1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
Minlog loaded successfully
> ; ok, type variable real added
; ok, type variable open added
> ; ok, variable x: real added
; ok, variable y: real added
> ; ok, variable f: real=>real added
> ; ok, variable U: open added
; ok, variable V: open added
; ok, variable W: open added
> ; ok, predicate constant ee: (arity real open boole) added
> > > ; ?_1: all f.
; (all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V) ->
; all x,W.f(f x)in W -> ex U.x in U & all y.y in U -> f(f y)in W
> ; ok, we now have the new goal
; ?_2: ex U.x in U & all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W Hyp1:f(f x)in W
> ; ok, ?_2 can be obtained from
; ?_4: ex U.x in U & all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W Hyp1:f(f x)in W
; Hyp2:f(f x)in W -> ex U.f x in U & all y.y in U -> f y in W
> ; ok, ?_4 can be obtained from
; ?_6: ex U.x in U & all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W Hyp1:f(f x)in W
; Hyp2:f(f x)in W -> ex U.f x in U & all y.y in U -> f y in W
; W-ExHyp:ex U.f x in U & all y.y in U -> f y in W
> ; ok, we now have the new goal
; ?_7: ex U.x in U & all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W W-ExHyp:ex U.f x in U & all y.y in U -> f y in W
> ; ok, we now have the new goal
; ?_10: ex U.x in U & all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
> ; ok, ?_10 can be obtained from
; ?_12: ex U.x in U & all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
> ; ok, ?_12 can be obtained from
; ?_13: (ex U.x in U & all y.y in U -> f y in V) ->
; ex U.x in U & all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
; ?_14: ex U.x in U & all y.y in U -> f y in V from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
> ; ok, ?_14 can be obtained from
; ?_15: f x in V from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
> ; ok, ?_15 is proved. The active goal now is
; ?_13: (ex U.x in U & all y.y in U -> f y in V) ->
; ex U.x in U & all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
> ; ok, we now have the new goal
; ?_16: ex U.x in U & all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
; V-ExHyp:ex U.x in U & all y.y in U -> f y in V
> ; ok, we now have the new goal
; ?_19: ex U.x in U & all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
; U UHyp:x in U & all y.y in U -> f y in V
> ; ok, ?_19 can be obtained from
; ?_20: x in U & all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
; U UHyp:x in U & all y.y in U -> f y in V
> ; ok, we now have the new goals
; ?_22: all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
; U UHyp:x in U & all y.y in U -> f y in V
; ?_21: x in U from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
; U UHyp:x in U & all y.y in U -> f y in V
> ; ok, ?_21 is proved. The active goal now is
; ?_22: all y.y in U -> f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
; U UHyp:x in U & all y.y in U -> f y in V
> ; ok, we now have the new goal
; ?_23: f(f y)in W from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
; U UHyp:x in U & all y.y in U -> f y in V
; y yHyp:y in U
> ; ok, ?_23 can be obtained from
; ?_24: f y in V from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
; U UHyp:x in U & all y.y in U -> f y in V
; y yHyp:y in U
> ; ok, ?_24 can be obtained from
; ?_25: y in U from
; f fCont:all x,V.f x in V -> ex U.x in U & all y.y in U -> f y in V
; x W V VHyp:f x in V & all y.y in V -> f y in W
; Hyp3:f x in V -> ex U.x in U & all y.y in U -> f y in V
; U UHyp:x in U & all y.y in U -> f y in V
; y yHyp:y in U
> ; ok, ?_25 is proved. Proof finished.
> ; ok, ContLemma has been added as a new theorem.
; ok, program constant cContLemma: (real=>real)=>(real=>open=>open)=>real=>open=>open
; of t-degree 1 and arity 0 added
> ; ok, variable M: real=>open=>open added
> [f0,M1,x2,U3]M1 x2(M1(f0 x2)U3)
> ; ?_1: all f.
; (all x,V.f x in V -> excl U.x in U & all y.y in U -> f y in V) ->
; all x,W.f(f x)in W -> excl U.x in U & all y.y in U -> f(f y)in W
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
>
|