File: extraction.scm

package info (click to toggle)
minlog 4.0.99.20100221-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,060 kB
  • sloc: lisp: 112,614; makefile: 231; sh: 11
file content (489 lines) | stat: -rw-r--r-- 16,704 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
; $Id: extraction.scm 2156 2008-01-25 13:25:12Z schimans $

; (load "~/minlog/init.scm")
; (set! DOT-NOTATION #f)
; (set! COMMENT-FLAG #f)
; (libload "nat.scm")
; (libload "numbers.scm")
; (load "real.scm")
; (load "cont.scm")
; (set! COMMENT-FLAG #t)


(time (pp (nt (pt "(IntN 2#9)+(2*((IntP 7#9)-(IntN 2#9)))/4"))))
; "810#2916" 30 ms
(time (pp (nt (pt "(IntN 2#9)+((IntP 7#9)-(IntN 2#9))/2")))) ;"405#1458" 26 ms
(time (pp (nt (pt "((IntN 2#9)+(7#9))/2")))) ;"45#162" 15 ms
(time (pp (nt (pt "((IntN 2#9)+(7#9))")))) ;"45#81" 11 ms

; We deanimate what was left animated in cont.scm

; (deanimate "ApproxSplit")
; (deanimate "IVTAux")
; (deanimate "IVTcds")

; Now we check whether indeed all lets (i.e., cAp/cId) are not unfolded in
; the present rules.

; (display-program-constants)

; We now animate all theorems, working from root to leaves

(animate "IVTApprox")
(animate "RealApprox")
(animate "IVTFinal")
(animate "IVTcds")
(animate "IVTAux")
(animate "ApproxSplit")

; (animate "GCDGInd")
; (animate "QRCorGInd")
; (animate "QRPos")
; (animate "QR")
; (animate "PosInt")

; For further speed-up we provide an external version of +

; We now want to view RatPlus as a program constant with external
; code, using add-external-code.  The external code - after evaluation
; and application to tsubst and the arguments - should give either the
; final value (e.g., the numeral for the sum) or else #f, in which
; case the rules are tried next on the arguments.

(define ratplus-code
  '(lambda (tsubst objs)
     (let ((val1 (nbe-object-to-value (car objs)))
	   (val2 (nbe-object-to-value (cadr objs))))
       (and (nbe-constr-value? val1) (nbe-constr-value? val2)
	    (let* ((args1 (nbe-constr-value-to-args val1))
		   (args2 (nbe-constr-value-to-args val2))
		   (vals1 (map nbe-object-to-value args1))
		   (vals2 (map nbe-object-to-value args2)))
	      (and (int-numeral-value? (car vals1))
		   (pos-numeral-value? (cadr vals1))
		   (int-numeral-value? (car vals2))
		   (pos-numeral-value? (cadr vals2))
		   (let* ((numer1 (int-numeral-value-to-number (car vals1)))
			  (denom1 (pos-numeral-value-to-number (cadr vals1)))
			  (numer2 (int-numeral-value-to-number (car vals2)))
			  (denom2 (pos-numeral-value-to-number (cadr vals2)))
			  (sum (+ (/ numer1 denom1) (/ numer2 denom2)))
			  (numer (numerator sum))
			  (denom (denominator sum))
			  (numer-term (int-to-int-term numer))
			  (denom-term (make-numeric-term denom))
			  (constr (constr-name-to-constr "RatConstr"))
			  (term (mk-term-in-app-form
				 (make-term-in-const-form constr)
				 numer-term denom-term)))
		     (nbe-term-to-object
		      term (nbe-make-bindings '() '())))))))))

(define ratminus-code
  '(lambda (tsubst objs)
     (let ((val1 (nbe-object-to-value (car objs)))
	   (val2 (nbe-object-to-value (cadr objs))))
       (and (nbe-constr-value? val1) (nbe-constr-value? val2)
	    (let* ((args1 (nbe-constr-value-to-args val1))
		   (args2 (nbe-constr-value-to-args val2))
		   (vals1 (map nbe-object-to-value args1))
		   (vals2 (map nbe-object-to-value args2)))
	      (and (int-numeral-value? (car vals1))
		   (pos-numeral-value? (cadr vals1))
		   (int-numeral-value? (car vals2))
		   (pos-numeral-value? (cadr vals2))
		   (let* ((numer1 (int-numeral-value-to-number (car vals1)))
			  (denom1 (pos-numeral-value-to-number (cadr vals1)))
			  (numer2 (int-numeral-value-to-number (car vals2)))
			  (denom2 (pos-numeral-value-to-number (cadr vals2)))
			  (diff (- (/ numer1 denom1) (/ numer2 denom2)))
			  (numer (numerator diff))
			  (denom (denominator diff))
			  (numer-term (int-to-int-term numer))
			  (denom-term (make-numeric-term denom))
			  (constr (constr-name-to-constr "RatConstr"))
			  (term (mk-term-in-app-form
				 (make-term-in-const-form constr)
				 numer-term denom-term)))
		     (nbe-term-to-object
		      term (nbe-make-bindings '() '())))))))))

(define rattimes-code
  '(lambda (tsubst objs)
     (let ((val1 (nbe-object-to-value (car objs)))
	   (val2 (nbe-object-to-value (cadr objs))))
       (and (nbe-constr-value? val1) (nbe-constr-value? val2)
	    (let* ((args1 (nbe-constr-value-to-args val1))
		   (args2 (nbe-constr-value-to-args val2))
		   (vals1 (map nbe-object-to-value args1))
		   (vals2 (map nbe-object-to-value args2)))
	      (and (int-numeral-value? (car vals1))
		   (pos-numeral-value? (cadr vals1))
		   (int-numeral-value? (car vals2))
		   (pos-numeral-value? (cadr vals2))
		   (let* ((numer1 (int-numeral-value-to-number (car vals1)))
			  (denom1 (pos-numeral-value-to-number (cadr vals1)))
			  (numer2 (int-numeral-value-to-number (car vals2)))
			  (denom2 (pos-numeral-value-to-number (cadr vals2)))
			  (prod (* (/ numer1 denom1) (/ numer2 denom2)))
			  (numer (numerator prod))
			  (denom (denominator prod))
			  (numer-term (int-to-int-term numer))
			  (denom-term (make-numeric-term denom))
			  (constr (constr-name-to-constr "RatConstr"))
			  (term (mk-term-in-app-form
				 (make-term-in-const-form constr)
				 numer-term denom-term)))
		     (nbe-term-to-object
		      term (nbe-make-bindings '() '())))))))))

(define ratdiv-code
  '(lambda (tsubst objs)
     (let ((val1 (nbe-object-to-value (car objs)))
	   (val2 (nbe-object-to-value (cadr objs))))
       (and (nbe-constr-value? val1) (nbe-constr-value? val2)
	    (let* ((args1 (nbe-constr-value-to-args val1))
		   (args2 (nbe-constr-value-to-args val2))
		   (vals1 (map nbe-object-to-value args1))
		   (vals2 (map nbe-object-to-value args2)))
	      (and (int-numeral-value? (car vals1))
		   (pos-numeral-value? (cadr vals1))
		   (int-numeral-value? (car vals2))
		   (pos-numeral-value? (cadr vals2))
		   (let* ((numer1 (int-numeral-value-to-number (car vals1)))
			  (denom1 (pos-numeral-value-to-number (cadr vals1)))
			  (numer2 (int-numeral-value-to-number (car vals2)))
			  (denom2 (pos-numeral-value-to-number (cadr vals2)))
			  (quot (/ (/ numer1 denom1) (/ numer2 denom2)))
			  (numer (numerator quot))
			  (denom (denominator quot))
			  (numer-term (int-to-int-term numer))
			  (denom-term (make-numeric-term denom))
			  (constr (constr-name-to-constr "RatConstr"))
			  (term (mk-term-in-app-form
				 (make-term-in-const-form constr)
				 numer-term denom-term)))
		     (nbe-term-to-object
		      term (nbe-make-bindings '() '())))))))))

(define ratlt-code
  '(lambda (tsubst objs)
     (let ((val1 (nbe-object-to-value (car objs)))
	   (val2 (nbe-object-to-value (cadr objs))))
       (and (nbe-constr-value? val1) (nbe-constr-value? val2)
	    (let* ((args1 (nbe-constr-value-to-args val1))
		   (args2 (nbe-constr-value-to-args val2))
		   (vals1 (map nbe-object-to-value args1))
		   (vals2 (map nbe-object-to-value args2)))
	      (and (int-numeral-value? (car vals1))
		   (pos-numeral-value? (cadr vals1))
		   (int-numeral-value? (car vals2))
		   (pos-numeral-value? (cadr vals2))
		   (let* ((numer1 (int-numeral-value-to-number (car vals1)))
			  (denom1 (pos-numeral-value-to-number (cadr vals1)))
			  (numer2 (int-numeral-value-to-number (car vals2)))
			  (denom2 (pos-numeral-value-to-number (cadr vals2)))
			  (res (< (/ numer1 denom1) (/ numer2 denom2)))
			  (const (if res true-const false-const))
			  (term (make-term-in-const-form const)))
		     (nbe-term-to-object
		      term (nbe-make-bindings '() '())))))))))

(define ratle-code
  '(lambda (tsubst objs)
     (let ((val1 (nbe-object-to-value (car objs)))
	   (val2 (nbe-object-to-value (cadr objs))))
       (and (nbe-constr-value? val1) (nbe-constr-value? val2)
	    (let* ((args1 (nbe-constr-value-to-args val1))
		   (args2 (nbe-constr-value-to-args val2))
		   (vals1 (map nbe-object-to-value args1))
		   (vals2 (map nbe-object-to-value args2)))
	      (and (int-numeral-value? (car vals1))
		   (pos-numeral-value? (cadr vals1))
		   (int-numeral-value? (car vals2))
		   (pos-numeral-value? (cadr vals2))
		   (let* ((numer1 (int-numeral-value-to-number (car vals1)))
			  (denom1 (pos-numeral-value-to-number (cadr vals1)))
			  (numer2 (int-numeral-value-to-number (car vals2)))
			  (denom2 (pos-numeral-value-to-number (cadr vals2)))
			  (res (<= (/ numer1 denom1) (/ numer2 denom2)))
			  (const (if res true-const false-const))
			  (term (make-term-in-const-form const)))
		     (nbe-term-to-object
		      term (nbe-make-bindings '() '())))))))))

(add-external-code "RatPlus" ratplus-code)
(add-external-code "RatMinus" ratminus-code)
(add-external-code "RatTimes" rattimes-code)
(add-external-code "RatDiv" ratdiv-code)
(add-external-code "RatLt" ratlt-code)
(add-external-code "RatLe" ratle-code)

; Finally we animate Id, to enable numeric calculations

(animate "Id")

; Here is a list of the used theorems.  Their formulas can be printed
; using (pp "IVTApprox") und their extracted terms via
; (define IVTApprox-neterm
;   (nt (proof-to-extracted-term (theorem-name-to-proof "IVTApprox"))))
; (pp IVTApprox-neterm)

"RealApprox"
"ApproxSplit"
"IVTAux"
"IVTcds"
"IVTFinal"
"IVTApprox"

; Now the crucial test

(define a-sq-minus-two
  (pt "ContConstr 1 2([a0,n1]a0*a0-2)([k]Zero)([k]k+3)"))

(time (pp (nt
   (apply mk-term-in-app-form
	  (list (proof-to-extracted-term (theorem-name-to-proof "IVTApprox"))
		a-sq-minus-two
		(pt "IntN One") ;-1 is the modulus of increase
		(pt "IntZero")  ;1 <= b-a
		(pt "IntZero")  ;b-a <= 1
		(pt "20"))))))
; 17193534846817967675#12157665459056928801
; 767 ms
(exact->inexact (/ 17193534846817967675 12157665459056928801))
1.4142135186002784
(sqrt 2)
1.4142135623730951

; Check accuracy
; (define diff (- 1.4142135186002784 1.4142135623730951))
; diff
; -4.3772816704645834e-8
; (exact->inexact (expt 2 -20))
; 9.5367431640625e-7

(deanimate "Id")

(pp (nt (proof-to-extracted-term (theorem-name-to-proof "IVTApprox"))))

#|
[f0,k1,k2,k3,k4]
 left((cDC rat@@rat)(f0 doml@f0 domr)
      ([n5]
        (cId rat@@rat=>rat@@rat)
        ([cd7]
          [let cd8
            ((2#3)*left cd7+(1#3)*right cd7@(1#3)*left cd7+(2#3)*right cd7)
            [if (0<=
                 (f0 approx left cd8
                  (f0 uMod(IntS(IntS(IntS(IntS(IntS(IntS(k2+n5+k1))))))))+
                  f0 approx right cd8
                  (f0 uMod(IntS(IntS(IntS(IntS(IntS(IntS(k2+n5+k1)))))))))/
                 2)
             (left cd7@right cd8)
             (left cd8@right cd7)]]))
      (IntToNat(2*(k4+k3))))
|#

(define sqrt-two-approx
  (nt (apply mk-term-in-app-form
	     (list (proof-to-extracted-term
		    (theorem-name-to-proof "IVTApprox"))
		   a-sq-minus-two
		   (pt "IntN One") ;-1 is the modulus of increase
		   (pt "IntZero")  ;1 <= b-a
		   (pt "IntZero")  ;b-a <= 1
		   ))))

(pp sqrt-two-approx)

#|
[k0]
 left((cDC rat@@rat)(1@2)
      ([n1]
        (cId rat@@rat=>rat@@rat)
        ([cd3]
          [let cd4
            ((2#3)*left cd3+(1#3)*right cd3@(1#3)*left cd3+(2#3)*right cd3)
            [if (0<=(left cd4*left cd4-2+(right cd4*right cd4-2))/2)
             (left cd3@right cd4)
             (left cd4@right cd3)]]))
      (IntToNat(2*k0)))
|#

(animate "Id")
(pp (nt (make-term-in-app-form sqrt-two-approx (pt "2"))))
; 107#81
(pp (nt (make-term-in-app-form sqrt-two-approx (pt "20"))))
; 17193534846817967675#12157665459056928801
(time (tag (nbe-normalize-term-without-eta
	    (make-term-in-app-form sqrt-two-approx (pt "20")))))
; 550 ms
(deanimate "Id")

; We now translate terms into scheme expressions, for faster
; evaluation (no conversions between internal and external numbers)

(term-to-expr sqrt-two-approx)

#|
(lambda (k0)
  (car (((|cDC| (cons 1 2))
         (lambda (n1)
           (lambda (cd3)
             (let ([cd4
                    (cons (+ (* 2/3 (car cd3)) (* 1/3 (cdr cd3)))
                          (+ (* 1/3 (car cd3)) (* 2/3 (cdr cd3))))])
               (if (<= 0
                       (/ (+ (- (* (car cd4) (car cd4)) 2)
                             (- (* (cdr cd4) (cdr cd4)) 2))
                          2))
                   (cons (car cd3) (cdr cd4))
                   (cons (car cd4) (cdr cd3)))))))
        (|IntToNat| (* 2 k0)))))
|#

(time ((ev (term-to-expr sqrt-two-approx)) 20))
; 8ms
; 1910392699673572643/1350851717672992089

(time ((ev (term-to-expr sqrt-two-approx)) 100))
; 136 ms
41737211713808721950509113461986613702889339109196103625535604673708288858253142530485267574435/29512665430652752148753480226197736314359272517043832886063884637676943433478020332709411004889

(time ((ev (term-to-expr sqrt-two-approx)) 300))
; 1387 ms
2944593304156165436102846247558257490730845085059145775348712785737552429558941055472664500523847993653960875075500489392461830532348741253430285578096821615417701491158209086792184369992128090401780684332213746112424235660933353732326055138766537198666286440104173743582833475176351331/2082141893205326654083779991150902602700941003443642395329656664801323440350862630969568906052114539645303398663539990042118787521457672342793285135263403898153882623763114393917433013110956461871522162788143751759237923280744039682511207437298831530097535001606799426410247097767236889

; Same for "Inv"

(deanimate "IVTApprox")
(deanimate "RealApprox")
(deanimate "IVTFinal")
(deanimate "IVTcds")
(deanimate "IVTAux")
(deanimate "ApproxSplit")

; We now animate all theorems, working from root to leaves

(animate "InvApprox")
(animate "RealApprox")
(animate "Inv")
(animate "IVTcds")
(animate "IVTAux")
(animate "ApproxSplit")

; We also need to animate "AC" "IP" with identities:

(animate "AC" (pt "[alpha1=>alpha2]alpha1=>alpha2"))
(animate "IP" (pt "[alpha]alpha"))

(define inv-approx-eterm
  (nt (proof-to-extracted-term (theorem-name-to-proof "InvApprox"))))
(pp inv-approx-eterm)

#|
[f0,k1,k2,k3,a4,a5,a6,k7]
 left((cDC rat@@rat)(f0 doml@f0 domr)
      ([n8]
        (cId rat@@rat=>rat@@rat)
        ([cd10]
          [let cd11
            ((2#3)*left cd10+(1#3)*right cd10@
            (1#3)*left cd10+(2#3)*right cd10)
            [if (0<=
                 (f0 approx left cd11
                  (f0 uMod(IntS(IntS(IntS(IntS(IntS(IntS(k2+n8+k1))))))))-
                  a6+
                  (f0 approx right cd11
                   (f0 uMod(IntS(IntS(IntS(IntS(IntS(IntS(k2+n8+k1))))))))-
                   a6))/
                 2)
             (left cd10@right cd11)
             (left cd11@right cd10)]]))
      (IntToNat(2*f0 uModCont(IntS(IntS(IntS(IntS(k7+k1)))))+k3+k3)))
|#

(define sq (pt "ContConstr 1 2([a0,n1]a0*a0)([k]Zero)([k]k+3)"))

(define inv-sq-approx
  (nt (apply mk-term-in-app-form
	     (list (proof-to-extracted-term
		    (theorem-name-to-proof "InvApprox"))
		   sq ;continuous function to be inverted
  		   (pt "IntN One") ;uniform lower bound on the slope
		   (pt "IntZero") (pt "IntZero") ;bounds for b-a
		   (pt "1") (pt "4") ;interval in range
		   ))))

(pp inv-sq-approx)

#|
[a0,k1]
 left((cDC rat@@rat)(1@2)
      ([n2]
        (cId rat@@rat=>rat@@rat)
        ([cd4]
          [let cd5
            ((2#3)*left cd4+(1#3)*right cd4@(1#3)*left cd4+(2#3)*right cd4)
            [if (0<=(left cd5*left cd5-a0+(right cd5*right cd5-a0))/2)
             (left cd4@right cd5)
             (left cd5@right cd4)]]))
      (IntToNat(2*IntS(IntS(IntS(IntS(IntS(IntS k1))))))))
|#

; Finally we animate Id, to enable numeric calculations

(animate "Id")

(time
(pp (nbe-normalize-term-without-eta
      (mk-term-in-app-form
       inv-sq-approx
       (pt "3") ;argument of inverted function
       (pt "20") ;error bound (number of binary digits)
       ))))

; 3730307366945298869534434#2153693963075557766310747 in 803 ms

; (exact->inexact (/ 3730307366945298869534434 2153693963075557766310747))
; 1.7320508070785863
; (sqrt 3)
; 1.7320508075688772
; Difference at the 10th decimal digit

; We now translate terms into scheme expressions, for faster
; evaluation (no conversions between internal and external numbers)

(term-to-expr inv-sq-approx)

#|
(lambda (a0)
  (lambda (k1)
    (car (((|cDC| (cons 1 2))
           (lambda (n2)
             (lambda (cd4)
               (let ([cd5
                      (cons (+ (* 2/3 (car cd4)) (* 1/3 (cdr cd4)))
                            (+ (* 1/3 (car cd4)) (* 2/3 (cdr cd4))))])
                 (if (<= 0
                         (/ (+ (- (* (car cd5) (car cd5)) a0)
                               (- (* (cdr cd5) (cdr cd5)) a0))
                            2))
                     (cons (car cd4) (cdr cd5))
                     (cons (car cd5) (cdr cd4)))))))
          (|IntToNat|
            (* 2
               (|IntS|
                 (|IntS| (|IntS| (|IntS| (|IntS| (|IntS| k1))))))))))))
|#

(time (((ev (term-to-expr inv-sq-approx)) 3) 20))
; 13 ms

(time (((ev (term-to-expr inv-sq-approx)) 3) 100))
; 134 ms

(time (((ev (term-to-expr inv-sq-approx)) 3) 200))
; 560 ms