1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
|
Minlog loaded successfully
> > loading nat.scm ...
> > > ; ok, variable f: nat=>nat added
> ; ?_1: all f(all m(m<0 -> bot) -> excl k(f(k+1)<f k -> bot))
> ; ok, we now have the new goal
; ?_2: excl k(f(k+1)<f k -> bot) from
; f 1:all m(m<0 -> bot)
> ; ok, ?_2 can be obtained from
; ?_6: excl k(f(k+1)<f k -> bot) from
; f 1:all m(m<0 -> bot)
; k k-Min:all n1283(f n1283<f k -> T -> bot)
; k-Hyp:T
; ?_5: excl k T from
; f 1:all m(m<0 -> bot)
> ; ok, ?_5 can be obtained from
; ?_7: T from
; f 1:all m(m<0 -> bot)
> ; ok, ?_7 is proved. The active goal now is
; ?_6: excl k(f(k+1)<f k -> bot) from
; f 1:all m(m<0 -> bot)
; k k-Min:all n1283(f n1283<f k -> T -> bot)
; k-Hyp:T
> ; ok, we now have the new goal
; ?_8: bot from
; f 1:all m(m<0 -> bot)
; k k-Min:all n1283(f n1283<f k -> T -> bot)
; k-Hyp:T
; H1:all k((f(k+1)<f k -> bot) -> bot)
> ; ok, ?_8 can be obtained from
; ?_9: f(k+1)<f k -> bot from
; f 1:all m(m<0 -> bot)
; k k-Min:all n1283(f n1283<f k -> T -> bot)
; k-Hyp:T
; H1:all k((f(k+1)<f k -> bot) -> bot)
> ; ok, we now have the new goal
; ?_10: bot from
; f 1:all m(m<0 -> bot)
; k k-Min:all n1283(f n1283<f k -> T -> bot)
; k-Hyp:T
; H1:all k((f(k+1)<f k -> bot) -> bot)
; H2:f(k+1)<f k
> ; ok, ?_10 can be obtained from
; ?_12: T from
; f 1:all m(m<0 -> bot)
; k k-Min:all n1283(f n1283<f k -> T -> bot)
; k-Hyp:T
; H1:all k((f(k+1)<f k -> bot) -> bot)
; H2:f(k+1)<f k
; ?_11: f(k+1)<f k from
; f 1:all m(m<0 -> bot)
; k k-Min:all n1283(f n1283<f k -> T -> bot)
; k-Hyp:T
; H1:all k((f(k+1)<f k -> bot) -> bot)
; H2:f(k+1)<f k
> ; ok, ?_11 is proved. The active goal now is
; ?_12: T from
; f 1:all m(m<0 -> bot)
; k k-Min:all n1283(f n1283<f k -> T -> bot)
; k-Hyp:T
; H1:all k((f(k+1)<f k -> bot) -> bot)
; H2:f(k+1)<f k
> ; ok, ?_12 is proved. Proof finished.
> ; ok, WfTest has been added as a new theorem.
; ok, program constant cWfTest: (nat=>nat)=>(nat=>alpha3)=>(nat=>alpha3=>alpha3)=>alpha3
; of t-degree 0 and arity 0 added
> > > > > [f0]
[if (f0 1<f0 0)
[if (f0 2<f0 1)
((GRecGuard nat nat)f0 2([n1,f2][if (f0(Succ n1)<f0 n1) (f2(Succ n1)) n1])
(f0 2<f0 1))
1]
0]
> > 1
> > 2
>
|