File: lnf.save

package info (click to toggle)
minlog 4.0.99.20100221-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,060 kB
  • sloc: lisp: 112,614; makefile: 231; sh: 11
file content (221 lines) | stat: -rw-r--r-- 4,880 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221


Minlog loaded successfully
> ; ?_1: T
> 
; proceed: (use-with Truth-Axiom ...)
; ok, ?_1 is proved.  Proof finished.
> ; ?_1: F -> F
> 
; proceed: (strip)
; ok, we now have the new goal 
; ?_2: F from
;   1:F

; proceed: (use-with 1 ...)
; ok, ?_2 is proved.  Proof finished.
> ; ok, predicate constant A: (arity) added
; ok, predicate constant B: (arity) added
> > ; ?_1: ((((A -> B) -> A) -> A) -> B) -> B
> 
; proceed: (strip)
; ok, we now have the new goal 
; ?_2: B from
;   1:(((A -> B) -> A) -> A) -> B

; proceed: (use-with 1 ...)
; ok, ?_2 can be obtained from
; ?_3: ((A -> B) -> A) -> A from
;   1:(((A -> B) -> A) -> A) -> B

; proceed: (strip)
; ok, we now have the new goal 
; ?_4: A from
;   1:(((A -> B) -> A) -> A) -> B
;   2:(A -> B) -> A

; proceed: (use-with 2 ...)
; ok, ?_4 can be obtained from
; ?_5: A -> B from
;   1:(((A -> B) -> A) -> A) -> B
;   2:(A -> B) -> A

; proceed: (strip)
; ok, we now have the new goal 
; ?_6: B from
;   1:(((A -> B) -> A) -> A) -> B
;   2:(A -> B) -> A
;   3:A

; proceed: (use-with 1 ...)
; ok, ?_6 can be obtained from
; ?_7: ((A -> B) -> A) -> A from
;   1:(((A -> B) -> A) -> A) -> B
;   2:(A -> B) -> A
;   3:A

; proceed: (strip)
; ok, we now have the new goal 
; ?_8: A from
;   1:(((A -> B) -> A) -> A) -> B
;   2:(A -> B) -> A
;   3:A
;   4:(A -> B) -> A

; proceed: (use-with 3)
; ok, ?_8 is proved.  Proof finished.
> ; ok, variable x: alpha added
; ok, variable y: alpha added
; ok, variable z: alpha added
> ; ok, predicate constant P: (arity) added
> ; ok, predicate constant Qpredconst: (arity alpha) added
> ; ok, predicate constant Rpredconst: (arity alpha alpha) added
> > > > > > ; ?_1: (all x.Q1 x -> Q2 x) -> all x Q1 x -> all x Q2 x
> 
; proceed: (strip)
; ok, we now have the new goal 
; ?_2: Q2 x from
;   1:all x.Q1 x -> Q2 x
;   2:all x Q1 x
;   x

; proceed: (use-with 1 ...)
; ok, ?_2 can be obtained from
; ?_3: Q1 x from
;   1:all x.Q1 x -> Q2 x
;   2:all x Q1 x
;   x

; proceed: (use-with 2 ...)
; ok, ?_3 is proved.  Proof finished.
> > ; ?_1: (all x.Q1 x & Q2 x) -> all x Q1 x & all x Q2 x
> 
; proceed: (strip)
; ok, we now have the new goal 
; ?_2: all x Q1 x & all x Q2 x from
;   1:all x.Q1 x & Q2 x

; proceed: (split)
; ok, we now have the new goals 
; ?_4: all x Q2 x from
;   1:all x.Q1 x & Q2 x

; ?_3: all x Q1 x from
;   1:all x.Q1 x & Q2 x

; proceed: (strip)
; ok, we now have the new goal 
; ?_5: Q1 x from
;   1:all x.Q1 x & Q2 x
;   x

; proceed: (use-with 1 ...)
; ok, ?_5 is proved.  The active goal now is
; ?_4: all x Q2 x from
;   1:all x.Q1 x & Q2 x

; proceed: (strip)
; ok, we now have the new goal 
; ?_6: Q2 x from
;   1:all x.Q1 x & Q2 x
;   x

; proceed: (use-with 1 ...)
; ok, ?_6 is proved.  Proof finished.
> > ; ?_1: all x Q1 x & all x Q2 x -> all x.Q1 x & Q2 x
> 
; proceed: (strip)
; ok, we now have the new goal 
; ?_2: Q1 x & Q2 x from
;   1:all x Q1 x & all x Q2 x
;   x

; proceed: (split)
; ok, we now have the new goals 
; ?_4: Q2 x from
;   1:all x Q1 x & all x Q2 x
;   x

; ?_3: Q1 x from
;   1:all x Q1 x & all x Q2 x
;   x

; proceed: (use-with 1 ...)
; ok, ?_3 is proved.  The active goal now is
; ?_4: Q2 x from
;   1:all x Q1 x & all x Q2 x
;   x

; proceed: (use-with 1 ...)
; ok, ?_4 is proved.  Proof finished.
> > ; ?_1: all x Q x -> exca x Q x
> 
; proceed: (strip)
; ok, we now have the new goal 
; ?_2: F from
;   1:all x Q x
;   2:all x.Q x -> F

; proceed: terms required for hypothesis 2
> ; ok, Symm has been added as a new global assumption.
> ; ok, Trans has been added as a new global assumption.
> ; ?_1: all x,y.x R y -> x R x
> > ; ?_1: (all x.((Q x -> F) -> F) -> Q x) -> (all x Q x -> P) -> exca x.Q x -> P
> 
; proceed: (strip)
; ok, we now have the new goal 
; ?_2: F from
;   1:all x.((Q x -> F) -> F) -> Q x
;   2:all x Q x -> P
;   3:all x.(Q x -> P) -> F

; proceed: terms required for hypothesis 3
> > ; ?_1: (P -> all y Q y) -> all y.P -> Q y
> 
; proceed: (strip)
; ok, we now have the new goal 
; ?_2: Q y from
;   1:P -> all y Q y
;   y  2:P

; proceed: (use-with 1 ...)
; ok, ?_2 can be obtained from
; ?_3: P from
;   1:P -> all y Q y
;   y  2:P

; proceed: (use-with 2 ...)
; ok, ?_3 is proved.  Proof finished.
> > ; ?_1: (exca x Q x -> P) -> all x.Q x -> P
> 
; proceed: (strip)
; ok, we now have the new goal 
; ?_2: P from
;   1:exca x Q x -> P
;   x  2:Q x

; proceed: (use-with 1 ...)
; ok, ?_2 can be obtained from
; ?_3: exca x Q x from
;   1:exca x Q x -> P
;   x  2:Q x

; proceed: (strip)
; ok, we now have the new goal 
; ?_4: F from
;   1:exca x Q x -> P
;   x  2:Q x
;   3:all x.Q x -> F

; proceed: terms required for hypothesis 3
> > ; ?_1: (all y.F -> Q y) -> (P -> exca y Q y) -> exca y.P -> Q y
> 
; proceed: (strip)
; ok, we now have the new goal 
; ?_2: F from
;   1:all y.F -> Q y
;   2:P -> exca y Q y
;   3:all y.(P -> Q y) -> F

; proceed: more than one usable hypothesis: 2 3 
>