1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
; $Id: align.scm 2156 2008-01-25 13:25:12Z schimans $
; (load "~/minlog/init.scm")
(set! COMMENT-FLAG #f)
(libload "nat.scm")
(libload "listrev.scm")
(set! COMMENT-FLAG #t)
(add-alg "char" '("A" "char") '("B" "char") '("C" "char"))
; We want to use (unit yplus char) as the type characters including space.
(add-param-alg "yplus" 'sum-typeop
'("Inleft" "alpha1=>yplus")
'("Inright" "alpha2=>yplus"))
(type-to-string
(const-to-type (car (type-info-to-rec-consts (py "unit yplus char=>alpha")))))
; "(unit=>alpha)=>(char=>alpha)=>unit yplus char=>alpha"
; (pp (pt "(Inleft unit char)Dummy"))
; (pp (pt "(Inright char unit) A"))
; (pp (pt "(Inright char unit) B"))
(add-token "Spc" 'const (pt "(Inleft unit char)Dummy"))
(add-token
"I" 'prefix-op
(lambda (x) (mk-term-in-app-form (pt "(Inright char unit)") x)))
(add-display
(py "unit yplus char")
(lambda (x)
(let ((op (term-in-app-form-to-final-op x))
(args (term-in-app-form-to-args x)))
(cond ((and (term-in-const-form? op)
(string=? "Inleft"
(const-to-name (term-in-const-form-to-const op)))
(= 1 (length args))
(let* ((arg (car args))
(argop (term-in-app-form-to-final-op arg))
(argargs (term-in-app-form-to-args arg)))
(and (term-in-const-form? argop)
(string=? "Dummy"
(const-to-name
(term-in-const-form-to-const argop)))
(null? argargs))))
(list 'const "Spc"))
((and (term-in-const-form? op)
(string=? "Inright"
(const-to-name (term-in-const-form-to-const op)))
(= 1 (length args)))
(list 'prefix-op "I" (term-to-token-tree (car args))))
(else #f)))))
; (pp (pt "I A"))
; (pp (pt "I B"))
; (pp (pt "Spc"))
; We use (tensor) pairs of characters, to work with alignments.
(add-param-alg "ytensor" 'tensor-typeop
'("TensorPair" "alpha1=>alpha2=>ytensor"))
(type-to-string
(const-to-type
(car (type-info-to-rec-consts (py "alpha1 ytensor alpha2=>alpha")))))
; "(alpha1=>alpha2=>alpha)=>alpha1 ytensor alpha2=>alpha"
; We want the display r#s for terms, and (Lft r) and (Rht r) for the
; components.
(add-token
"#" 'pair-op ;hence right associative
(lambda (x y)
(mk-term-in-app-form
(make-term-in-const-form
(let* ((const (constr-name-to-constr "TensorPair"))
(tvars (const-to-tvars const))
(type1 (term-to-type x))
(type2 (term-to-type y))
(subst (make-substitution tvars (list type1 type2))))
(const-substitute const subst #f)))
x y)))
(add-display
(py "alpha1 ytensor alpha2")
(lambda (x)
(if (term-in-app-form? x)
(let ((op (term-in-app-form-to-final-op x))
(args (term-in-app-form-to-args x)))
(if (and (term-in-const-form? op)
(string=? "TensorPair"
(const-to-name (term-in-const-form-to-const op)))
(= 2 (length args)))
(list 'pair-op "#"
(term-to-token-tree (car args))
(term-to-token-tree (cadr args)))
#f))
#f)))
; (pp (pt "alpha1#boole"))
(add-program-constant
"TensorLft" (py "alpha1 ytensor alpha2=>alpha1") t-deg-one)
(add-program-constant
"TensorRht" (py "alpha1 ytensor alpha2=>alpha2") t-deg-one)
(add-token
"Lft" 'prefix-op
(lambda (x)
(mk-term-in-app-form
(make-term-in-const-form
(let* ((const (pconst-name-to-pconst "TensorLft"))
(tvars (const-to-tvars const))
(tensortype (term-to-type x))
(types (alg-form-to-types tensortype))
(subst (make-substitution tvars types)))
(const-substitute const subst #f)))
x)))
(add-display
(py "alpha")
(lambda (x)
(if (term-in-app-form? x)
(let ((op (term-in-app-form-to-final-op x))
(args (term-in-app-form-to-args x)))
(if (and (term-in-const-form? op)
(string=? "TensorLft"
(const-to-name (term-in-const-form-to-const op)))
(= 1 (length args)))
(list 'prefix-op "Lft"
(term-to-token-tree (car args)))
#f))
#f)))
(add-token
"Rht" 'prefix-op
(lambda (x)
(mk-term-in-app-form
(make-term-in-const-form
(let* ((const (pconst-name-to-pconst "TensorRht"))
(tvars (const-to-tvars const))
(tensortype (term-to-type x))
(types (alg-form-to-types tensortype))
(subst (make-substitution tvars types)))
(const-substitute const subst #f)))
x)))
(add-display
(py "alpha")
(lambda (x)
(if (term-in-app-form? x)
(let ((op (term-in-app-form-to-final-op x))
(args (term-in-app-form-to-args x)))
(if (and (term-in-const-form? op)
(string=? "TensorRht"
(const-to-name (term-in-const-form-to-const op)))
(= 1 (length args)))
(list 'prefix-op "Rht"
(term-to-token-tree (car args)))
#f))
#f)))
(add-computation-rule (pt "Lft(alpha1#alpha2)") (pt "alpha1"))
(add-computation-rule (pt "Rht(alpha1#alpha2)") (pt "alpha2"))
(pp (nt (pt "Rht(nat#alpha)")))
(add-var-name "c" (py "char")) ;character
(add-var-name "d" (py "unit yplus char")) ;extended character
(add-var-name "cc" (py "char ytensor char")) ;pair of characters
(add-var-name "dd" (py "(unit yplus char) ytensor (unit yplus char)"))
; pair of extended characters
(add-var-name "s" (py "list char")) ;list of characters, string
(add-var-name "t" (py "list(unit yplus char)"))
; list of extended characters, extended string
(add-var-name "u" (py "list(char ytensor char)"))
; list of pairs of characters
(add-var-name "v" (py "list((unit yplus char) ytensor (unit yplus char))"))
; list of pairs of extended characters
; "NoDSpc" expresses that in v there are no double spaces.
(add-program-constant
"NoDSpc" (py "list((unit yplus char) ytensor (unit yplus char))=>boole")
t-deg-one)
(add-computation-rule
(pt "NoDSpc(Nil (unit yplus char) ytensor (unit yplus char))")
(pt "True"))
(add-computation-rule (pt "NoDSpc(v::(Spc#Spc))") (pt "False"))
(add-computation-rule (pt "NoDSpc(v::(I c#d))") (pt "True"))
(add-computation-rule (pt "NoDSpc(v::(Spc#I c))") (pt "True"))
(add-rewrite-rule (pt "NoDSpc(v::(d#I c))") (pt "True"))
; We take some canonical inhabitants.
(add-computation-rule (pt "(Inhab char)") (pt "A"))
(pp (nt (pt "(Inhab char)")))
(pp (nt (pt "(Inhab alpha)")))
(pp (nt (pt "(Inhab alpha1)")))
(add-computation-rule (pt "(Inhab (unit yplus char))") (pt "Spc"))
(add-computation-rule (pt "(Inhab char ytensor char)") (pt "A#A"))
(add-computation-rule
(pt "(Inhab (unit yplus char) ytensor (unit yplus char))")
(pt "Spc#Spc"))
; "CharEProj"
(set-goal (pf "all n,u E(u__n)"))
(assume "n")
(ind)
(use "Truth-Axiom")
(assume "u" "cc" "H1")
(ng)
(cases 'auto)
(assume "H2")
(use "H1")
(assume "H2")
(use "Truth-Axiom")
(save "CharEProj")
; "ExtCharEProj"
(set-goal (pf "all n,v E(v__n)"))
(assume "n")
(ind)
(use "Truth-Axiom")
(assume "v" "dd" "H1")
(ng)
(cases 'auto)
(assume "H2")
(use "H1")
(assume "H2")
(use "Truth-Axiom")
(save "ExtCharEProj")
(add-var-name "a" (py "list char=>list char=>
list((unit yplus char) ytensor (unit yplus char))"))
; alignment
; "Cp" compresses a list of extended characters, by removing spaces.
(add-program-constant "Cp" (py "list(unit yplus char)=>list char") t-deg-one)
(add-computation-rule (pt "Cp(Nil unit yplus char)") (pt "(Nil char)"))
(add-computation-rule (pt "Cp(t::I c)") (pt "Cp t::c"))
(add-computation-rule (pt "Cp(t::Spc)") (pt "Cp t"))
(pp (nt (pt "Cp(:I A::Spc::I A::I B::Spc)"))) ;:A::A::B
; To express that "a" is a correct alignment we use an inductive definition.
(add-ids
(list (list "Align"
(make-arity
(py "list char=>list char=>
list((unit yplus char) ytensor (unit yplus char))"))))
'("all a.(all s1,s2 Cp(([dd]Lft dd)map a s1 s2)=s1) ->
(all s1,s2 Cp(([dd]Rht dd)map a s1 s2)=s2) ->
(all s1,s2 NoDSpc(a s1 s2)) -> Align a" "DefAlign"))
; (pp "DefAlign")
; For simplicity we assume that scores have nat values.
(add-var-name
"sc" (py "(unit yplus char) ytensor (unit yplus char)=>nat")) ;score
(add-program-constant "Sum" (py "list nat=>nat") t-deg-one)
(add-computation-rule (pt "Sum(Nil nat)") (pt "Zero"))
(add-computation-rule (pt "Sum(list nat::nat)") (pt "Sum list nat+nat"))
; (pp (nt (pt "Sum(:1::2::3::4)")))
; The recursively defined V function. Computation rules to be added.
(add-program-constant
"V" (py "((unit yplus char) ytensor (unit yplus char)=>nat)=>nat=>nat=>nat")
t-deg-one)
; Theorem 1 consists of two parts:
(set-goal
(pf "all sc ex a.Align a & all s1,s2.V sc Lh s1 Lh s2=Sum(sc map a s1 s2)"))
(set-goal
(pf "all sc,a,s1,s2.Align a -> V sc Lh s1 Lh s2<=Sum(sc map a s1 s2)"))
(assume "sc" "a" "s1" "s2" "H1")
(inversion "H1")
(assume "a1")
|