat{n}. E(\hat{n}) \land \hat{P}(\hat{n})) \to
\exists n \hat{P}(n)
&\quad&\texttt{ExPartial-Ex-nat}%
\index{ExPartial-Ex-nat@\texttt{ExPartial-Ex-nat}}
\end{alignat*}
Notice that \texttt{AllPartial-All-nat}%
\index{AllPartial-All-nat@\texttt{AllPartial-All-nat},} i.e.\ $(\forall
\hat{n}. E(\hat{n}) \to \hat{P}(\hat{n})) \to \forall n
\hat{P}(n)$ is provable (since $E(n) \cnv T$).  Similarly,
\texttt{Ex-ExPartial-nat}%
\index{Ex-ExPartial-nat@\texttt{Ex-ExPartial-nat}}, i.e.\
$\exists n \hat{P}(n) \to
\exists \hat{n}. E(\hat{n}) \land \hat{P}(\hat{n})$ is provable.

Finally we have axioms for the existential quantifier
\begin{alignat*}{2}
&\forall \hat{x}^\alpha.\hat{P}(\hat{x}) \to 
\ex \hat{x}^\alpha \hat{P}(\hat{x})
&\quad&\text{\texttt{Ex-Intro}\index{Ex-Intro@\texttt{Ex-Intro}}}
\\
&\ex \hat{x}^\alpha \hat{P}(\hat{x}) \to 
(\forall \hat{x}^\alpha.  \hat{P}(\hat{x})
\to \hat{Q}) \to \hat{Q}
&\quad&\text{\texttt{Ex-Elim}\index{Ex-Elim@\texttt{Ex-Elim}}}
\end{alignat*}

The assumption constants corresponding to these axioms are
\begin{alignat*}{2}
&\texttt{truth-aconst}\index{truth-aconst@\texttt{truth-aconst}}
&\quad&\text{for \texttt{Truth-Axiom}\index{Truth-Axiom@\texttt{Truth-Axiom}}}
\\[1ex]
&\texttt{eq-refl-aconst}\index{eq-refl-aconst@\texttt{eq-refl-aconst}}
&\quad&\text{for \texttt{Eq-Refl}\index{Eq-Refl@\texttt{Eq-Refl}}}
\\
&\texttt{eq-symm-aconst}\index{eq-symm-aconst@\texttt{eq-symm-aconst}}
&\quad&\text{for \texttt{Eq-Symm}\index{Eq-Symm@\texttt{Eq-Symm}}}
\\
&\texttt{eq-trans-aconst}\index{eq-trans-aconst@\texttt{eq-trans-aconst}}
&\quad&\text{for \texttt{Eq-Trans}\index{Eq-Trans@\texttt{Eq-Trans}}}
\\[1ex]
&\texttt{ext-aconst}\index{ext-aconst@\texttt{ext-aconst}}
&\quad&\text{for \texttt{Eq-Ext}\index{Eq-Ext@\texttt{Eq-Ext}}}
\\
&\texttt{eq-compat-aconst}\index{eq-compat-aconst@\texttt{eq-compat-aconst}}
&\quad&\text{for \texttt{Eq-Compat}\index{Eq-Compat@\texttt{Eq-Compat}}}
\\
&\texttt{total-aconst}\index{total-aconst@\texttt{total-aconst}}
&\quad&\text{for \texttt{Total}\index{Total@\texttt{Total}}}
\\[1ex]
&\texttt{(finalg-to-eq-to-=-1-aconst finalg)}%
\index{finalg-to-eq-to-=-1-aconst@\texttt{finalg-to-eq-to-=-1-aconst}}
&\quad&\text{for \texttt{Eq-to-=-1}\index{Eq-to-=-1@\texttt{Eq-to-=-1}}}
\\
&\texttt{(finalg-to-eq-to-=-2-aconst finalg)}%
\index{finalg-to-eq-to-=-2-aconst@\texttt{finalg-to-eq-to-=-2-aconst}}
&\quad&\text{for \texttt{Eq-to-=-2}\index{Eq-to-=-2@\texttt{Eq-to-=-2}}}
\\
&\texttt{(finalg-to-=-to-eq-aconst finalg)}%
\index{finalg-to-=-to-eq-aconst@\texttt{finalg-to-=-to-eq-aconst}}
&\quad&\text{for \texttt{=-to-Eq}\index{=-to-Eq@\texttt{=-to-Eq}}}
\\
&\texttt{(finalg-to-=-to-e-1-aconst finalg)}%
\index{finalg-to-=-to-e-1-aconst@\texttt{finalg-to-=-to-e-1-aconst}}
&\quad&\text{for \texttt{=-to-E-1}\index{=-to-E-1@\texttt{=-to-E-1}}}
\\
&\texttt{(finalg-to-=-to-e-2-aconst finalg)}%
\index{finalg-to-=-to-e-2-aconst@\texttt{finalg-to-=-to-e-2-aconst}}
&\quad&\text{for \texttt{=-to-E-2}\index{=-to-E-2@\texttt{=-to-E-2}}}
\\
&\texttt{(finalg-to-total-to-e-aconst finalg)}%
\index{finalg-to-total-to-e-aconst@\texttt{finalg-to-total-to-e-aconst}}
&\quad&\text{for \texttt{Total-to-E}\index{Total-to-E@\texttt{Total-to-E}}}
\\
&\texttt{(finalg-to-e-to-total-aconst finalg)}%
\index{finalg-to-e-to-total-aconst@\texttt{finalg-to-e-to-total-aconst}}
&\quad&\text{for \texttt{E-to-Total}\index{E-to-Total@\texttt{E-to-Total}}}
\\[1ex]
&\texttt{all-allpartial-aconst}%
\index{all-allpartial-aconst@\texttt{all-allpartial-aconst}}
&\quad&\text{for \texttt{All-AllPartial}%
\index{All-AllPartial@\texttt{All-AllPartial}}}
\\
&\texttt{allpartial-all-aconst}%
\index{allpartial-all-aconst@\texttt{allpartial-all-aconst}}
&\quad&\text{for \texttt{AllPartial-All}%
\index{AllPartial-All@\texttt{AllPartial-All}}}
\\
&\texttt{ex-expartial-aconst}%
\index{ex-expartial-aconst@\texttt{ex-expartial-aconst}}
&\quad&\text{for \texttt{Ex-ExPartial}%
\index{Ex-ExPartial@\texttt{Ex-ExPartial}}}
\\
&\texttt{expartial-ex-aconst}%
\index{expartial-ex-aconst@\texttt{expartial-ex-aconst}}
&\quad&\text{for \texttt{ExPartial-Ex}%
\index{ExPartial-Ex@\texttt{ExPartial-Ex}}}
\\[1ex]
&\texttt{(finalg-to-all-allpartial-aconst finalg)}%
\index{finalg-to-all-allpartial-aconst@\texttt{finalg-to-all-allpartial-aconst}}
&\quad&\text{for \texttt{All-AllPartial}%
\index{All-AllPartial@\texttt{All-AllPartial}}}
\\
&\texttt{(finalg-to-expartial-ex-aconst finalg)}%
\index{finalg-to-expartial-ex-aconst@\texttt{finalg-to-expartial-ex-aconst}}
&\quad&\text{for \texttt{ExPartial-Ex}%
\index{ExPartial-Ex@\texttt{ExPartial-Ex}}}
\end{alignat*}

% \paragraph{Induction axioms for simultaneous free algebras}
% \mylabel{SS:IndSFA}
We now spell out what precisely we mean by induction\index{induction}
over simultaneous free algebras $\vec{\mu} =
\mu\vec{\alpha}\,\vec{\kappa}$, with goal formulas $\forall
x_j^{\mu_j}\, \hat{P}_j(x_j)$.  For the constructor type
\[
\kappa_i = \vec{\rho} \to (\vec{\sigma}_1 \to \alpha_{j_1}) \to \dots \to
(\vec{\sigma}_n \to \alpha_{j_n}) \to \alpha_j \in
\constrtypes(\vec{\alpha})
\]
we have the \emph{step formula}
\begin{align*}
D_i := \forall y_1^{\rho_1},\dots,y_m^{\rho_m},
y_{m+1}^{\vec{\sigma}_1 \to \mu_{j_1}},\dots,
y_{m+n}^{\vec{\sigma}_n \to \mu_{j_n}}.
&\forall \vec{x}^{\vec{\sigma}_1}\,
\hat{P}_{j_1}(y_{m+1}\vec{x}) \to \dots \to 
\\
&\forall \vec{x}^{\vec{\sigma}_n}\,
\hat{P}_{j_n}(y_{m+n}\vec{x}) \to 
\\
&\hat{P}_j(\constr_i^{\vec{\mu}}(\vec{y})).
\end{align*}
Here $\vec{y} = y_1^{\rho_1},\dots,y_m^{\rho_m},
y_{m+1}^{\vec{\sigma}_1 \to \mu_{j_1}},\dots,
y_{m+n}^{\vec{\sigma}_n \to \mu_{j_n}}$ are the
\emph{components} of the object $\constr_i^{\vec{\mu}}(\vec{y})$
of type $\mu_j$ under consideration, and
\[
\forall \vec{x}^{\vec{\sigma}_1}\,
\hat{P}_{j_1}(y_{m+1}\vec{x}), \dots,
\forall \vec{x}^{\vec{\sigma}_n}\,
\hat{P}_{j_n}(y_{m+n}\vec{x})
\]
are the hypotheses available when proving the induction step.  The
induction axiom $\ind_{\mu_j}$\index{Ind@\texttt{Ind}} then
proves the formula
\[
\ind_{\mu_j} \colon
D_1 \to \dots \to D_k \to \forall x_j^{\mu_j}\, \hat{P}_j(x_j).
\]
We will often write $\ind_j$ for $\ind_{\mu_j}$.

An example is
\begin{alignat*}{2}
&E_1 \to E_2 \to E_3 \to E_4 \to \forall x_1^\tree \hat{P}_1(x_1)
\\
\intertext{with}
&E_1 := \hat{P}_1(\leaf),
\\
&E_2 := \forall x^{\tlist}.\hat{P}_2(x) \to \hat{P}_1(\branch(x)),
\\
&E_3 := \hat{P}_2(\empt),
\\
&E_4 := \forall x_1^{\tree},x_2^{\tlist}. \hat{P}_1(x_1) \to 
\hat{P}_2(x_2) \to \hat{P}_2(\tcons(x_1,x_2)).
\end{alignat*}
Here the fact that we deal with a simultaneous induction (over
\texttt{tree} and \texttt{tlist}), and that we prove a formula of the
form $\forall x^\tree \dots$, can all be inferred from what is given:
the $\forall x^\tree \dots$ is right there, and for \texttt{tlist} we
can look up the simultaneously defined algebras.  -- The internal
representation is
\begin{alignat*}{2}
&\texttt{(aconst Ind $E_1 \to E_2 \to E_3 \to E_4 \to 
\forall x_1^\tree \hat{P}_1(x_1)$}
\\
&\qquad \qquad \qquad 
\texttt{$(\hat{P}_1 \mapsto \set{x_1^\tree}{A_1}, 
\hat{P}_2 \mapsto \set{x_2^\tlist}{A_2})$)} 
\index{Ind@\texttt{Ind}}
\end{alignat*}

A simplified version (without the recursive calls) of the induction
axiom is the following cases axiom.
\begin{alignat*}{2}
&\texttt{(aconst Cases $E_1 \to E_2 \to 
\forall x_1^\tree \hat{P}_1(x_1)$ 
$(\hat{P}_1 \mapsto \set{x_1^\tree}{A_1})$)} 
\index{Cases@\texttt{Cases}}
\\
\intertext{with}
&E_1 := \hat{P}_1(\leaf),
\\
&E_2 := \forall x^{\tlist} \hat{P}_1(\branch(x)).
\end{alignat*}
However, rather than using this as an assumption constant we will --
parallel to the
\texttt{if}-construct\index{if-construct@\texttt{if}-construct} for
terms -- use a
\texttt{cases}-construct\index{cases-construct@\texttt{cases}-construct}
for proofs.  This does not change our notion of proof; it is done to
have the \texttt{if}-construct in the extracted programs.

The assumption constants corresponding to these axioms are generated by
\begin{alignat*}{2}
&\texttt{(all-formulas-to-ind-aconst \textsl{all-formula1} \dots)} 
\index{all-formulas-to-ind-aconst@\texttt{all-formulas-to-ind-aconst}} 
&\quad&\text{for \texttt{Ind}\index{Ind@\texttt{Ind}}}
\\
&\texttt{(all-formula-to-cases-aconst \textsl{all-formula})} 
\index{all-formula-to-cases-aconst@\texttt{all-formula-to-cases-aconst}} 
&\quad&\text{for \texttt{Cases}\index{Cases@\texttt{Cases}}}
\end{alignat*}

% To deal with equality we need
% \begin{alignat*}{2}
% %
% &\texttt{(refl-at \textsl{finalg})} 
% \index{refl-at@\texttt{refl-at}}
% &\quad&\colon x=x\\
% %
% &\texttt{(=-ax-at \textsl{finalg})} 
% \index{equal-ax-at@\texttt{=-ax-at}}
% &&\colon x_1 = x_2 \to \hat{P} x_1 \to \hat{P} x_2.
% %
% \end{alignat*}

For the introduction and elimination axioms
\texttt{Ex-Intro}\index{Ex-Intro@\texttt{Ex-Intro}} and
\texttt{Ex-Elim}\index{Ex-Elim@\texttt{Ex-Elim}} for the existential
quantifier we provide
\begin{align*}
&\texttt{(ex-formula-to-ex-intro-aconst ex-formula)}%
\index{ex-formula-to-ex-intro-aconst@\texttt{ex-formula-to-ex-intro-aconst}}
\\
&\texttt{(ex-formula-and-concl-to-ex-elim-aconst ex-formula concl)}%
\index{ex-formula-and-concl-to-ex-elim-const@\texttt{ex-for{\dots}-to-ex-elim-const}}
\end{align*}
and similarly for \texttt{exnc} instead of \texttt{ex}.

To deal with inductively defined predicate constants, we need
additional axioms with names \inquotes{Intro}\index{Intro} and 
\inquotes{Elim}\index{Elim}, which can be generated by
\begin{align*}
&\texttt{(number-and-idpredconst-to-intro-aconst i idpc)}%
\index{number-and-idpredconst-to-intro-aconst@\texttt{number-and-idpredconst-to-intro-aconst}}
\\
&\texttt{(imp-formulas-to-elim-aconst imp-formula1\ \dots)};%
\index{imp-formulas-to-elim-aconst@\texttt{imp-formulas-to-elim-aconst}}
\end{align*}
here an \texttt{imp-formula} is expected to have the form $I(\vec{x}) \to A$.


\subsection{Theorems}
\mylabel{SS:Theorems}
A theorem is a special assumption constant.  
% A typical example is
% the transitivity of the successor function, with the internal
% representation
% \begin{alignat*}{2}
% %
% &\texttt{(aconst Trans-Suc $\forall k,m,n.  k<m \to k<n+1 \to k<n$ 
% \textsl{empty-subst})} 
% \index{Trans-Suc@\texttt{Trans-Suc}}
% %
% \end{alignat*}
Theorems are normally created after successfully completing an
interactive proof.  One may also create a theorem from an explicitely
given (closed) proof.  The command is
\begin{alignat*}{2}
&\texttt{(add-theorem \textsl{string} .\ \textsl{opt-proof})}%    
\index{add-theorem@\texttt{add-theorem}}
&\quad&\text{or \texttt{save}\index{save@\texttt{save}}}
\end{alignat*}
From a theorem name we can access its aconst, its (original) proof and
also its instantiated proof by
\begin{align*}
&\texttt{(theorem-name-to-aconst \textsl{string})}
\index{theorem-name-to-aconst@\texttt{theorem-name-to-aconst}} 
\\
&\texttt{(theorem-name-to-proof \textsl{string})}
\index{theorem-name-to-proof@\texttt{theorem-name-to-proof}} 
\\
&\texttt{(theorem-name-to-inst-proof \textsl{string})}
\index{theorem-name-to-inst-proof@\texttt{theorem-name-to-inst-proof}} 
% \\
% &\texttt{(theorem-name-to-eterm \textsl{string})}
% \index{theorem-name-to-eterm@\texttt{theorem-name-to-eterm}} 
\end{align*}
We also provide
\begin{align*}
&\texttt{(remove-theorem \textsl{string1} \dots)}
\index{remove-theorem@\texttt{remove-theorem}} 
\\
&\texttt{(display-theorems \textsl{string1} \dots)}    
\index{display-theorems@\texttt{display-theorems}}
\end{align*}

% \paragraph{Simple consequences of the axioms}
% \mylabel{SS:ConseqAx}
Initially we provide the following theorems
\begin{alignat*}{2}
&\atom(p) \to p = \true
&\quad&\text{\texttt{Atom-True}\index{Atom-True@\texttt{Atom-True}}}
\\
&(\atom(p) \to F) \to p = \false
&&\text{\texttt{Atom-False}\index{Atom-False@\texttt{Atom-False}}}
\\
&F \to \atom(p)
&&\text{\texttt{Efq-Atom}\index{Efq-Atom@\texttt{Efq-Atom}}}
\\
&((\atom(p) \to F) \to F) \to \atom(p)
&&\text{\texttt{Stab-Atom}\index{Stab-Atom@\texttt{Stab-Atom}}}
\\
\intertext{and for every finitary algebra, e.g.\ \texttt{nat}}
&n=n
&&\text{\texttt{=-Refl-nat}%
\index{equalfinalg-Refl-nat@\texttt{=-Refl-nat}}}
\\
&\hat{n}_1 = \hat{n}_2 \to \hat{n}_2 = \hat{n}_1
&&\text{\texttt{=-Symm-nat}%
\index{equalfinalg-Symm-nat@\texttt{=-Symm-nat}}}%
\\
&\hat{n}_1 = \hat{n}_2 \to \hat{n}_2 = \hat{n}_3 \to \hat{n}_1 = \hat{n}_3
&&\text{\texttt{=-Trans-nat}%
\index{equalfinalg-Trans-nat@\texttt{=-Trans-nat}}}
\end{alignat*}

% \begin{lemma}[\texttt{Atom-True}\index{Atom-True@\texttt{Atom-True}}]
% $\atom(p) \to p = \true$.
% \end{lemma}

\begin{proof}[Proof of \texttt{Atom-True}]
By \texttt{Ind}.  In case $\true$ use \texttt{Eq-Compat} with
$\true \Eq \eqrel{\true}{\true}$ to infer
$\atom(\eqrel{\true}{\true})$ (i.e.\ $\true = \true$) from
$\atom(\true)$.  In case $\false$ use \texttt{Eq-Compat} with
$\false \Eq \eqrel{\false}{\true}$ to infer
$\atom(\eqrel{\false}{\true})$ (i.e.\ $\false = \true$) from
$\atom(\false)$.
\end{proof}

% \begin{lemma}[\texttt{Atom-False}\index{Atom-False@\texttt{Atom-False}}]
% $(\atom(p) \to F) \to p = \false$.
% \end{lemma}

\begin{proof}[Proof of \texttt{Atom-False}]
Use \texttt{Ind}, and \texttt{Truth-Axiom} in both cases.  -- Notice
that the more general $(\atom(\hat{p}) \to F) \to \hat{p} = \false$
does \emph{not} hold with $\bottom$ for $\hat{p}$, since
$\eqrel{\bottom}{\false} \Eq \bottom$.
\end{proof}

% \begin{lemma}[\texttt{Efq-Atom}\index{Efq-Atom@\texttt{Efq-Atom}}]
% $F \to \atom(p)$.
% \end{lemma}

\begin{proof}[Proof of \texttt{Efq-Atom}]
Again by \texttt{Ind}.  In case $\true$ use \texttt{Truth-Axiom}, and
the case $\false$ is obvious.
\end{proof}

% We can even prove the following stronger stability lemma, which
% can be seen as establishing the principle of \indexentry{indirect
% proof} (i.e.\ of classical logic) for decidable formulas.

% \begin{lemma}[\texttt{Stab-Atom}\index{Stab-Atom@\texttt{Stab-Atom}}]
% $((\atom(p) \to F) \to F) \to \atom(p)$.
% \end{lemma}

\begin{proof}[Proof of \texttt{Stab-Atom}]
By \texttt{Ind}.  In case $\true$ use \texttt{Truth-Axiom}, and the
case $\false$ is obvious.
\end{proof}

\begin{remark*}
Notice that from $\texttt{Efq-Atom}$ one easily obtains $F \to A$ for
every formula $A$ all whose strictly positions occurrences of prime
formulas are of the form $\atom(r)$, by induction on $A$.  For all
other formulas we shall make use of the global assumption
$\texttt{Efq} \colon F \to \hat{P}$ (cf.\ Section~\ref{SS:GlobalAss}).
Similarly, Notice that from $\texttt{Stab-Atom}$ one again obtains
$((A \to F) \to F) \to A$ for every formula $A$ all whose strictly
positions occurrences of prime formulas are of the form $\atom(r)$, by
induction on $A$.  For all other formulas we shall make use of the
global assumption $\texttt{Stab} \colon ((\hat{P} \to F) \to F) \to
\hat{P}$ (cf.\ Section~\ref{SS:GlobalAss}).
\end{remark*}

% \begin{lemma}[\texttt{Eq-to-=}\index{Eq-to-=@\texttt{Eq-to-=}}]
% $\hat{n}_1 \Eq \hat{n}_2 \to E(\hat{n}_1) \to E(\hat{n}_2) \to
% \hat{n}_1 = \hat{n}_2$.
% \end{lemma}

% \begin{proof}
% By \texttt{Gen-Ind} on $\hat{n}_1$.  In case $\bottom$ notice that the
% premise $E(\bottom)$ and the conclusion $\bottom = \hat{n}_2$ are both
% equivalent to $\atom(\bottom)$.  

% In case $0$ for $\hat{n}_1$ we distinguish subcases according to the
% constructor form of $\hat{n}_2$.  In the subcase $\bottom$ for
% $\hat{n}_2$ we argue as before.  In the subcase $0$ for $\hat{n}_2$
% the conclusion $0=0$ follows from $\texttt{Truth-Axiom}$.  In the
% subcase $S \hat{n}_2$ for $\hat{n}_2$ from $0 \Eq S \hat{n}_2$ infer
% $F$ by $\texttt{Constr-Disjoint}$ and then $0 = S \hat{n}_2$ from
% $\texttt{Efq-Atom}$.

% In the step case for $\hat{n}_1$ we again distinguish subcases
% according to the constructor form of $\hat{n}_2$.  The subcases
% $\bottom$ and $0$ for $\hat{n}_2$ are treated as before.  In the
% subcase $S \hat{n}_2$ for $\hat{n}_2$ from $S \hat{n}_1 \Eq S
% \hat{n}_2$ infer $\hat{n}_1 \Eq \hat{n}_2$ by $\texttt{Constr-Inj}$,
% and also from $E(S \hat{n}_i)$ infer $E(\hat{n}_i)$ using $e(S
% \hat{n}) \Eq e(\hat{n})$.  Now the IH yields $\hat{n}_1 = \hat{n}_2$,
% hence $S \hat{n}_1 = S \hat{n}_2$, using $\eqrel{S \hat{n}_1}{S
% \hat{n}_2} \Eq \eqrel{\hat{n}_1}{\hat{n}_2}$.
% \end{proof}

% \begin{lemma}[\texttt{=-to-Eq}\index{equals-to-Eq@\texttt{=-to-Eq}}]
% $\hat{n}_1 = \hat{n}_2 \to \hat{n}_1 \Eq \hat{n}_2$.
% \end{lemma}

% \begin{proof}
% By \texttt{Gen-Ind} on $\hat{n}_1$.  In case $\bottom$ the premise is
% equivalent to $\atom(\bottom)$.  Now use $\texttt{Bottom-to-F}$
% and $\texttt{Efq-Eq}$.

% In case $0$ for $\hat{n}_1$ we distinguish subcases according to the
% constructor form of $\hat{n}_2$.  In the subcase $\bottom$ for
% $\hat{n}_2$ we argue as before.  In the subcase $0$ for $\hat{n}_2$
% the conclusion $0 \Eq 0$ follows from $\texttt{Eq-Refl}$.  In the
% subcase $S \hat{n}_2$ for $\hat{n}_2$ the premise $0 = S \hat{n}_2$ is
% equivalent to $\atom(\bottom)$.  Now again use $\texttt{Bottom-to-F}$
% and $\texttt{Efq-Eq}$.

% In the step case for $\hat{n}_1$ we again distinguish subcases
% according to the constructor form of $\hat{n}_2$.  The subcases
% $\bottom$ and $0$ for $\hat{n}_2$ are treated as before.  In the
% subcase $S \hat{n}_2$ for $\hat{n}_2$ from $S \hat{n}_1 = S \hat{n}_2$
% infer $\hat{n}_1 = \hat{n}_2$ (using $\eqrel{S \hat{n}_1}{S \hat{n}_2}
% \Eq \eqrel{\hat{n}_1}{\hat{n}_2}$).  Now the IH yields $\hat{n}_1 \Eq
% \hat{n}_2$, hence $S \hat{n}_1 \Eq S \hat{n}_2$, using
% $\texttt{Eq-Compat}$ and $\texttt{Eq-Refl}$.
% \end{proof}

% \begin{lemma}[\texttt{=-to-E}\index{equals-to-E@\texttt{=-to-E}}]
% $\hat{n}_1 = \hat{n}_2 \to E(\hat{n}_i)$.
% \end{lemma}

% \begin{proof}
% By \texttt{Gen-Ind} on $\hat{n}_1$.  In case $\bottom$ the premise is
% equivalent to $\atom(\bottom)$.  Now use $\texttt{Bottom-to-F}$
% and $\texttt{Efq-Atom}$.

% In case $0$ for $\hat{n}_1$ we distinguish subcases according to the
% constructor form of $\hat{n}_2$.  In the subcase $\bottom$ for
% $\hat{n}_2$ we argue as before.  In the subcase $0$ for $\hat{n}_2$
% the conclusion $E(0)$ follows from $\texttt{Atom-True}$.  In the
% subcase $S \hat{n}_2$ for $\hat{n}_2$ the premise $0 = S \hat{n}_2$ is
% equivalent to $\atom(\bottom)$.  Now again use $\texttt{Bottom-to-F}$
% and $\texttt{Efq-Atom}$.

% In the step case for $\hat{n}_1$ we again distinguish subcases
% according to the constructor form of $\hat{n}_2$.  The subcases
% $\bottom$ and $0$ for $\hat{n}_2$ are treated as before.  In the
% subcase $S \hat{n}_2$ for $\hat{n}_2$ from $S \hat{n}_1 = S \hat{n}_2$
% infer $\hat{n}_1 = \hat{n}_2$ (using $\eqrel{S \hat{n}_1}{S \hat{n}_2}
% \Eq \eqrel{\hat{n}_1}{\hat{n}_2}$).  The IH yields $E(\hat{n}_i)$,
% hence $E(S \hat{n}_i)$, using $e(S \hat{n}_i) \Eq e(\hat{n}_i)$.
% \end{proof}

% \begin{lemma}[\texttt{Total-to-E}\index{Total-to-E@\texttt{Total-to-E}}]
% $\Total(\hat{n}) \to E(\hat{n})$.
% \end{lemma}

% \begin{proof}
% By \texttt{Gen-Ind}.  In case $\bottom$ use \texttt{Bottom-not-Total}
% and \texttt{Efq-Atom}, and in case $0$ use $E(0)$.  For the step prove
% \[
% (\Total(\hat{n}) \to E(\hat{n})) \to \Total(S \hat{n}) \to E(S
% \hat{n}),
% \]
% using $\Total(S \hat{n}) \to \Total(\hat{n})$, i.e.\
% \texttt{Constr-Total-Args}, and $E(\hat{n}) \to E(S \hat{n})$; the
% latter follows from $e(S \hat{n}) \Eq e(\hat{n})$.
% \end{proof}

% \begin{lemma}[\texttt{E-to-Total}\index{E-to-Total@\texttt{E-to-Total}}]
% $E(\hat{n}) \to \Total(\hat{n})$.
% \end{lemma}

% \begin{proof}
% By \texttt{Gen-Ind}.  In case $\bottom$ use $\texttt{Bottom-to-F}
% \colon \atom(\bottom) \to F$ and $\texttt{Efq-Total} \colon
% F \to \Total(\bottom)$, and in case $0$ use $\texttt{Constr-Total}$.
% For the step prove
% \[
% (E(\hat{n}) \to \Total(\hat{n})) \to E(S \hat{n}) \to \Total(S
% \hat{n}),
% \]
% using $E(S \hat{n}) \to E(\hat{n})$ (from $e(S \hat{n}) \Eq 
% e(\hat{n})$), and $\Total(\hat{n}) \to \Total(S \hat{n})$; the
% latter follows from $\Total(S)$, i.e.\ $\texttt{Constr-Total}$.
% \end{proof}

% Then one can derive from general induction the form of induction
% one normally wants to apply.

% \begin{lemma}[\texttt{Ind}]
% \mylabel{L:Ind}
% $\hat{P}(0) \to (\forall n.\hat{P}(n) \to \hat{P}(S n)) \to 
% \forall n \hat{P}(n)$.
% \end{lemma}

% \begin{proof}%[Proof of \texttt{Ind} for $\nat$]
% By general induction applied to the formula $E(\hat{n}) \to
% \hat{P}(\hat{n})$.  In case $\bottom$ use $\texttt{E-to-Total}$ and
% $\texttt{Bottom-not-Total}$ to conclude $E(\bottom) \to F$, and then
% the global assumption $\texttt{Efq} \colon F \to \hat{P}(\bottom)$.
% The case $0$ is clear, and in the step case we need to prove $\forall
% \hat{n}.(E(\hat{n}) \to \hat{P}(\hat{n})) \to E(S \hat{n}) \to
% \hat{P}(S \hat{n})$ from $\forall \hat{n}.E(\hat{n}) \to
% \hat{P}(\hat{n}) \to \hat{P}(S \hat{n})$.  This follows from
% $\texttt{Constr-Total-Args}$, yielding $E(S \hat{n}) \to E(\hat{n})$.
% \end{proof}

% \begin{remark}
% Notice that every instance
% \[
% \subst{A}{x}{0} \to (\forall n.\subst{A}{x}{n} \to \subst{A}{x}{S n}) \to 
% \forall n \subst{A}{x}{n}
% \]
% of \texttt{Ind} for a formula $A$ without strictly positive
% occurrences of predicate variables can be derived without using the
% global assumption $\texttt{Efq}$.
% \end{remark}

% \begin{lemma}[\texttt{=-Refl-nat}%
% \index{equalfinalg-Refl-nat@\texttt{=-Refl-nat}}]
% $n=n$.
% \end{lemma}

\begin{proof}[Proof of \texttt{=-Refl-nat}]
Use \texttt{Ind}, and \texttt{Truth-Axiom} in both cases. -- Notice
that $\hat{n} = \hat{n}$ does \emph{not} hold, since
$\eqrel{\bottom}{\bottom} \Eq \bottom$.
\end{proof}

% We can also derive easily
% \begin{alignat*}{2}
% %
% &\hat{n}_1 = \hat{n}_2 \to \hat{n}_2 = \hat{n}_1
% &\quad&\text{\texttt{=-Symm-nat}}%
% \index{equalfinalg-Symm-nat@\texttt{=-Symm-nat}}
% \\
% &\hat{n}_1 = \hat{n}_2 \to \hat{n}_2 = \hat{n}_3 \to \hat{n}_1 = \hat{n}_3
% &\quad&\text{\texttt{=-Trans-nat}}%
% \index{equalfinalg-Trans-nat@\texttt{=-Trans-nat}}
% \\[1ex]
% &\hat{n}_1 = \hat{n}_2 \to E(\hat{n}_i)
% \\
% &0 = S \hat{n} \to F
% \\
% &S \hat{n}_1 = S \hat{n}_2 \to \hat{n}_1 = \hat{n}_2
% \\[1ex]
% &E(S \hat{n}) \to E(\hat{n})
% \\
% &E(0)
% \\
% &E(\hat{n}) \to E(S \hat{n})
%
% \end{alignat*}

% The following theorems are proved easily by boolean induction.
% \begin{alignat*}{2}
% %
% &\texttt{(aconst Efq-thm $\forall p.  F \to p$ \textsl{empty-subst})} 
% \index{Efq-thm@\texttt{Efq-thm}}
% \\
% &\texttt{(aconst Stab-thm $\forall p.  ((p \to F) \to F) \to p$ 
% \textsl{empty-subst})} 
% \index{Stab-thm@\texttt{Stab-thm}}
% \\
% &\texttt{(aconst Atomtrue $\forall p.  p \to p = \true$ 
% \textsl{empty-subst})} 
% \index{Atomtrue@\texttt{Atomtrue}}
% \\
% &\texttt{(aconst Atomfalse $\forall p.  (p \to F) \to p = \false$ 
% \textsl{empty-subst})} 
% \index{Atomfalse@\texttt{Atomfalse}}
% %
% \end{alignat*}

Here are some other examples of theorems; we give the internal
representation as assumption constants, which show how the assumed
formula is split into an uninstantiated formula and a substitution, in
this case a type substitution $\alpha \mapsto \rho$, an object
substitution $f^{\alpha \to \nat} \mapsto g^{\rho \to \nat}$ and a
predicate variable substitution $\hat{P}^{(\alpha)} \mapsto
\set{\hat{z}^\rho}{A}$.
\begin{alignat*}{2}
&\texttt{(aconst Cvind-with-measure-11}
\\
&\qquad \qquad \qquad\texttt{$
\forall f^{\alpha \to \nat}.
\bigl(\forall x^\alpha.\forall y(f(y) {<} f(x)  \to \hat{P}(y)) \to 
\hat{P}(x) \bigr) \to
\forall x \hat{P}(x)$}
\\
&\qquad \qquad \qquad 
\texttt{$(\alpha \mapsto \rho, 
f^{\alpha \to \nat} \mapsto g^{\rho \to \nat},
\hat{P}^{(\alpha)} \mapsto \set{\hat{z}^\rho}{A})$).} 
\index{Cvind-with-measure-11@\texttt{Cvind-with-measure-11}}
\\
&\texttt{(aconst Minpr-with-measure-l11}
\\
&\qquad \qquad \qquad\texttt{$
\forall f^{\alpha \to \nat}.
\excl x^\alpha \hat{P}(x) \to \excl x.\hat{P}(x) !
\forall y.f(y) {<} f(x)  \to \hat{P}(y) \to \bot$}
\\
&\qquad \qquad \qquad
\texttt{$(\alpha \mapsto \rho, 
f^{\alpha \to \nat} \mapsto g^{\rho \to \nat},
\hat{P}^{(\alpha)} \mapsto \set{\hat{z}^\rho}{A})$).} 
\index{Minpr-with-measure-l11@\texttt{Minpr-with-measure-l11}}
\end{alignat*}
Here $\excl$ is the classical existential quantifier defined by $\excl
x A := \forall x(A \to \bot) \to \bot$ with the logical form of
falsity $\bot$ (as opposed to the arithmetical form $(\texttt{atom}\
\false)$).  \texttt{l} indicates \inquotes{logic} (we have used the
logical form of falsity), the first \texttt{1} that we have one
predicate variable $\hat{P}$, and the second that we quantify over just one
variable $x$.  Both theorems can easily be generalized to more such
parameters.

When dealing with classical logic it will be useful to have
\begin{alignat*}{2}
&(\hat{P} \to \hat{P}_1) \to 
((\hat{P} \to \bot) \to \hat{P}_1) \to \hat{P}_1
&\quad&\text{\texttt{Cases-Log}\index{Cases-Log@\texttt{Cases-Log}}}
\end{alignat*}
The proof uses the global assumption \texttt{Stab-Log} (see below) for
$\hat{P}_1$; hence we cannot extract a term from it.

The assumption constants corresponding to these theorems are
generated by
\begin{alignat*}{2}
&\texttt{(theorem-name-to-aconst \textsl{name})}%
\index{theorem-name-to-aconst@\texttt{theorem-name-to-aconst}} 
\end{alignat*}

\subsection{Global assumptions}
\mylabel{SS:GlobalAss}
A global assumption\index{global assumption} is a special assumption
constant.  It provides a proposition whose proof does not concern us
pre\-sent\-ly.  Global assumptions are added, removed and displayed by
\begin{align*}
&\texttt{(add-global-assumption \textsl{name} \textsl{formula})}    
\index{add-global-assumption@\texttt{add-global-assumption}}
\quad \hbox{(abbreviated \texttt{aga}\index{aga@\texttt{aga}})}
\\
&\texttt{(remove-global-assumption \textsl{string1} \dots)}    
\index{remove-global-assumption@\texttt{remove-global-assumption}} 
\\
&\texttt{(display-global-assumptions \textsl{string1} \dots)}    
\index{display-global-assumptions@\texttt{display-global-assumptions}}
\end{align*}

We initially supply global assumptions for ex-falso-quodlibet and
stability, both in logical and arithmetical form (for our two
forms of falsity).
\begin{alignat*}{2}
&\bot \to \hat{P}
&\quad&\text{\texttt{Efq-Log}\index{Efq-Log@\texttt{Efq-Log}}}
\\
&((\hat{P} \to \bot) \to \bot) \to \hat{P}
&\quad&\text{\texttt{Stab-Log}\index{Stab-Log@\texttt{Stab-Log}}}
\\
&F \to \hat{P}
&\quad&\text{\texttt{Efq}\index{Efq@\texttt{Efq}}}
\\
&((\hat{P} \to F) \to F) \to \hat{P}
&\quad&\text{\texttt{Stab}\index{Stab@\texttt{Stab}}}
\end{alignat*}
The assumption constants corresponding to these global assumptions are
generated by
\begin{alignat*}{2}
&\texttt{(global-assumption-name-to-aconst \textsl{name})}%
\index{global-assumption-name-to-aconst@\texttt{global-ass{dots}-name-to-aconst}} 
\end{alignat*}


\section{Proofs}
\mylabel{Proof}
Proofs are built from assumption variables and assumption constants
(i.e.\ axioms, theorems and global assumption) by the usual rules of
natural deduction, i.e.\ introduction and elimination rules for
implication, conjunction and universal quantification.  From a proof
we can read off its \emph{context}\index{context}, which is an ordered
list of object and assumption variables.

\subsection{Constructors and accessors}
We have constructors, accessors and tests for assumption variables
\begin{alignat*}{2}
&\texttt{(make-proof-in-avar-form \textsl{avar})}        
\index{make-proof-in-avar-form@\texttt{make-proof-in-avar-form}}
&\quad& \text{constructor} 
\\
&\texttt{(proof-in-avar-form-to-avar \textsl{proof})}    
\index{proof-in-avar-form-to-avar@\texttt{proof-in-avar-form-to-avar}}
&& \text{accessor,} 
\\
&\texttt{(proof-in-avar-form?\ \textsl{proof})}          
\index{proof-in-avar-form?@\texttt{proof-in-avar-form?}}
&& \text{test,}
\end{alignat*}
for assumption constants
\begin{alignat*}{2}
&\texttt{(make-proof-in-aconst-form \textsl{aconst})}     
\index{make-proof-in-aconst-form@\texttt{make-proof-in-aconst-form}}
&\quad& \text{constructor} 
\\
&\texttt{(proof-in-aconst-form-to-aconst \textsl{proof})} 
\index{proof-in-aconst-form-to-aconst@\texttt{proof-in-aconst-form-to-aconst}}
&& \text{accessor} 
\\
&\texttt{(proof-in-aconst-form?\ \textsl{proof})}         
\index{proof-in-aconst-form?@\texttt{proof-in-aconst-form?}}
&& \text{test,}
\end{alignat*}
for implication introduction
\begin{alignat*}{2}
&\texttt{(make-proof-in-imp-intro-form \textsl{avar} \textsl{proof})}
\index{make-proof-in-imp-intro-form@\texttt{make-proof-in-imp-intro-form}}
&\quad& \text{constructor} 
\\
&\texttt{(proof-in-imp-intro-form-to-avar \textsl{proof})}  
\index{proof-in-imp-intro-form-to-avar@\texttt{proof-in-imp-intro-form-to-avar}}
&&\text{accessor}
\\
&\texttt{(proof-in-imp-intro-form-to-kernel \textsl{proof})}
\index{proof-in-imp-intro-form-to-kernel@\texttt{pr{\dots}-imp-intro-form-to-kernel}}
&&\text{accessor}
\\
&\texttt{(proof-in-imp-intro-form?\ \textsl{proof})}        
\index{proof-in-imp-intro-form?@\texttt{proof-in-imp-intro-form?}}
&& \text{test,}
\end{alignat*}
for implication elimination
\begin{alignat*}{2}
&\texttt{(make-proof-in-imp-elim-form \textsl{proof1} \textsl{proof2})} 
\index{make-proof-in-imp-elim-form@\texttt{make-proof-in-imp-elim-form}}
&\quad& \text{constructor} 
\\
&\texttt{(proof-in-imp-elim-form-to-op \textsl{proof})}   
\index{proof-in-imp-elim-form-to-op@\texttt{proof-in-imp-elim-form-to-op}}
&& \text{accessor} 
\\
&\texttt{(proof-in-imp-elim-form-to-arg \textsl{proof})}  
\index{proof-in-imp-elim-form-to-arg@\texttt{proof-in-imp-elim-form-to-arg}}
&& \text{accessor} 
\\
&\texttt{(proof-in-imp-elim-form?\ \textsl{proof})}       
\index{proof-in-imp-elim-form?@\texttt{proof-in-imp-elim-form?}}
&& \text{test,}
\end{alignat*}
for and introduction
\begin{alignat*}{2}
&\texttt{(make-proof-in-and-intro-form \textsl{proof1} \textsl{proof2})}  
\index{make-proof-in-and-intro-form@\texttt{make-proof-in-and-intro-form}}
&\quad& \text{constructor} 
\\
&\texttt{(proof-in-and-intro-form-to-left \textsl{proof})} 
\index{proof-in-and-intro-form-to-left@\texttt{pr{\dots}and-intro-form-to-left}}
&&\text{accessor}
\\
&\texttt{(proof-in-and-intro-form-to-right \textsl{proof})}
\index{proof-in-and-intro-form-to-right@\texttt{pr{\dots}and-intro-form-to-right}}
&&\text{accessor}
\\
&\texttt{(proof-in-and-intro-form?\ \textsl{proof})}       
\index{proof-in-and-intro-form?@\texttt{proof-in-and-intro-form?}}
&& \text{test,}
\end{alignat*}
for and elimination
\begin{alignat*}{2}
&\texttt{(make-proof-in-and-elim-left-form \textsl{proof})}        
\index{make-proof-in-and-elim-left-form@\texttt{make-proof-in-and-elim-l{\dots}}}
&\quad& \text{constructor} 
\\
&\texttt{(make-proof-in-and-elim-right-form \textsl{proof})}
\index{make-proof-in-and-elim-right-form@\texttt{make-proof-in-and-elim-r{\dots}}}
&& \text{constructor} 
\\
&\texttt{(proof-in-and-elim-left-form-to-kernel \textsl{proof})}  
\index{proof-in-and-elim-left-form-to-kernel@\texttt{proof-in-and-elim{\dots}}}
&& \text{accessor} 
\\
&\texttt{(proof-in-and-elim-right-form-to-kernel \textsl{proof})} 
\index{proof-in-and-elim-right-form-to-kernel@\texttt{proof-in-and-elim{\dots}}}
&& \text{accessor} 
\\
&\texttt{(proof-in-and-elim-left-form?\ \textsl{proof})}          
\index{proof-in-and-elim-left-form?@\texttt{proof-in-and-elim-left-form?}}
&& \text{test} 
\\
&\texttt{(proof-in-and-elim-right-form?\ \textsl{proof})}         
\index{proof-in-and-elim-right-form?@\texttt{proof-in-and-elim-right-form?}}
&& \text{test,}
\end{alignat*}
for all introduction
\begin{alignat*}{2}
&\texttt{(make-proof-in-all-intro-form \textsl{var} \textsl{proof})}
\index{make-proof-in-all-intro-form@\texttt{make-proof-in-all-intro-form}}
&\quad& \text{constructor} 
\\
&\texttt{(proof-in-all-intro-form-to-var \textsl{proof})}      
\index{proof-in-all-intro-form-to-var@\texttt{pr{\dots}all-intro-form-to-var}}
&& \text{accessor} 
\\
&\texttt{(proof-in-all-intro-form-to-kernel \textsl{proof})}   
\index{proof-in-all-intro-form-to-kernel@\texttt{pr{\dots}all-intro-form-to-kernel}}
&& \text{accessor} 
\\
&\texttt{(proof-in-all-intro-form?\ \textsl{proof})}           
\index{proof-in-all-intro-form?@\texttt{proof-in-all-intro-form?}}
&& \text{test,}
\end{alignat*}
for all elimination
\begin{alignat*}{2}
&\texttt{(make-proof-in-all-elim-form \textsl{proof} \textsl{term})} 
\index{make-proof-in-all-elim-form@\texttt{make-proof-in-all-elim-form}}
&\quad& \text{constructor} 
\\
&\texttt{(proof-in-all-elim-form-to-op \textsl{proof})}        
\index{proof-in-all-elim-form-to-op@\texttt{proof-in-all-elim-form-to-op}}
&& \text{accessor} 
\\
&\texttt{(proof-in-all-elim-form-to-arg \textsl{proof})}       
\index{proof-in-all-elim-form-to-arg@\texttt{proof-in-all-elim-form-to-arg}}
&& \text{accessor} 
\\
&\texttt{(proof-in-all-elim-form?\ \textsl{proof})}            
\index{proof-in-all-elim-form?@\texttt{proof-in-all-elim-form?}}
&& \text{test}
\end{alignat*}
and for \texttt{cases}-constructs
\begin{alignat*}{2}
&\texttt{(make-proof-in-cases-form \textsl{test} \textsl{alt1} \dots)}       
\index{make-proof-in-cases-form@\texttt{make-proof-in-cases-form}}
&\quad& \text{constructor} 
\\
&\texttt{(proof-in-cases-form-to-test \textsl{proof})}         
\index{proof-in-cases-form-to-test@\texttt{proof-in-cases-form-to-test}}
&& \text{accessor} 
\\
&\texttt{(proof-in-cases-form-to-alts \textsl{proof})}         
\index{proof-in-cases-form-to-alts@\texttt{proof-in-cases-form-to-alts}}
&& \text{accessor} 
\\
&\texttt{(proof-in-cases-form-to-rest \textsl{proof})}         
\index{proof-in-cases-form-to-rest@\texttt{proof-in-cases-form-to-rest}}
&& \text{accessor} 
\\
&\texttt{(proof-in-cases-form?\ \textsl{proof})}               
\index{proof-in-cases-form?@\texttt{proof-in-cases-form?}}
&& \text{test.}
\end{alignat*}
It is convenient to have more general introduction and elimination
operators that take arbitrary many arguments.  The former works for
implication-introduction and all-introduction, and the latter for
implication-elimination, and-elimination and all-elimination.
\begin{alignat*}{2}
&\texttt{(mk-proof-in-intro-form \textsl{x1} \dots\ \textsl{proof})}
\index{mk-proof-in-intro-form@\texttt{mk-proof-in-intro-form}}
\\
&\texttt{(mk-proof-in-elim-form \textsl{proof} \textsl{arg1} \dots)}
\index{mk-proof-in-elim-form@\texttt{mk-proof-in-elim-form}}
\\
&\texttt{(proof-in-intro-form-to-kernel-and-vars \textsl{proof})}
\index{proof-in-intro-form-to-kernel-and-vars@\texttt{proof-in-intro-form-to{\dots}}}
\\
&\texttt{(proof-in-elim-form-to-final-op \textsl{proof})}
\index{proof-in-elim-form-to-final-op@\texttt{pr{\dots}elim-form-to-final-op}}
\\
&\texttt{(proof-in-elim-form-to-args \textsl{proof}).}     
\index{proof-in-elim-form-to-args@\texttt{proof-in-elim-form-to-args}}
\end{alignat*}
\texttt{(mk-proof-in-intro-form \textsl{x1} \dots\ \textsl{proof})} is
formed from proof by first abstracting \textsl{x1}, then \textsl{x2}
and so on.  Here \textsl{x1}, \textsl{x2} \dots can be assumption or
object variables.  We also provide
\begin{alignat*}{2}
&\texttt{(mk-proof-in-and-intro-form \textsl{proof} \textsl{proof1} \dots)}
\index{mk-proof-in-and-intro-form@\texttt{mk-proof-in-and-intro-form}}
\end{alignat*}

In our setup there are axioms rather than rules for the existential
quantifier.  However, sometimes it is useful to construct proofs as if
an existence introduction rule would be present; internally then an
existence introduction axiom is used.
\begin{alignat*}{2}
&\texttt{(make-proof-in-ex-intro-form \textsl{term} \textsl{ex-formula}
\textsl{proof-of-inst})}
\index{make-proof-in-ex-intro-form@\texttt{make-proof-in-ex-intro-form}}
\\
&\texttt{(mk-proof-in-ex-intro-form\ .\ }
\\
&\quad\texttt{\textsl{terms-and-ex-formula-and-proof-of-inst})}%
\index{mk-proof-in-ex-intro-form@\texttt{mk-proof-in-ex-intro-form}}
\end{alignat*}

Moreover we need
\begin{alignat*}{2}
&\texttt{(proof?\ \textsl{x})}
\index{proof?@\texttt{proof?}}
\\
&\texttt{(proof=?\ \textsl{proof1} \textsl{proof2})}
\index{proof=?@\texttt{proof=?}}
\\
&\texttt{(proofs=?\ \textsl{proofs1} \textsl{proofs2})}
\index{proofs=?@\texttt{proofs=?}}
\\
&\texttt{(proof-to-formula \textsl{proof})}
\index{proof-to-formula@\texttt{proof-to-formula}}
\\
&\texttt{(proof-to-context \textsl{proof})}
\index{proof-to-context@\texttt{proof-to-context}}
\\
&\texttt{(proof-to-free \textsl{proof})}
\index{proof-to-free@\texttt{proof-to-free}}
\\
&\texttt{(proof-to-free-avars \textsl{proof})}
\index{proof-to-free-avars@\texttt{proof-to-free-avars}}
\\
&\texttt{(proof-to-bound-avars \textsl{proof})}
\index{proof-to-bound-avars@\texttt{proof-to-bound-avars}}
\\
&\texttt{(proof-to-free-and-bound-avars \textsl{proof})}
\index{proof-to-free-and-bound-avars@\texttt{proof-to-free-and-bound-avars}}
\\
&\texttt{(proof-to-aconsts-without-rules \textsl{proof}).}
\index{proof-to-aconsts-without-rules@\texttt{proof-to-aconsts-without-rules}}
\\
&\texttt{(proof-to-aconsts \textsl{proof}).}
\index{proof-to-aconsts@\texttt{proof-to-aconsts}}
\end{alignat*}
To work with contexts we need
\begin{alignat*}{2}
&\texttt{(context-to-vars\ \textsl{context})}
\index{context-to-vars@\texttt{context-to-vars}}
\\
&\texttt{(context-to-avars\ \textsl{context})}
\index{context-to-avars@\texttt{context-to-avars}}
\\
&\texttt{(context=?\ \textsl{context1} \textsl{context2}).}
\index{context=?@\texttt{context=?}}
\end{alignat*}

\subsection{Normalization}
Normalization of proofs will be done by reduction to normalization of
terms.  (1) Construct a term from the proof.  To do this properly,
create for every free avar in the given proof a new variable whose
type comes from the formula of the avar; store this information.  Note
that in this construction one also has to create new variables for the
bound avars.  Similary to avars we have to treat assumption constants
which are not axioms, i.e.\ theorems or global assumptions.  (2)
Normalize the resulting term.  (3) Reconstruct a normal proof from
this term, the end formula and the stored information.  -- The critical
variables are carried along for efficiency reasons.

To assign recursion constants to induction constants, we need to
associate type variables with predicate variables, in such a way that
we can later refer to this assignment.  Therefore we carry along a
procedure \texttt{pvar-to-tvar} which remembers the assignment done so far
(cf.\ \texttt{make-rename}).

Due to our distinction between general variables $\verb#x^0#,
\verb#x^1#, \verb#x^2#, \dots$ and variables $\texttt{x0},
\texttt{x1}, \texttt{x2}, \dots$ intended to range over existing
(i.e.\ total) objects only, $\eta$-conversion of proofs cannot be done
via reduction to $\eta$-conversion of terms.  To see this, consider
the proof
\[
\AxiomC{$\forall \hat{x} P \hat{x}$}
\AxiomC{$x$}
\BinaryInfC{$P x$}
\UnaryInfC{$\forall x P x$}
\UnaryInfC{$\forall \hat{x} P \hat{x} \to \forall x P x$}
\DisplayProof
\]
The proof term is $\lambda u \lambda x. u x$.  If we $\eta$-normalize
this to $\lambda u u$, the proven formula would be all $\forall
\hat{x} P \hat{x} \to \forall \hat{x} P \hat{x}$.  Therefore we split
\texttt{nbe-normalize-proof} into
\texttt{nbe-normalize-proof-without-eta} and \texttt{proof-to-eta-nf}.

Moreover, for a full normalization of proofs (including permutative
conversions) we need a preprocessing step that $\eta$-expands each
ex-elim axiom such that the conclusion is atomic or existential.



% \subsection*{Interface}
We need the following functions.
\begin{alignat*}{2}
&\texttt{(proof-and-genavar-var-alist-to-pterm \textsl{pvar-to-tvar}  
\textsl{proof})}
\\
&\texttt{(npterm-and-var-genavar-alist-and-formula-to-proof}
\\
&\quad \texttt{\textsl{npterm} \textsl{var-genavar-alist} \textsl{crit}
\textsl{formula})}
\\
&\texttt{(elim-npterm-and-var-genavar-alist-to-proof}
\\
&\quad \texttt{\textsl{npterm} \textsl{var-genavar-alist} \textsl{crit})}.
\end{alignat*}
Then we can define \texttt{nbe-normalize-proof}%
\index{nbe-normalize-proof@\texttt{nbe-normalize-proof}}, abbreviated
\texttt{np}\index{np@\texttt{np}}.

\subsection{Substitution}
In a proof we can substitute
\begin{itemize}
\item types for type variables (by a type variable substitution
\texttt{tsubst}),
\item terms for variables (by a substitution \texttt{subst}),
\item comprehension terms for predicate variables (by a predicate
variable substitution \texttt{psubst}), and
\item proofs for assumption variables (by a assumption variable
substitution \texttt{asubst}).
\end{itemize}
It is assumed that \texttt{subst} only affects those vars whose type
is not changed by \texttt{tsubst}, \texttt{psubst} only affects those
predicate variables whose arity is not changed by \texttt{tsubst}, and
that \texttt{asubst} only affects those assumtion variabless whose
formula is not changed by \texttt{tsubst}, \texttt{subst} and
\texttt{psubst}.

In the abstraction cases of the recursive definition, the abstracted
variable (or assumption variable) may need to be renamed.  However,
its type (or formula) can be affected by \texttt{tsubst} (or
\texttt{tsubst}, \texttt{subst} and \texttt{psubst}).  Then the
renaming cannot be made part of \texttt{subst} (or \texttt{asubst}),
because the condition above would be violated.  Therefore we carry
along procedures \texttt{rename} renaming variables and
\texttt{arename} for assumption variables, which remember the renaming
done so far.

All these substitutions can be packed together, as an argument
\texttt{topasubst} for \texttt{proof-substitute}.
\begin{alignat*}{2}
&\texttt{(proof-substitute \textsl{proof} \textsl{topasubst})}
\index{proof-substitute@\texttt{proof-substitute}}
\end{alignat*}
If we want to substitute for a single variable only (which can be a
type-, an object-, a predicate - or an assumption-variable), then
we can use
\begin{alignat*}{2}
&\texttt{(proof-subst \textsl{proof} \textsl{arg} \textsl{val})}
\index{proof-subst@\texttt{proof-subst}}
\end{alignat*}

The procedure \texttt{expand-theorems} expects a proof and a test
whether a string denotes a theorem to be replaced by its proof.  The
result is the (normally quite long) proof obtained by replacing the
theorems by their saved proofs.
\begin{alignat*}{2}
&\texttt{(expand-theorems \textsl{proof} \textsl{name-test?})}
\index{expand-theorems@\texttt{expand-theorems}}
\end{alignat*}

\subsection{Display}
There are many ways to display a proof.  We normally use
\texttt{display-proof} for a linear representation, showing the
formulas and the rules used.  When we in addition want to check the
correctness of the proof, we can use \texttt{check-and-display-proof}.

However, we also provide a readable type-free lambda expression via
\texttt{(proof-to-expr
\textsl{proof})}\index{proof-to-expr@\texttt{proof-to-expr}}.

To display proofs we use the following functions.  In case the
optional proof argument is not present, the current proof of an
interactive proof development is taken instead.
\begin{alignat*}{2}
&\texttt{(display-proof\ .\ \textsl{opt-proof})}
\index{display-proof@\texttt{display-proof}}
&\quad& \text{abbreviated \texttt{dp}\index{dp@\texttt{dp}}}
\\
&\texttt{(check-and-display-proof\ .\ \textsl{opt-proof})}
\index{check-and-display-proof@\texttt{check-and-display-proof}}
&\quad& \text{abbreviated \texttt{cdp}\index{dp@\texttt{cdp}}}
\\
&\texttt{(display-pterm\ .\ \textsl{opt-proof})}
\index{display-pterm@\texttt{display-pterm}}
&\quad& \text{abbreviated \texttt{dpt}\index{dpt@\texttt{dpt}}}
\\
&\texttt{(display-proof-expr\ .\ \textsl{opt-proof})}
\index{display-proof-expr@\texttt{display-proof-expr}}
&\quad& \text{abbreviated \texttt{dpe}\index{dpe@\texttt{dpe}}}
\end{alignat*}
We also provide versions which normalize the proof first:
\begin{alignat*}{2}
&\texttt{(display-normalized-proof\ .\ \textsl{opt-proof})}
\index{display-normalized-proof@\texttt{display-normalized-proof}}
&\quad& \text{abbreviated \texttt{dnp}\index{dnp@\texttt{dnp}}}
\\
&\texttt{(display-normalized-pterm\ .\ \textsl{opt-proof})}
\index{display-normalized-pterm@\texttt{display-normalized-pterm}}
&\quad& \text{abbreviated \texttt{dnpt}\index{dnpt@\texttt{dnpt}}}
\\
&\texttt{(display-normalized-proof-expr\ .\ \textsl{opt-proof})}
\index{display-normalized-proof-expr@\texttt{display-normalized-proof-expr}}
&\quad& \text{abbreviated \texttt{dnpe}\index{dnpe@\texttt{dnpe}}}
\end{alignat*}

\subsection{Classical logic}
\texttt{(proof-of-stab-at
\textsl{formula})}\index{proof-of-stab-at@\texttt{proof-of-stab-at}}
generates a proof of $((A \to F) \to F) \to A$.  For $F$, $T$ one takes
the obvious proof, and for other atomic formulas the proof using cases
on booleans.  For all other prime or existential formulas one takes an
instance of the global assumption \texttt{Stab}: $((\hat{P} \to F) \to
F) \to \hat{P}$.  Here the argument \textsl{formula} must be unfolded.
For the logical form of falsity we take \texttt{(proof-of-stab-log-at
\textsl{formula})}\index{proof-of-stab-log-at@\texttt{proof-of-stab-log-at}},
and similary for ex-falso-quodlibet we provide
\begin{alignat*}{2}
&\texttt{(proof-of-efq-at \textsl{formula})}%
\index{proof-of-efq-at@\texttt{proof-of-efq-at}}
\\
&\texttt{(proof-of-efq-log-at \textsl{formula})}%
\index{proof-of-efq-log-at@\texttt{proof-of-efq-log-at}}
\end{alignat*}
Using these functions we can then define \texttt{(reduce-efq-and-stab
\textsl{proof})}\index{reduce-efq-and-stab@\texttt{reduce-efq-and-stab}},
which reduces all instances of stability and ex-falso-quodlibet axioms
in a proof to instances of these global assumptions with prime or
existential formulas, or (if possible) replaces them by their proofs.

With \texttt{rm-exc}\index{rm-exc@\texttt{rm-exc}} we can transform a
proof involving classical existential quantifiers in another one
without, i.e.\ in minimal logic.  The Exc-Intro and Exc-Elim theorems
are replaced by their proofs, using \texttt{expand-theorems}.


\section{Interactive theorem proving with partial proofs}
\mylabel{Pproof}
\subsection{Partial proofs}
A partial proof is a proof with holes, i.e.\ special
assumption variables (called goal variables) \texttt{v}, \texttt{v1},
\texttt{v2} \dots whose formulas must be closed.  We assume that every
goal variable \texttt{v} has a single occurrence in the proof.  We
then select a (not necessarily maximal) subproof \texttt{vx1...xn}
with distinct object or assumption variables \texttt{x1...xn}.  Such a
subproof is called a \emph{goal}\index{goal}.  When interactively
developing a partial proof, a goal \texttt{vx1...xn} is replaced by
another partial proof, whose context is a subset of \texttt{x1...xn}
(i.e.\ the context of the goal with \texttt{v} removed).

To gain some flexibility when working on our goals, we do not at each
step of an interactive proof development traverse the partial proof
searching for the remaining goals, but rather keep a list of all open
goals together with their numbers as we go along.  We maintain a
global variable \texttt{PPROOF-STATE} containing a list of three
elements: (1) \texttt{num-goals}, an alist of entries \texttt{(number
  goal drop-info hypname-info)}, (2) \texttt{proof} and (3)
\texttt{maxgoal}, the maximal goal number used.

At each stage of an interactive proof development we have access
to the current proof and the current goal by executing
\begin{alignat*}{2}
&\texttt{(current-proof)}\index{current-proof@\texttt{current-proof}}
\\ 
&\texttt{(current-goal)}\index{current-goal@\texttt{current-goal}}
\end{alignat*}

\subsection{Interactive theorem proving}
For interactively building proofs we need
\begin{alignat*}{2}
&\texttt{(goal-to-goalvar \textsl{goal})}%
\index{goal-to-goalvar@\texttt{goal-to-goalvar}} 
\\
&\texttt{(goal-to-context \textsl{goal})}%
\index{goal-to-context@\texttt{goal-to-context}} 
\\
&\texttt{(goal-to-formula \textsl{goal})}%
\index{goal-to-formula@\texttt{goal-to-formula}} 
\\ 
&\texttt{(goal=?\ \textsl{proof} \textsl{goal})}%
\index{goal=?@\texttt{goal=?}}
\\
&\texttt{(goal-subst \textsl{proof} \textsl{goal} \textsl{proof1})}%
\index{goal-subst@\texttt{goal-subst}} 
\\
&\texttt{(pproof-state-to-num-goals)}%
% \index{pproof-state-to-num-goals@\texttt{pproof-state-to-num-goals}}
\\ 
&\texttt{(pproof-state-to-proof)}%
\index{pproof-state-to-proof@\texttt{pproof-state-to-proof}}
\\ 
&\texttt{(pproof-state-to-formula)}%
\index{pproof-state-to-formula@\texttt{pproof-state-to-formula}}
\\ 
&\texttt{(display-current-goal)}%
\index{display-current-goal@\texttt{display-current-goal}} 
\\
&\texttt{(display-current-goal-with-normalized-formulas)}%
\index{display-current-goal-with-normalized-formulas@\texttt{display-current-goal-with{\dots}}}
\\ 
% &\texttt{(display-current-proof)}%
% \index{display-current-proof@\texttt{display-current-proof}} 
% \\ 
% &\texttt{(display-current-pterm)}%
% \index{display-current-pterm@\texttt{display-current-pterm}} 
% \\ 
&\texttt{(display-current-pproof-state)}%
\index{display-current-pproof-state@\texttt{display-current-num-goals{\dots}}} 
\end{alignat*}

We list some commands for interactively building proofs.

\subsubsection{set-goal}  An interactive proof starts with \texttt{(set-goal
\textsl{formula})}\index{set-goal@\texttt{set-goal}}, i.e.\ with
setting a goal.  Here \textsl{formula} should be closed; if it is not,
universal quantifiers are inserted automatically.

\subsubsection{normalize-goal}  \texttt{(normalize-goal
\textsl{goal})}\index{normalize-goal@\texttt{normalize-goal}}
(abbreviated \texttt{ng}\index{ng@\texttt{ng}}) replaces every formula
in the goal by its normal form.

\subsubsection{assume}  With \texttt{(assume \textsl{x1}
\dots)}\index{assume@\texttt{assume}} we can move universally
quantified variables and hypotheses into the context.  The variables
must be given names (known to the parser as valid variable names for
the given type), and the hypotheses should be identified by numbers
or strings.

\subsubsection{use}  In \texttt{(use \textsl{x}
. \textsl{elab-path-and-terms})}\index{use@\texttt{use}}, \textsl{x} is
\begin{itemize}
\item a number or string identifying a hypothesis form the context,
\item the string \inquotes{Truth-Axiom},
\item the name of a theorem or global assumption.  If it is a global
assumption whose final conclusion is a nullary predicate variable
distinct from $\bot$ (e.g.\ \texttt{Efq-Log} or \texttt{Stab-Log}),
this predicate variable is substituted by the goal formula.
\item a closed proof,
\item a formula with free variables from the context, generating a new
goal.
\end{itemize}
The optional \textsl{elab-path-and-terms} is a list consisting of
symbols \texttt{left} or \texttt{right}, giving directions in case the
used formula contains conjunctions, and of terms.  The universal
quantifiers of the used formula are instantiated (via
\texttt{pattern-unify}\index{pattern-unify@\texttt{pattern-unify}})
with appropriate terms in case a conclusion has the form of the goal.
The terms provided are substituted for those variables that cannot be
instantiated by pattern unification (e.g.\ using $\forall x.P x \to
\bot$ for the goal $\bot$).  For the instantiated premises new goals
are created.
          
\subsubsection{use-with}  This is a more verbose form of \texttt{use}, where
the terms are not inferred via unification, but have to be given
explicitely.  Also, for the instantiated premises one can indicate how
they are to come about.  So in \texttt{(use-with \textsl{x}
. \textsl{x-list})}\index{use-with@\texttt{use-with}}, \textsl{x} is
as in \texttt{use}, and \textsl{x-list} is a list consisting of
\begin{itemize}
\item a number or string identifying a hypothesis form the context,
\item the name of a theorem or global assumption,
\item a closed proof,
\item the string \inquotes{?} (value of \texttt{DEFAULT-GOAL-NAME}),
generating a new goal,
\item a symbol \texttt{left} or \texttt{right},
\item a term, whose free variables are added to the context,
\item a type, which is substituted for the first type variable,
\item a comprehension term, which is substituted for the first predicate
variable.
\end{itemize}

Notice that new free variables not in the ordered context can be
introduced in \texttt{use-with}.  They will be present in the newly
generated goals.  The reason is that proofs should be allowed to
contain free variables.  This is necessary to allow logic in ground
types where no constant is available (e.g\ to prove $\forall x Px \to
\forall x \neg Px \to \bot$).

Notice also that there are situations where \textsl{use-with} can be
applied but \textsl{use} can not.  For an example, consider the goal
$P(S(k+l))$ with the hypothesis $\forall l P(k+l)$ in the context.
Then \textsl{use} cannot find the term $S l$ by matching; however,
applying \textsl{use-with} to the hyposthesis and the term $S l$
succeeds (since $k+S l$ and $S(k+l)$ have the same normal form).

\subsubsection{inst-with}  \texttt{inst-with} does for forward chaining the
same as use-with for backward chaining.  It replaces the present goal
by a new one, with one additional hypothesis obtained by instantiating
a previous one.  Notice that this effect could also be obtained by
cut.  In \texttt{(inst-with \textsl{x}
. \textsl{x-list})}\index{inst-with@\texttt{inst-with}}, \textsl{x} is
\begin{itemize}
\item a number or string identifying a hypothesis form the context,
\item the name of a theorem or global assumption,
\item a closed proof,
\item a formula with free variables from the context, generating a new
goal.
\end{itemize}
and \textsl{x-list} is a list consisting of
\begin{itemize}
\item a number or string identifying a hypothesis form the context,
\item the name of a theorem or global assumption,
\item a closed proof,
\item the string \inquotes{?} (value of \texttt{DEFAULT-GOAL-NAME}),
generating a new goal,
\item a symbol \texttt{left} or \texttt{right},
\item a term, whose free variables are added to the context,
\item a type, which is substituted for the first type variable,
\item a comprehension term, which is substituted for the first predicate
variable.
\end{itemize}

\subsubsection{inst-with-to}  
\texttt{inst-with-to}\index{inst-with-to@\texttt{inst-with-to}}
expects a string as its last argument, which is used (via
\texttt{name-hyp}) to name the newly introduced instantiated
hypothesis.

\subsubsection{cut} The command \texttt{(cut
\textsl{A})}\index{cut@\texttt{cut}} replaces the goal $B$ by the two
new goals $A$ and $A \to B$.

\subsubsection{strip} To move (all or $n$) universally quantified variables 
and hypotheses of the current goal into the context, we uns the
command \texttt{(strip)}\index{strip@\texttt{strip}} or \texttt{(strip
n)}.

\subsubsection{drop} In
\texttt{(drop .\ x-list)}\index{drop@\texttt{drop}}, x-list is a list
of numbers or strings identifying hypotheses from the context.  A new
goal is created, which differs from the previous one only in display
aspects: the listed hypotheses are hidden (but still present).  If
x-list is empty, all hypotheses are hidden.

\subsubsection{name-hyp} The command 
\texttt{name-hyp}\index{name-hyp@\texttt{name-hyp}} expects an index
$i$ and a string.  Then a new goal is created, which differs from the
previous one only in display aspects: the string is used to label the
$i$th hypothesis.

\subsubsection{split} The command 
\texttt{(split)}\index{split@\texttt{split}} 
expects a conjunction $A \land B$ as goal and splits it into the
two new goals $A$ and $B$.

\subsubsection{get} To be able to work on a goal different from that on 
top of the goal stack, we have have to move it up using \texttt{(get
\textsl{n})}\index{get@\texttt{get}}.

\subsubsection{undo} With
\texttt{(undo .\ \textsl{n})}\index{undo@\texttt{undo}}, the last $n$
steps of an interactive proof can be made undone.  \texttt{(undo)}
 has the same effect as \texttt{(undo 1)}.

\subsubsection{ind} \texttt{(ind)}\index{ind@\texttt{ind}} expects a
goal $\forall x^\rho A$ with $\rho$ an algebra.  Let $c_1, \dots, c_n$
be the constructors of the algebra $\rho$.  Then $n$ new goals
$\forall \vec{x}_i.  \subst{A}{x}{x_{1i}} \to \dots \to
\subst{A}{x}{x_{ki}} \to \subst{A}{x}{c_i \vec{x}_i}$ are generated.

\texttt{(ind \textsl{t})} expects a goal $\subst{A}{x}{t}$.  It
computes the algebra $\rho$ as type of the term $t$.  Then again 
$n$ new goals $\forall \vec{x}_i.  \subst{A}{x}{x_{1i}} \to \dots \to
\subst{A}{x}{x_{ki}} \to \subst{A}{x}{c_i \vec{x}_i}$ are generated.

\subsubsection{simind} \texttt{(simind \textsl{all-formula1}
\dots)}\index{simind@\texttt{simind}} also expects a goal $\forall
x^\rho A$ with $\rho$ an algebra.  Then we have to provide the other
all formulas to be proved simultaneously with the given one.

\subsubsection{intro} \texttt{(intro i .\ terms)}\index{intro@\texttt{intro}}
expects as goal an inductively defined predicate.  The $i$-th
introduction axiom for this predicate is applied, via \texttt{use}
(hence \texttt{terms} may have to be provided).

\subsubsection{elim} \texttt{(elim)}\index{elim@\texttt{elim}} expects a
goal $I(\vec{t}) \to \subst{A}{\vec{x}}{\vec{t}}$.  Then the
(strengthened) clauses are generated as new goals, via \texttt{use-with}.

\subsubsection{ex-intro} In \texttt{(ex-intro
\textsl{term})}\index{ex-intro@\texttt{ex-intro}}, the user provides a
term to be used for the present (existential) goal.
\texttt{(exnc-intro \textsl{x})}\index{exnc-intro@\texttt{exnc-intro}}
works similarly for the \texttt{exnc}-quanhtifier.

\subsubsection{ex-elim} In \texttt{(ex-elim
\textsl{x})}\index{ex-elim@\texttt{ex-elim}}, \textsl{x} is
\begin{itemize}
\item a number or string identifying an existential hypothesis from 
the context,
\item the name of an existential global assumption or theorem,
\item a closed proof on an existential formula,
\item an existential formula with free variables from the context, 
genera\-ting a new goal.
\end{itemize}
Let $\ex y A$ be the existential formula identified by \textsl{x}.
The user is then asked to provide a proof for the present goal,
assuming that a $y$ satisfying $A$ is available.  \texttt{(exnc-elim
\textsl{x})}\index{exnc-elim@\texttt{exnc-elim}} works similarly for
the \texttt{exnc}-quanhtifier.

\subsubsection{by-assume-with} Suppose we are proving a goal $G$
from an existential hypothesis $ExHyp \colon \ex y A$.  Then the
natural way to use this hypothesis is to say \inquotes{by $ExHyp$
assume we have a $y$ satisfying $A$}.  Correspondingly we provide
\texttt{(by-assume-with \textsl{x} \textsl{y}
\textsl{u})}\index{by-assume-with@\texttt{by-assume-with}}.  Here
\textsl{x} -- as in \texttt{ex-elim} -- identifies an existential
hypothesis, and we assume (i.e.\ add to the context) the variable $y$
and -- with label $u$ -- the kernel $A$.  \texttt{(by-assume-with
\textsl{x} \textsl{y} \textsl{u})} is implemented by the sequence
\texttt{(ex-elim \textsl{x})}, \texttt{(assume \textsl{y}
\textsl{u})}, \texttt{(drop \textsl{x})}. \texttt{by-exnc-assume-with}%
\index{by-exnc-assume-with@\texttt{by-exnc-assume-with}}
works similarly for the \texttt{exnc}-quantifier.

\subsubsection{cases} \texttt{(cases)}\index{cases@\texttt{cases}} expects a
goal $\forall x^\rho A$ with $\rho$ an algebra.  Assume that $c_1,
\dots, c_n$ are the constructors of the algebra $\rho$.  Then $n$ new
(simplified) goals $\forall \vec{x}_i \subst{A}{x}{c_i \vec{x}_i}$ are
generated.

\texttt{(cases \textsl{t})} expects a goal $\subst{A}{x}{t}$.  It
computes the algebra $\rho$ as type of the term $t$.  Then again $n$
new goals $\forall \vec{x}_i \subst{A}{x}{c_i \vec{x}_i}$ are
generated.

\texttt{(cases \textsl{'auto})} expects an
atomic goal and checks whe\-ther its boolean kernel contains an if-term
whose test is neither an if-term nor contains bound variables.  With
the first such test \texttt{(cases \textsl{test})} is called.

\subsubsection{casedist} \texttt{(casedist \textsl{t})} replaces the goal 
$A$ containing a boolean term $t$ by two new goals $(\texttt{atom}\ t)
\to \subst{A}{t}{\true}$ and $((\texttt{atom}\ t) \to \false) \to
\subst{A}{t}{\false}$.

\subsubsection{simp}
In \texttt{(simp \textsl{opt-dir} \textsl{x} .
  \textsl{elab-path-and-terms})}\index{simp@\texttt{simp}}, the
optional argument \textsl{opt-dir} is either the string
\inquotes{\texttt{<-}} or missing.  \textsl{x} is
\begin{itemize}
\item a number or string identifying a hypothesis form the context,
\item the name of a theorem or global assumption,
\item a closed proof,
\item a formula with free variables from the context, generating a new
goal.
\end{itemize}
The optional \textsl{elab-path-and-terms} is a list consisting of
symbols \texttt{left} or \texttt{right}, giving directions in case the
used formula contains conjunctions, and of terms.  The universal
quantifiers of the used formula are instantiated with appropriate
terms to match a part of the goal.  The terms provided are substituted
for those variables that cannot be inferred.  For the instantiated
premises new goals are created.  This generates a used formula, which
is to be an atom, a negated atom or $t \approx s$.  If it as a
(negated) atom, it is checked whether the kernel or its normal form is
present in the goal.  If so, it is replace by \texttt{T} (or
\texttt{F}).  If it is an equality $t=s$ or $t \approx s$ with $t$ or
its normal form present in the goal, $t$ is replaced by $s$.  In case
\inquotes{\texttt{<-}} exchange $t$ and $s$.

\subsubsection{simp-with}  This is a more verbose form of \texttt{simp},
where the terms are not inferred via matching, but have to be given
explicitely.  Also, for the instantiated premises one can indicate how
they are to come about.  So in \texttt{(simp-with \textsl{opt-dir}
  \textsl{x} .  \textsl{x-list})}\index{simp-with@\texttt{simp-with}},
\textsl{opt-dir} and \textsl{x} are as in \texttt{simp}, and
\textsl{x-list} is a list consisting of
\begin{itemize}
\item a number or string identifying a hypothesis form the context,
\item the name of a theorem or global assumption,
\item a closed proof,
\item the string \inquotes{?} (value of \texttt{DEFAULT-GOAL-NAME}),
generating a new goal,
\item a symbol \texttt{left} or \texttt{right},
\item a term, whose free variables are added to the context,
\item a type, which is substituted for the first type variable,
\item a comprehension term, which is substituted for the first predicate
variable.
\end{itemize}

% \subsubsection{simp, simpeq} \texttt{(simp x)}\index{simp@\texttt{simp}} 
% expects a known fact of the form $r^{\boole}$, $\neg r^{\boole}$ or
% $t=s$.  In case $r^{\boole}$ the boolean term $r^{\boole}$ in the goal
% is replaced by $T$, and in case $\neg r^{\boole}$ by $F$.  In case
% $t=s$ the goal is written in the form $\subst{A}{x}{t}$.  Using
% Compat-Rev $\forall x,y.x=y \to P y \to P x$ with $\set{x}{A}$ for
% $P$, $t$ for $x$ and $s$ for $y$ the goal $\subst{A}{x}{t}$ is
% replaced by $\subst{A}{x}{s}$.

% In \texttt{(simp \textsl{x})}\index{simp@\texttt{simp}}, \textsl{x} is
% \begin{itemize}
% \item a number or string identifying a hypothesis form the context,
% \item the name of a theorem or global assumption, or
% \item a closed proof,
% \end{itemize}
% in each case for $r^{\boole}$, $\neg r^{\boole}$ or $t=s$.

% Similarly, \texttt{(simpeq x)}\index{simpeq@\texttt{simpeq}} needs to
% know $t \approx s$.  The goal is written in the form
% $\subst{A}{x}{t}$.  Using Eq-Compat-Rev $\forall x,y. x \approx y \to P y
% \to P x$ with $\set{x}{A}$ for $P$, $t$ for $x$ and $s$ for $y$ the
% goal $\subst{A}{x}{t}$ is replaced by $\subst{A}{x}{s}$.

\subsubsection{min-pr} In \texttt{(min-pr \textsl{x} \textsl{measure})}%
\index{min-pr@\texttt{min-pr}}, \textsl{x} is
\begin{itemize}
\item a number or string identifying a classical existential hypothesis 
from the context,
\item the name of a classical existential global assumption or theorem,
\item a closed proof on a classical existential formula,
\item a classical existential formula with free variables from the context, 
generating a new goal.
\end{itemize}
The result is a new implicational goal, whose premise provides the
(classical) existence of instances with least measure.

\subsubsection{exc-intro} In \texttt{(exc-intro
\textsl{terms})}\index{exc-intro@\texttt{exc-intro}}, the user provides
terms to be used for the present (classical existential) goal.

\subsubsection{exc-elim} In \texttt{(exc-elim
\textsl{x})}\index{exc-elim@\texttt{exc-elim}}, \textsl{x} is
\begin{itemize}
\item a number or string identifying a classical existential hypothesis 
from the context,
\item the name of a classical existential global assumption or theorem,
\item a closed proof on a classical existential formula,
\item a classical existential formula with free variables from the context, 
generating a new goal.
\end{itemize}
Let $\exca \vec{y} \vec{A}$ or $\excl \vec{y} \vec{A}$ be the
classical existential formula identified by \textsl{x}.  The user is
then asked to provide a proof for the present goal, assuming that terms
$\vec{y}$ satisfying $\vec{A}$ are available.

\subsubsection{pair-elim} In 
\texttt{(pair-elim)}\index{pair-elim@\texttt{pair-elim}}, a goal
$\forall p P(p)$ is replaced by the new goal $\forall x_1, x_2
P(\pair{x_1}{x_2})$.


\section{Search}
Following \textsc{Miller}\index{Miller} \cite{Miller91b} and
\textsc{Berger}\index{Berger}, we have implemented a proof search
algorithm for minimal logic.  To enforce termination, every assumption
can only be used a fixed number of times.

We begin with a short description of the theory involved.

$Q$ always denotes a $\forall \exists \forall$-prefix, say $\forall
\vec{x} \exists \vec{y} \forall \vec{z}$, with distinct variables.  We
call $\vec{x}$ the \emph{signature variables}, $\vec{y}$ the
\emph{flexible variables} and $\vec{z}$ the \emph{forbidden variables}
of $Q$, and write $Q_\exists$ for the existential part $\exists
\vec{y}$ of $Q$.

\emph{$Q$-terms}\index{Q-term@$Q$-term} are inductively defined by the
following clauses.
\begin{itemize}
\item If $u$ is a universally quantified variable in $Q$ or a
constant, and $\vec{r}$ are $Q$-terms, then $u \vec{r}$ is a $Q$-term.
\item For any flexible variable $y$ and distinct forbidden variables
$\vec{z}$ from $Q$, $y \vec{z}$  is a $Q$-term.
%$
\item If $r$ is a $Q \forall z$-term, then $\lambda z r$ is a
$Q$-term.
\end{itemize}
Explicitely, $r$ is a $Q$-term iff all its free variables are in $Q$,
and for every subterm $y \vec{r}$ of $r$ with $y$ free in $r$ and flexible
in $Q$, the $\vec{r}$ are distinct variables either $\lambda$-bound in $r$
(such that $y \vec{r}$ is in the scope of this $\lambda$) or else
forbidden in $Q$.

\emph{$Q$-goals}\index{Q-goal@$Q$-goal} and
\emph{$Q$-clauses}\index{Q-clause@$Q$-clause} are simultaneously
defined by
\begin{itemize}
\item If $\vec{r}$ are $Q$-terms, then $P \vec{r}$ is a $Q$-goal as well as a
$Q$-clause.
\item If $D$ is a $Q$-clause and $G$ is a $Q$-goal, then $D \to G$
is a $Q$-goal.
\item If $G$ is a $Q$-goal and $D$ is a $Q$-clause, then $G \to D$
is a $Q$-clause.
\item If $G$ is a $Q\forall x$-goal, then $\forall x G$ is a $Q$-goal.
\item If $\subst{D}{y}{Y \vec{z}}$ is a $\forall \vec{x} \exists \vec{y}, Y
\forall \vec{z}$-clause, then $\forall y D$ is a $\forall \vec{x} \exists \vec{y}
\forall \vec{z}$-clause.
\end{itemize}
Explicitely, a formula $A$ is a \emph{$Q$-goal}\index{Q-goal@$Q$-goal}
iff all its free variables are in $Q$, and for every subterm $y \vec{r}$
of $A$ with $y$ either existentially bound in $A$ (with $y \vec{r}$ in the
scope) or else free in $A$ and flexible in $Q$, the $\vec{r}$ are distinct
variables either $\lambda$- or universally bound in $A$ (such that $y
\vec{r}$ is in the scope) or else free in $A$ and forbidden in $Q$.

A \emph{$Q$-sequent}\index{Q-sequent@$Q$-sequent} has the form $\C{P}
\seqarrow G$, where $\C{P}$ is a list of $Q$-clauses and $G$ is a
$Q$-goal.

A \emph{$Q$-substitution}\index{Q-substitution@$Q$-substitution} is a
substitution of $Q$-terms.

A \emph{unification problem} $\C{U}$ consists of a $\forall
\exists \forall$-prefix $Q$ and a conjunction $C$ of equations between
$Q$-terms of the same type, i.e.\ $\bigland_{i=1}^n r_i = s_i$.  We
may assume that each such equation is of the form $\lambda \vec{x} r =
\lambda \vec{x} s$ with the same $\vec{x}$ (which may be empty) and $r, s$ of
ground type.

A \emph{solution} to such a unification problem $\C{U}$ is a
$Q$-substitution $\varphi$ such that for every $i$, $r_i \varphi = s_i
\varphi$ holds (i.e.\ $r_i \varphi$ and $s_i \varphi$ have the same
normal form).  We sometimes write $C$ as $\vec{r} = \vec{s}$, and (for
obvious reasons) call it a list of unification pairs.

We work with lists of sequents instead of single sequents; they all
are $Q$-sequents for the same prefix $Q$.  One then searches for a
$Q$-substitution $\varphi$ and proofs of the $\varphi$-substituted
sequents.
\texttt{intro-search}\index{intro-search@\texttt{intro-search}} takes
the first sequent and extends $Q$ by all universally quantified
variables $x_1 \dots$.  It then calls
\texttt{select}\index{select@\texttt{select}}, which selects (using
\texttt{or}) a fitting clause.  If one is found, a new prefix $Q'$
(raising the new flexible variables) is formed, and the $n$ ($\ge 0$)
new goals with their clauses (and also all remaining sequents) are
substituted with $\texttt{star} \circ \rho$, where \texttt{star} is
the \inquotes{rai\-sing} substitution and $\rho$ is the mgu.  For this
constellation \texttt{intro-search} is called again.  In case of
success, one obtains a $Q'$-substitution $\varphi'$ and proofs of the
$\texttt{star} \circ \rho \circ \varphi'$ -substituted new sequents.
Let $\varphi := (\rho \circ \varphi') {\restriction} Q_\ex$, and take
the first $n$ proofs of these to build a proof of the
$\varphi$-substituted (first) sequent originally considered by
\texttt{intro-search}.

Compared with Miller \cite{Miller91b}, we make use of several
simplifications, optimizations and extensions, in particular the
following.
\begin{itemize}
\item Instead of arbitrarily mixed prefixes we only use those of
the form $\forall \ex \forall$.  Nipkow in \cite{Nipkow91} already
had presented a version of Miller's pattern unification algorithm for
such prefixes, and Miller in \cite[Section~9.2]{Miller91b} notes that
in such a situation any two unifiers can be transformed into each
other by a variable renaming substitution.  Here we restrict ourselves
to $\forall \ex \forall$-prefixes throughout, i.e.\ in the proof
search algorithm as well.
\item The order of events in the pattern unification algorithm is
changed slightly, by postponing the raising step until it is really
needed.  This avoids unnecessary creation of new higher type
variables.  -- Already Miller noted in \cite[p.515]{Miller91b} that
such optimizations are possible.
\item The extensions concern the (strong) existential quantifier, which
has been left out in Miller's treatment, and also conjunction.  The
latter can be avoided in principle, but of course is a useful thing to
have.
\end{itemize}


% \subsection*{Interface}  
\texttt{(search \textsl{m} \textsl{(name1 m1)}
\dots)}\index{search@\texttt{search}} expects for \textsl{m} a default
value for multiplicity (i.e.\ how often assumptions are to be used),
for \textsl{name1} $\dots$
\begin{itemize}
\item numbers of hypotheses from the present context or 
\item names for theorems or global assumptions, 
\end{itemize}
and for \textsl{m1} \dots multiplicities (positive integers for global
assumptions or theorems).  A search is started for a proof of the goal
formula from the given hypotheses with the given multiplicities and in
addition from the other hypotheses (but not any other global
assumptions or theorems) with \textsl{m} or \texttt{mult-default}.  To
exclude a hypothesis from being tried, list it with multiplicity $0$.


\section{Computational content of classical proofs}
\mylabel{Classical}
This section is based on \cite{BergerBuchholzSchwichtenberg02}.  We
restrict to formulas in the language $\{\bot, \to, \forall \}$ in this
section, and - as in the paper - make use of a special nullary
predicate variable $X$.

A formula is \emph{relevant}\index{formula!relevant} if it
ends with (logical) falsity.  \emph{Definite}\index{formula!definite}
and \emph{goal}\index{formula!goal} formulas are defined by a
simultaneous recursion, as in \cite{BergerBuchholzSchwichtenberg02}.
\begin{alignat*}{2}
&\texttt{(atr-relevant?\ \textsl{formula})}%
\index{atr-relevant?@\texttt{atr-relevant?}} 
\\
&\texttt{(atr-definite?\ \textsl{formula})}%
\index{atr-definite?@\texttt{atr-definite?}} 
\\
&\texttt{(atr-goal?\ \textsl{formula})}%
\index{atr-goal?@\texttt{atr-goal?}} 
\end{alignat*}
To implement \cite[Lemma~3.1]{BergerBuchholzSchwichtenberg02}, we need 
to construct proofs from formulas:
\begin{alignat*}{2}
&N_D\colon ((D \to \bot) \to X) \to D^X   
&\quad&\text{for $D$ relevant}
\\
&M_D\colon D \to D^X
\\     
&K_G\colon G \to G^X                   
&\quad&\text{for $G$ irrelevant}
\\
&H_G\colon G^X \to (G \to X) \to X 
\end{alignat*}
This is done by
\begin{alignat*}{2}
&\texttt{(atr-rel-definite-proof \textsl{formula})}%
\index{atr-rel-definite-proof@\texttt{atr-rel-definite-proof}} 
\\
&\texttt{(atr-arb-definite-proof \textsl{formula})}%
\index{atr-arb-definite-proof@\texttt{atr-arb-definite-proof}} 
\\
&\texttt{(atr-irrel-goal-proof \textsl{formula})}%
\index{atr-irrel-goal-proof@\texttt{atr-irrel-goal-proof}} 
\\
&\texttt{(atr-arb-goal-proof \textsl{formula})}%
\index{atr-arb-goal-proof@\texttt{atr-arb-goal-proof}} 
\end{alignat*}
Next we need to implement
\cite[Lemma~3.2]{BergerBuchholzSchwichtenberg02}, which says that
for goal formulas $\vec{G} = G_1, \dots, G_n$ we can derive in minimal
logic augmented with a special predicate variable $X$
\[
(\vec{G} \to X) \to \vec{G}^X \to X.
\]
In our implementation this function is called
\begin{alignat*}{2}
&\texttt{(atr-goals-to-x-proof \textsl{goal1} \dots)}%
\index{atr-goals-to-x-proof@\texttt{atr-goals-to-x-proof}} 
\end{alignat*}
Finally we implement
\cite[Theorem~3.3]{BergerBuchholzSchwichtenberg02}, which says the
following.  Assume that for definite formulas $\vec{D}$ and goal
formulas $\vec{G}$ we can derive in minimal logic
\[
\vec{D} \to (\forall \vec{y}.\vec{G} \to \bot) \to \bot.
\]
Then we can also derive in intuitionistic logic augmented with the
special predicate variable $X$
\[
\vec{D} \to (\forall \vec{y}.\vec{G} \to X) \to X.
\]
In particular, substitution of the formula
\[
\ex \vec{y}.\vec{G} := \ex \vec{y}.G_1 \land \dots \land G_n
\]
for $X$ yields a derivation in intuitionistic logic of
\[
\vec{D} \to \ex \vec{y}.\vec G.
\]
This is done by
\begin{alignat*}{2}
&\texttt{(atr-min-excl-proof-to-x-proof \textsl{min-excl-proof})}%
\index{atr-min-excl-proof-to-x-proof@\texttt{atr-min-excl-proof-to-x-proof}} 
\\
&\texttt{(atr-min-excl-proof-to-intuit-ex-proof \textsl{min-excl-proof})}%
\index{atr-min-excl-proof-to-intuit-ex-proof@\texttt{atr-min-\dots-to-intuit-ex-proof}} 
\end{alignat*}

See section \ref{S:ExtrTerms} for an interpretation of the symbols of the
extracted terms in Minlog's output.

\section{Extracted terms}
\mylabel{S:ExtrTerms}
We assign to every formula $A$ an object $\tau(A)$ (a type or the
symbol $\texttt{nulltype}$).  $\tau(A)$ is intended to be the type of the
program to be extracted from a proof of $A$.  
%% To an atomic formula
%% consisting of a predicate variable with arguments we assign a new type
%% variable.
%% \begin{align*}
%% \tau( P\vec{r}) &:= \begin{cases}
%% \texttt{nulltype} &\text{if $P$ is a predicate constant}
%% \\
%% \alpha_P  &\text{if $P$ is a predicate variable}
%% \end{cases}
%% \\
%% \tau(A \to B) &:= \begin{cases}
%% \tau(B) &\text{if $\tau(A)=\texttt{nulltype}$}
%% \\
%% \texttt{nulltype} &\text{if $\tau(B)=\texttt{nulltype}$}
%% \\
%% \tau(A) \to \tau(B) &\text{otherwise}\end{cases}
%% \\
%% \tau(A \land B) &:= \begin{cases}
%% \texttt{nulltype} &\text{if $\tau(A) = \tau(B) = \texttt{nulltype}$}
%% \\
%% \tau(B) &\text{if $\tau(A)=\texttt{nulltype}$}
%% \\
%% \tau(A) &\text{if $\tau(B)=\texttt{nulltype}$}
%% \\
%% \tau(A) \times \tau(B) &\text{otherwise}\end{cases}
%% \\
%% \tau(\forall x^\rho A) &:= \begin{cases}
%% \texttt{nulltype} &\text{if $\tau(A)=\texttt{nulltype}$}
%% \\
%% \rho \to \tau(A) &\text{otherwise}\end{cases}
%% \\
%% \tau(\ex x^\rho A) &:= \begin{cases}
%% \rho &\text{if $\tau(A) = \texttt{nulltype}$}
%% \\
%% \rho \times \tau(A) &\text{otherwise}\end{cases}
%% \end{align*}
This is done by
\begin{alignat*}{2}
&\texttt{(formula-to-et-type \textsl{formula})}%
\index{formula-to-et-type@\texttt{formula-to-et-type}} 
\end{alignat*}
In \texttt{formula-to-et-type} we assign type variables to the
predicate variables.  For to be able to later refer to this
assignment, we use a global variable \texttt{PVAR-TO-TVAR-ALIST},
which memorizes the assigment done so far.  Later reference is
necessary, because such type variables will appear in extracted
programs of theorems involving predicate variables, and in a given
development there may be many auxiliary lemmata containing the same
predicate variable.  A fixed \texttt{pvar-to-tvar} refers to and
updates \texttt{PVAR-TO-TVAR-ALIST}.

When we want to execute the program, we have to replace the constant
\texttt{cL} corresponding to a lemma \texttt{L} by the extracted
program of its proof, and the constant \texttt{cGA} corresponding to a
global assumption \texttt{GA} by an assumed extracted term to be
provided by the user.  This can be achieved by adding computation
rules for \texttt{cL} and \texttt{cGA}.  We can be rather flexible
here and enable/block rewriting by using
\texttt{animate}/\texttt{deanimate} as desired.  Notice that the type
of the extracted term provided for a \texttt{cGA} must be the
extracted type of the assumed formula.  When predicate variables are
present, one must use the type variables assigned to them in
\texttt{PVAR-TO-TVAR-ALIST}.
\begin{alignat*}{2}
&\texttt{(animate \textsl{thm-or-ga-name}\ .\ \textsl{opt-eterm})}
\index{animate@\texttt{animate}}
\\
&\texttt{(deanimate \textsl{thm-or-ga-name})}
\index{deanimate@\texttt{deanimate}}
\end{alignat*}

We can define, for a given derivation $M$ of a formula $A$ with
$\tau(A) \ne \texttt{nulltype}$, its \emph{extracted
term}\index{extracted term} (or \emph{extracted
program}\index{extracted program}) $\et{M}$ of type $\tau(A)$.
%% \begin{align*}
%% \et{u^A} &:= u^{\tau(A)}
%% \\
%% \et{c^A} &:= \text{a term of type $\tau(A)$ (see below)}
%% \\
%% \et{\lambda u^A M} &:= \begin{cases}
%% \et{M} &\text{if $\tau(A)=\texttt{nulltype}$}
%% \\
%% \lambda u^{\tau(A)}\et{M} &\text{otherwise}\end{cases}
%% \\
%% \et{M^{A\to B}N} &:= \begin{cases}
%% \et{M} &\text{if $\tau(A)=\texttt{nulltype}$}
%% \\
%% \et{M}\et{N} &\text{otherwise}\end{cases}
%% \\
%% \et{\pair{M^{A}}{N^{B}}} &:= \begin{cases}
%% \et{N} &\text{if $\tau(A)=\texttt{nulltype}$}
%% \\
%% \et{M} &\text{if $\tau(B)=\texttt{nulltype}$}
%% \\
%% \pair{\et{M}}{\et{N}} &\text{otherwise}\end{cases}
%% \\
%% \et{M^{A \land B} \texttt{left}} &:= \begin{cases}
%% \et{M} &\text{if $\texttt{nulltype} \in \{\tau(A), \tau(B)\}$}
%% \\
%% \et{M} \texttt{left} &\text{otherwise}\end{cases}
%% \\
%% \et{M^{A \land B} \texttt{right}} &:= \begin{cases}
%% \et{M} &\text{if $\texttt{nulltype} \in \{\tau(A), \tau(B)\}$}
%% \\
%% \et{M} \texttt{right} &\text{otherwise}\end{cases}
%% \\
%% \et{\lambda x^\rho M} &:= \lambda x^\rho \et{M}
%% \\
%% \et{Mt} &:= \et{M}t
%% \end{align*}
We also need extracted terms for the axioms.  For induction we take
recursion, for the proof-by-cases axiom we take the cases-construct for
terms;  for the other axioms the extracted terms are rather clear.
Term extraction is implemented by
\begin{alignat*}{2}
&\texttt{(proof-to-extracted-term \textsl{proof})}%
\index{proof-to-extracted-term@\texttt{proof-to-extracted-term}} 
\end{alignat*}

The following table gives the symbols of Minlog's output and the corresponding
notation in the $\lambda$-calculus.

\begin{center}
\begin{tabular}{|l|c|c|}\hline
 \textbf{Explanation} & \textbf{Symbol} & \textbf{Minlog's Output} \\ \hline
 $\lambda$-abstraction: & $\lambda x. M$ & \texttt{([x]M)}\\ \hline
 pair: & $\langle M {\;|\;} N \rangle$ & \texttt{(M@N)} \\ \hline
 left element of a pair: & $(M \; 0)$ & \texttt{left M}\\ \hline
 right element of a pair: &$(M \; 1)$ & \texttt{right M} \\ \hline
 arrow for types: &$\typeTo$ & \texttt{=>} \\ \hline
 product for types:  &$\times$ & \texttt{@@} \\ \hline
 recursion operator: &$\C{R}$ & \texttt{$\C{R}$} \\ \hline
\end{tabular}
\end{center}


It is also possible to give an internal proof of soundness.  This can
be done by
\begin{alignat*}{2}
&\texttt{(proof-to-soundness-proof \textsl{proof})}%
\index{proof-to-soundness-proof@\texttt{proof-to-soundness-proof}} 
\end{alignat*}


\section{Reading formulas in external form}
\mylabel{Reading} A formula can be produced from an external
representation, for example a string, using the \verb}pt} function.
It has one argument, a string denoting a formula, that is converted to
the internal representation of the formula.  For the following
syntactical entities parsing functions are provided:
\begin{alignat*}{2}
&\texttt{(py \textsl{string})}\index{py@\texttt{py}}
&\quad& \hbox{for parsing types}
\\
&\texttt{(pv \textsl{string})}\index{pv@\texttt{pv}}
&\quad& \hbox{for parsing variables}
\\
&\texttt{(pt \textsl{string})}\index{pt@\texttt{pt}}
&\quad& \hbox{for parsing terms}
\\
&\texttt{(pf \textsl{string})}\index{pf@\texttt{pf}}
&\quad& \hbox{for parsing formulas}
\end{alignat*}

The conversion occurs in two steps: lexical analysis and parsing.

\subsection{Lexical analysis\index{lexical analysis}}  In this stage the
string is brocken into short sequences, called \emph{tokens}\index{token}.

A token can be one of the following:
\begin{itemize}
\item An alphabetic symbol: A sequence of letters \verb}a}--\verb}z}
and \verb}A}--\verb}Z}.  Upper and lower case letters are considered
different.
\item A number: A sequence of digits \verb}0}--\verb}9}
\item A punctuation mark: One of the characters: \verb}(} \verb})}
\verb}[} \verb}]} \verb}.} \verb},} \verb};}
\item A special symbol: A sequence of characters, that are neither letters,
digits, punctuation marks nor white space.
\end{itemize}

For example: \verb}abc}, \verb}ABC} and \verb}A} are alphabetic
symbols, \verb}123}, \verb}0123} and \verb}7} are numbers, \verb}(} is
a punctuation mark, and \verb}<=}, \verb}+}, and \verb}#:-^} are
special symbols.

Tokens are always character sequences of maximal length belonging to
one of the above categories.  Therefore \verb}fx} is a single
alphabetic symbol not two and likewise \verb}<+} is a single special
symbol.  The sequence \verb}alpha<=(-x+z)}, however, consists of the 8
tokens \verb}alpha}, \verb}<=}, \verb}(}, \verb}-}, \verb}x},
\verb}+}, \verb}z}, and \verb})}.  Note that the special symbols
\verb}<=} and \verb}-} are separated by a punctuation mark, and the
alphabetic symbols \verb}x} and \verb}z} are separated by the special
symbol \verb}+}.

If two alphabetic symbols, two special symbols, or two numbers follow
each other they need to be separated by white space (spaces, newlines,
tabs, formfeeds, etc.).  Except for a few situations mentioned below,
whitespace has no significance other than separating tokens.  It can
be inserted and removed between any two tokens without affecting the
significance of the string.

Every token has a \indexentry{token type}, and a value.  The token
type is one of the following: number, var-index, var-name, const,
pvar-name, predconst, type-symbol, pscheme-symbol, postfix-op,
prefix-op, binding-op, add-op, mul-op, rel-op, and-op, or-op, imp-op,
pair-op, if-op, postfix-jct, prefix-jct, and-jct, or-jct, tensor-jct,
imp-jct, quantor, dot, hat, underscore, comma, semicolon, arrow, lpar,
rpar, lbracket, rbracket.

The possible values for a token depend on the token type and are
explained below.

New tokens can be added using the function
\[
\texttt{(add-token \textsl{string} \textsl{token-type} \textsl{value})}.
\]
The inverse is the function
\[
\texttt{(remove-token \textsl{string})}.
\]
A list of all currently defined tokens sorted by token types can be
obtained by the function
\[
\texttt{(display-tokens)}.
\]

\subsection{Parsing}
The second stage, \indexentry{parsing}, extracts structure form the
sequence of tokens.

\emph{Types}.  Type-symbols are types; the value of a type-symbol
must be a type.  If $\sigma$ and $\tau$ are types, then
$\sigma$\verb};}$\tau$ is a type (pair type) and
$\sigma$\verb}=>}$\tau$ is a type (function type).  Parentheses can be
used to indicate proper nesting.  For example \verb}boole} is a
predefined type-symbol and hence, \verb}(boole;boole)=>boole} is again a
type.  The parentheses in this case are not strictly necessary, since
\verb};} binds stronger than \verb}=>}.  Both operators associate to
the right.

\emph{Variables}.  Var-names are variables; the value of a var-name
token must be a pair consisting of the type and the name of the
variable (the same name string again!  This is not nice and may be
later, we find a way to give the parser access to the string that is
already implicit in the token).  For example to add a new boolean
variable called ``flag'', you have to invoke the function
\texttt{(add-token "flag" 'var-name (cons 'boole "flag"))}.  This will
enable the parser to recognize ``\verb/flag3/'', ``\verb/flag^/'', or
``\verb/flag^14/'' as well.

Further, types, as defined above, can be used to construct variables.

A variable given by a name or a type can be further modified.  If it
is followed by a \verb}^}, a partial variable is constructed.  Instead
of the \verb}^} a \verb}_} can be used to specify a total variable.

Total variables are the default and therefore, the \verb}_} can be
omitted.

As another modifier, a number can immediately follow, with no
whitespace in between, the \verb}^} or the \verb}_}, specifying a
specific variable index.

In the case of indexed total variables given by a variable name or a
type symbol, again the \verb}_} can be omitted.  The number must then
follow, with no whitespace in between, directly after the variable
name or the type.

Note: This is the only place where whitespace is of any significance
in the input.  If the \verb}^}, \verb}_}, type name or variable name
is separated from the following number by whitespace, this number is
no longer considered to be an index for that variable but a numeric
term in its own right.

For example, assuming that \verb}p} is declared as a variable of type
\verb}boole}, we have:
\begin{itemize}
\item \verb}p} a total variable of type boole with name p and no index.
\item \verb}p_} a total variable of type boole with name p and no index.
\item \verb}p^} a partial variable of type boole with name p and no index.
\item \verb}p2} a total variable of type boole with name p and index 2.
\item \verb}p_2} a total variable of type boole with name p and index 2.
\item \verb}p^2} a partial variable of type boole with name p and index 2.
\item \verb}boole} a total anonymous variable of type boole with no index.
\item \verb}boole_} a total anonymous variable of type boole with no index.
\item \verb}boole^} a partial anonymous variable of type boole with no index.
\item \verb}boole_2} a total anonymous variable of type boole with index 2.
\item \verb}boole2} a total anonymous variable of type boole with index 2.
\item \verb}boole^2} a partial anonymous variable of type boole with index 2.
\item \verb}boole 2} a total anonymous variable of type boole applied to 
the numeric term 2.
\item \verb}(boole)2} a total anonymous variable of type boole applied 
to the numeric term 2.
\item \verb}(boole)_2} a total anonymous variable of type boole with index 2.
\item \verb}boole=>boole^2} a partial anonymous variable of type 
function of boole to boole with index 2. 
\end{itemize}
\emph{Terms} are built from atomic terms using application and
operators.

An atomic term is one of the following: a constant, a variable, a
number, a conditional, or any other term enclosed in parentheses.

Constants have \verb}const} as token type, and the respective term in
internal form as value.  There are also composed constants, so-called
\emph{constant schemata}\index{constant scheme}.  A constant schema
has the form of the name of the constant schema (token type
\texttt{constscheme}) followed by a list of types, the whole thing
enclosed in parentheses.  There are a few built in constant schemata:
\verb}(Rec <typelist>)}\index{Rec@\texttt{Rec}} is the recursion over
the types given in the type list; \verb}(EQat <type>)} is the equality
for the given type; \verb}(Eat <type>)} is the existence predicate for
the given type.  The constant schema \verb}EQat} can also be written
as the relational infix operator \verb}=}; the constant schemata
\verb}Eat} can also be written as the prefix operator \verb}E}.

For a number, the user defined function \verb}make-numeric-term} is
called with the number as argument.  The return value of
\verb}make-numeric-term} should be the internal term representation of
the number.

To form a conditional term, the if operator \verb}if} followed by a
list of atomic terms is enclosed in square brackets.  Depending on the
constructor of the first term, the selector, a conditional term can be
reduced to one of the remaining terms.

From these atomic terms, compound terms are built not only by
application but also using a variety of operators, that differ in
binding strength and associativity.

Postfix operators (token type \verb}postfix-op}) bind strongest, next
in binding strength are prefix operators (token type
\verb}prefix-op}), next come binding operators (token type
\verb}binding-op}).

A binding operator is followed by a list of variables and finally a
term.  There are two more variations of binding operators, that bind
much weaker and are discussed later.

Next, after the binding operators, is plain application.
Juxtaposition of two terms means applying the first term to the
second.  Sequences of applications associate to the left.  According
to the \indexentry{vector notation} convention the meaning of
application depends on the type of the first term.  Two forms of
applications are defined by default: if the type of the first term is
of \verb}arrow-form?}  then \verb}make-term-in-app-form} is used; for
the type of a free algebra we use the corresponding form of recursion.
However, there is one exception: if the first term is of type
\verb}boole} application is read as a short-hand for the
\inquotes{if\dots then \dots else} construct (which is a special form)
rather than boolean recursion.  The user may use the function
\verb}add-new-application}
\index{add-new-application@\texttt{add-new-application}} to add new
forms of applications.  This function takes two arguments, a predicate
for the type of the first argument, and a function taking the two
terms and returning another term intended to be the result of this
form of application.  Predicates are tested in the inverse order of
their definition, so more general forms of applications should be
added first.

By default these new forms of application are \emph{not} used for
output; but the user might declare that certain terms should be output
as formal application. \emph{When doing so it is the user's responisbility
to make sure that the syntax used for the output can still be parsed
correctly by the parser!}
To do so the function \texttt{(add-new-application-syntax pred toarg toop)}
can be used, where the first argument has to be a predicate (i.e., a function
mapping terms to \verb}#t} and \verb}#f}) telling whether this special
form of application can be used. If so, the arguments \texttt{toarg} and
\texttt{toop} have to be functions mapping the term to operator and
argument of this ``application'' respectively.


After that, we have binary operators written in infix notation.  In
order of decreasing binding strength these are: 
\begin{itemize}
\item multiplicative operators, leftassociative, token type \verb}mul-op}; 
\item additive operators, leftassociative, token type \verb}add-op}; 
\item relational operators, not associative, token type \verb}rel-op}; 
\item boolean and operators, leftassociative, token type \verb}and-op}; 
\item boolean or operators, leftassociative, token type \verb}or-op}; 
\item boolean implication operators, rightassociative, token type 
\verb}imp-op};
\item pairing operators, rightassociative, token type \verb}pair-op}.
\end{itemize}

On the top level, we have two more forms of binding operators, one
using the dot ``\verb}.}'', the other using square brackets
``\verb}[ ]}''.  Recall that a binding operator is followed by a list
of variables and a term.  This notation can be augmented by a period
``\verb}.}''  following after the variable list and before the term.
In this case the scope of the binding extends as far to the right as
possible.  Bindings with the lambda operator can also be specified by
including the list of variables in square brackets.  In this case,
again, the scope of the binding extends as far as possible.

Predefined operators are \texttt{E} and \texttt{=} as described above,
the binding operator \texttt{lambda}, and the pairing operator
\verb}@} with two prefix operators \texttt{left} and \texttt{right}
for projection.

The value of an operator token is a function that will obtain the
internal representation of the component terms as arguments and
returns the internal representation of the whole term.

If a term is formed by application, the function
\verb}make-gen-application} is called with two subterms and returns
the compound term.  The default here (for terms with an arrow type) is
to make a term in application form.  However other rules of
composition might be introduced easily.

\emph{Formulas} are built from atomic formulas using junctors and
quantors.

The simplest atomic formulas are made from terms using the implicit
predicate ``atom''. The semantics of this predicate is well defined
only for terms of type boole.  Further, a predicate constant (token
type \verb}predconst}) or a predicate variable (token type
\verb}pvar}) followed by a list of atomic terms is an atomic formula.
Lastly, any formula enclosed in parentheses is considered an atomic
formula.

The composition of formulas using junctors and quantors is very
similar to the composition of terms using operators and binding.  So,
first postfix junctors, token type \verb}postfix-jct}, are applied,
next prefix junctors, token type \verb}prefix-jct}, and quantors,
token type \verb}quantor}, in the usual form: quantor, list of
variables, formula.  Again, we have a notation using a period after
the list of variables, making the scope of the quantor as large as
possible.  Predefined quantors are \texttt{ex}, \texttt{excl},
\texttt{exca}, and \texttt{all}.

The remaining junctors are binary junctors written in infix form.  In
order of decreasing binding strength we have: 
\begin{itemize}
\item conjunction junctors, leftassociative, token type \verb}and-jct}; 
\item disjunction junctors, leftassociative, token type \verb}or-jct}; 
\item tensor junctors, rightassociative, token type \verb}tensor-jct}; 
\item implication junctors, rightassociative, token type \verb}imp-jct}.  
\end{itemize}
Predefined junctors are \verb}&} (and), \verb}!} (tensor), and
\verb}->} (implication).

The value of junctors and quantors is a function that will be called
with the appropriate subformulas, respectively variable lists, to
produce the compound formula in internal form.


\frenchspacing
\bibliography{minlog}
\bibliographystyle{amsplain}
% \bibliographystyle{plain}

\printindex

\end{document}


%%% Local Variables: 
%%% mode: latex-math
%%% TeX-master: t
%%% End: