1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
|
Minlog loaded successfully
> ; ok, variable x: alpha added
; ok, variable y: alpha added
; ok, variable z: alpha added
> ; ok, predicate constant P: (arity) added
> ; ok, predicate constant Qpredconst: (arity alpha) added
> ; ok, predicate constant Rpredconst: (arity alpha alpha) added
> > > > > "Q x"
> "x R y"
> "Q17 x"
> > ; ?_1: (all x.Q1 x -> Q2 x) -> all x Q1 x -> all x Q2 x
> ; ok, we now have the new goal
; ?_2: Q2 x from
; 1:all x.Q1 x -> Q2 x
; 2:all x Q1 x
; x
> ; ok, ?_2 can be obtained from
; ?_3: Q1 x from
; 1:all x.Q1 x -> Q2 x
; 2:all x Q1 x
; x
> ; ok, ?_3 is proved. Proof finished.
> ; .....all x.Q1 x -> Q2 x by assumption u33
; .....x
; ....Q1 x -> Q2 x by all elim
; .....all x Q1 x by assumption u34
; .....x
; ....Q1 x by all elim
; ...Q2 x by imp elim
; ..all x Q2 x by all intro
; .all x Q1 x -> all x Q2 x by imp intro u34
; (all x.Q1 x -> Q2 x) -> all x Q1 x -> all x Q2 x by imp intro u33
> > ; ?_1: (all x.Q1 x -> Q2 x) -> all x Q1 x -> all x Q2 x
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; .....all x.Q1 x -> Q2 x by assumption u38
; .....x
; ....Q1 x -> Q2 x by all elim
; .....all x Q1 x by assumption u39
; .....x
; ....Q1 x by all elim
; ...Q2 x by imp elim
; ..all x Q2 x by all intro
; .all x Q1 x -> all x Q2 x by imp intro u39
; (all x.Q1 x -> Q2 x) -> all x Q1 x -> all x Q2 x by imp intro u38
> > ; ?_1: (all x.Q1 x & Q2 x) -> all x Q1 x & all x Q2 x
> ; ok, we now have the new goal
; ?_2: all x Q1 x & all x Q2 x from
; 1:all x.Q1 x & Q2 x
> ; ok, we now have the new goals
; ?_4: all x Q2 x from
; 1:all x.Q1 x & Q2 x
; ?_3: all x Q1 x from
; 1:all x.Q1 x & Q2 x
> ; ok, we now have the new goal
; ?_5: Q1 x from
; 1:all x.Q1 x & Q2 x
; x
> ; ok, ?_5 is proved. The active goal now is
; ?_4: all x Q2 x from
; 1:all x.Q1 x & Q2 x
> ; ok, we now have the new goal
; ?_6: Q2 x from
; 1:all x.Q1 x & Q2 x
; x
> ; ok, ?_6 is proved. Proof finished.
> ; .....all x.Q1 x & Q2 x by assumption u44
; .....x
; ....Q1 x & Q2 x by all elim
; ...Q1 x by and elim left
; ..all x Q1 x by all intro
; .....all x.Q1 x & Q2 x by assumption u44
; .....x
; ....Q1 x & Q2 x by all elim
; ...Q2 x by and elim right
; ..all x Q2 x by all intro
; .all x Q1 x & all x Q2 x by and intro
; (all x.Q1 x & Q2 x) -> all x Q1 x & all x Q2 x by imp intro u44
> ; ?_1: (all x.Q1 x & Q2 x) -> all x Q1 x & all x Q2 x
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; .....all x.Q1 x & Q2 x by assumption u47
; .....x
; ....Q1 x & Q2 x by all elim
; ...Q1 x by and elim left
; ..all x Q1 x by all intro
; .....all x.Q1 x & Q2 x by assumption u47
; .....x28
; ....Q1 x28 & Q2 x28 by all elim
; ...Q2 x28 by and elim right
; ..all x28 Q2 x28 by all intro
; .all x Q1 x & all x28 Q2 x28 by and intro
; (all x.Q1 x & Q2 x) -> all x Q1 x & all x28 Q2 x28 by imp intro u47
> > ; ?_1: all x Q1 x & all x Q2 x -> all x.Q1 x & Q2 x
> ; ok, we now have the new goal
; ?_2: Q1 x & Q2 x from
; 1:all x Q1 x & all x Q2 x
; x
> ; ok, we now have the new goals
; ?_4: Q2 x from
; 1:all x Q1 x & all x Q2 x
; x
; ?_3: Q1 x from
; 1:all x Q1 x & all x Q2 x
; x
> ; ok, ?_3 is proved. The active goal now is
; ?_4: Q2 x from
; 1:all x Q1 x & all x Q2 x
; x
> ; ok, ?_4 is proved. Proof finished.
> ; .....all x Q1 x & all x Q2 x by assumption u52
; ....all x Q1 x by and elim left
; ....x
; ...Q1 x by all elim
; .....all x Q1 x & all x Q2 x by assumption u52
; ....all x Q2 x by and elim right
; ....x
; ...Q2 x by all elim
; ..Q1 x & Q2 x by and intro
; .all x.Q1 x & Q2 x by all intro
; all x Q1 x & all x Q2 x -> all x.Q1 x & Q2 x by imp intro u52
> ; ?_1: all x Q1 x & all x Q2 x -> all x.Q1 x & Q2 x
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; .....all x Q1 x & all x Q2 x by assumption u55
; ....all x Q1 x by and elim left
; ....x
; ...Q1 x by all elim
; .....all x Q1 x & all x Q2 x by assumption u55
; ....all x Q2 x by and elim right
; ....x
; ...Q2 x by all elim
; ..Q1 x & Q2 x by and intro
; .all x.Q1 x & Q2 x by all intro
; all x Q1 x & all x Q2 x -> all x.Q1 x & Q2 x by imp intro u55
> > ; ?_1: all x Q x -> exca x Q x
> ; ok, we now have the new goal
; ?_2: F from
; 1:all x Q x
; 2:all x.Q x -> F
> ; ok, ?_2 can be obtained from
; ?_3: Q x from
; 1:all x Q x
; 2:all x.Q x -> F
; x
> ; ok, ?_3 is proved. Proof finished.
> ; ....all x.Q x -> F by assumption u61
; ....x
; ...Q x -> F by all elim
; ....all x Q x by assumption u60
; ....x
; ...Q x by all elim
; ..F by imp elim
; .exca x Q x by imp intro u61
; all x Q x -> exca x Q x by imp intro u60
> ; ?_1: all x Q x -> exca x Q x
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; ....all x.Q x -> F by assumption u66
; ....x45
; ...Q x45 -> F by all elim
; ....all x Q x by assumption u65
; ....x45
; ...Q x45 by all elim
; ..F by imp elim
; .exca x Q x by imp intro u66
; all x Q x -> exca x Q x by imp intro u65
> ; ok, Symm has been added as a new global assumption.
> ; ok, Trans has been added as a new global assumption.
> ; ?_1: all x,y.x R y -> x R x
> ; ok, we now have the new goal
; ?_2: x R x from
; x y 1:x R y
> ; ok, ?_2 can be obtained from
; ?_4: y R x from
; x y 1:x R y
; ?_3: x R y from
; x y 1:x R y
> ; ok, ?_3 is proved. The active goal now is
; ?_4: y R x from
; x y 1:x R y
> ; ok, ?_4 can be obtained from
; ?_5: x R y from
; x y 1:x R y
> ; ok, ?_5 is proved. Proof finished.
> ; ?_1: all x,y.x R y -> x R x
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; ........all x,y,z.x R y -> y R z -> x R z by global assumption Trans
; ........x
; .......all y,z.x R y -> y R z -> x R z by all elim
; .......y
; ......all z.x R y -> y R z -> x R z by all elim
; ......x
; .....x R y -> y R x -> x R x by all elim
; .....x R y by assumption u74
; ....y R x -> x R x by imp elim
; .......all x,y.x R y -> y R x by global assumption Symm
; .......x
; ......all y.x R y -> y R x by all elim
; ......y
; .....x R y -> y R x by all elim
; .....x R y by assumption u74
; ....y R x by imp elim
; ...x R x by imp elim
; ..x R y -> x R x by imp intro u74
; .all y.x R y -> x R x by all intro
; all x,y.x R y -> x R x by all intro
> > ; ?_1: (all x.((Q x -> F) -> F) -> Q x) -> (all x Q x -> P) -> exca x.Q x -> P
> ; ok, we now have the new goal
; ?_2: F from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
> ; ok, ?_2 can be obtained from
; ?_3: Q x -> P from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x
> ; ok, we now have the new goal
; ?_4: P from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x 4:Q x
> ; ok, ?_4 can be obtained from
; ?_5: all x Q x from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x 4:Q x
> ; ok, we now have the new goal
; ?_6: Q x1 from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x 4:Q x
; x1
> ; ok, ?_6 can be obtained from
; ?_7: (Q x1 -> F) -> F from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x 4:Q x
; x1
> ; ok, we now have the new goal
; ?_8: F from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x 4:Q x
; x1 5:Q x1 -> F
> ; ok, ?_8 can be obtained from
; ?_9: Q x1 -> P from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x 4:Q x
; x1 5:Q x1 -> F
> ; ok, we now have the new goal
; ?_10: P from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x 4:Q x
; x1 5:Q x1 -> F
; 6:Q x1
> ; ok, ?_10 can be obtained from
; ?_11: all x Q x from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x 4:Q x
; x1 5:Q x1 -> F
; 6:Q x1
> ; ok, we now have the new goal
; ?_12: Q x2 from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x 4:Q x
; x1 5:Q x1 -> F
; 6:Q x1
; x2
> ; ok, ?_12 can be obtained from
; ?_13: (Q x2 -> F) -> F from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x 4:Q x
; x1 5:Q x1 -> F
; 6:Q x1
; x2
> ; ok, we now have the new goal
; ?_14: F from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x 4:Q x
; x1 5:Q x1 -> F
; 6:Q x1
; x2 7:Q x2 -> F
> ; ok, ?_14 can be obtained from
; ?_15: Q x1 from
; 1:all x.((Q x -> F) -> F) -> Q x
; 2:all x Q x -> P
; 3:all x.(Q x -> P) -> F
; x 4:Q x
; x1 5:Q x1 -> F
; 6:Q x1
; x2 7:Q x2 -> F
> ; ok, ?_15 is proved. Proof finished.
> ; ?_1: (all x.((Q x -> F) -> F) -> Q x) -> (all x Q x -> P) -> exca x.Q x -> P
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; .....all x.(Q x -> P) -> F by assumption u102
; .....x
; ....(Q x -> P) -> F by all elim
; ......all x Q x -> P by assumption u101
; .........all x.((Q x -> F) -> F) -> Q x by assumption u100
; .........x95
; ........((Q x95 -> F) -> F) -> Q x95 by all elim
; ...........all x.(Q x -> P) -> F by assumption u102
; ...........x95
; ..........(Q x95 -> P) -> F by all elim
; ............all x Q x -> P by assumption u101
; ...............all x.((Q x -> F) -> F) -> Q x by assumption u100
; ...............x96
; ..............((Q x96 -> F) -> F) -> Q x96 by all elim
; ................Q x95 -> F by assumption u104
; ................Q x95 by assumption u105
; ...............F by imp elim
; ..............(Q x96 -> F) -> F by imp intro u106
; .............Q x96 by imp elim
; ............all x96 Q x96 by all intro
; ...........P by imp elim
; ..........Q x95 -> P by imp intro u105
; .........F by imp elim
; ........(Q x95 -> F) -> F by imp intro u104
; .......Q x95 by imp elim
; ......all x95 Q x95 by all intro
; .....P by imp elim
; ....Q x -> P by imp intro u103
; ...F by imp elim
; ..exca x.Q x -> P by imp intro u102
; .(all x Q x -> P) -> exca x.Q x -> P by imp intro u101
; (all x.((Q x -> F) -> F) -> Q x) -> (all x Q x -> P) -> exca x.Q x -> P by imp intro u100
> > ; ?_1: (P -> all y Q y) -> all y.P -> Q y
> ; ok, we now have the new goal
; ?_2: Q y from
; 1:P -> all y Q y
; y 2:P
> ; ok, ?_2 can be obtained from
; ?_3: P from
; 1:P -> all y Q y
; y 2:P
> ; ok, ?_3 is proved. Proof finished.
> ; ?_1: (P -> all y Q y) -> all y.P -> Q y
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; .....P -> all y Q y by assumption u114
; .....P by assumption u115
; ....all y Q y by imp elim
; ....y
; ...Q y by all elim
; ..P -> Q y by imp intro u115
; .all y.P -> Q y by all intro
; (P -> all y Q y) -> all y.P -> Q y by imp intro u114
> > ; ?_1: (exca x Q x -> P) -> all x.Q x -> P
> ; ok, we now have the new goal
; ?_2: P from
; 1:exca x Q x -> P
; x 2:Q x
> ; ok, ?_2 can be obtained from
; ?_3: exca x Q x from
; 1:exca x Q x -> P
; x 2:Q x
> ; ok, we now have the new goal
; ?_4: F from
; 1:exca x Q x -> P
; x 2:Q x
; 3:all x.Q x -> F
> ; ok, ?_4 can be obtained from
; ?_5: Q x from
; 1:exca x Q x -> P
; x 2:Q x
; 3:all x.Q x -> F
> ; ok, ?_5 is proved. Proof finished.
> ; ?_1: (exca x Q x -> P) -> all x.Q x -> P
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; ....exca x Q x -> P by assumption u126
; .......all x.Q x -> F by assumption u128
; .......x
; ......Q x -> F by all elim
; ......Q x by assumption u127
; .....F by imp elim
; ....exca x Q x by imp intro u128
; ...P by imp elim
; ..Q x -> P by imp intro u127
; .all x.Q x -> P by all intro
; (exca x Q x -> P) -> all x.Q x -> P by imp intro u126
> > ; ?_1: (all y.F -> Q y) -> (P -> exca y Q y) -> exca y.P -> Q y
> ; ok, we now have the new goal
; ?_2: F from
; 1:all y.F -> Q y
; 2:P -> exca y Q y
; 3:all y.(P -> Q y) -> F
> ; ok, ?_2 can be obtained from
; ?_3: P -> Q y from
; 1:all y.F -> Q y
; 2:P -> exca y Q y
; 3:all y.(P -> Q y) -> F
; y
> ; ok, we now have the new goal
; ?_4: Q y from
; 1:all y.F -> Q y
; 2:P -> exca y Q y
; 3:all y.(P -> Q y) -> F
; y 4:P
> ; ok, ?_4 can be obtained from
; ?_5: F from
; 1:all y.F -> Q y
; 2:P -> exca y Q y
; 3:all y.(P -> Q y) -> F
; y 4:P
> ; ok, ?_5 can be obtained from
; ?_7: all y.Q y -> F from
; 1:all y.F -> Q y
; 2:P -> exca y Q y
; 3:all y.(P -> Q y) -> F
; y 4:P
; ?_6: P from
; 1:all y.F -> Q y
; 2:P -> exca y Q y
; 3:all y.(P -> Q y) -> F
; y 4:P
> ; ok, ?_6 is proved. The active goal now is
; ?_7: all y.Q y -> F from
; 1:all y.F -> Q y
; 2:P -> exca y Q y
; 3:all y.(P -> Q y) -> F
; y 4:P
> ; ok, we now have the new goal
; ?_8: F from
; 1:all y.F -> Q y
; 2:P -> exca y Q y
; 3:all y.(P -> Q y) -> F
; y 4:P
; y1 5:Q y1
> ; ok, ?_8 can be obtained from
; ?_9: P -> Q y1 from
; 1:all y.F -> Q y
; 2:P -> exca y Q y
; 3:all y.(P -> Q y) -> F
; y 4:P
; y1 5:Q y1
> ; ok, we now have the new goal
; ?_10: Q y1 from
; 1:all y.F -> Q y
; 2:P -> exca y Q y
; 3:all y.(P -> Q y) -> F
; y 4:P
; y1 5:Q y1
; 6:P
> ; ok, ?_10 is proved. Proof finished.
> ; ?_1: (all y.F -> Q y) -> (P -> exca y Q y) -> exca y.P -> Q y
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; .....all y.(P -> Q y) -> F by assumption u157
; .....y111
; ....(P -> Q y111) -> F by all elim
; .......all y.F -> Q y by assumption u155
; .......y111
; ......F -> Q y111 by all elim
; ........P -> exca y Q y by assumption u156
; ........P by assumption u158
; .......exca y Q y by imp elim
; ...........all y.(P -> Q y) -> F by assumption u157
; ...........y
; ..........(P -> Q y) -> F by all elim
; ...........Q y by assumption u159
; ..........P -> Q y by imp intro u160
; .........F by imp elim
; ........Q y -> F by imp intro u159
; .......all y.Q y -> F by all intro
; ......F by imp elim
; .....Q y111 by imp elim
; ....P -> Q y111 by imp intro u158
; ...F by imp elim
; ..exca y.P -> Q y by imp intro u157
; .(P -> exca y Q y) -> exca y.P -> Q y by imp intro u156
; (all y.F -> Q y) -> (P -> exca y Q y) -> exca y.P -> Q y by imp intro u155
> > ; ?_1: (((P -> F) -> F) -> P) -> (exca x.Q x -> P) -> all x Q x -> P
> ; ok, we now have the new goal
; ?_2: P from
; 1:((P -> F) -> F) -> P
; 2:exca x.Q x -> P
; 3:all x Q x
> ; ok, ?_2 can be obtained from
; ?_3: (P -> F) -> F from
; 1:((P -> F) -> F) -> P
; 2:exca x.Q x -> P
; 3:all x Q x
> ; ok, we now have the new goal
; ?_4: F from
; 1:((P -> F) -> F) -> P
; 2:exca x.Q x -> P
; 3:all x Q x
; 4:P -> F
> ; ok, ?_4 can be obtained from
; ?_5: all x.(Q x -> P) -> F from
; 1:((P -> F) -> F) -> P
; 2:exca x.Q x -> P
; 3:all x Q x
; 4:P -> F
> ; ok, we now have the new goal
; ?_6: F from
; 1:((P -> F) -> F) -> P
; 2:exca x.Q x -> P
; 3:all x Q x
; 4:P -> F
; x 5:Q x -> P
> ; ok, ?_6 can be obtained from
; ?_7: P from
; 1:((P -> F) -> F) -> P
; 2:exca x.Q x -> P
; 3:all x Q x
; 4:P -> F
; x 5:Q x -> P
> ; ok, ?_7 can be obtained from
; ?_8: Q x from
; 1:((P -> F) -> F) -> P
; 2:exca x.Q x -> P
; 3:all x Q x
; 4:P -> F
; x 5:Q x -> P
> ; ok, ?_8 is proved. Proof finished.
> ; ?_1: (((P -> F) -> F) -> P) -> (exca x.Q x -> P) -> all x Q x -> P
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; ....((P -> F) -> F) -> P by assumption u178
; ......P -> F by assumption u181
; .......((P -> F) -> F) -> P by assumption u178
; .........exca x.Q x -> P by assumption u179
; ............P -> F by assumption u182
; .............Q x -> P by assumption u183
; ..............all x Q x by assumption u180
; ..............x
; .............Q x by all elim
; ............P by imp elim
; ...........F by imp elim
; ..........(Q x -> P) -> F by imp intro u183
; .........all x.(Q x -> P) -> F by all intro
; ........F by imp elim
; .......(P -> F) -> F by imp intro u182
; ......P by imp elim
; .....F by imp elim
; ....(P -> F) -> F by imp intro u181
; ...P by imp elim
; ..all x Q x -> P by imp intro u180
; .(exca x.Q x -> P) -> all x Q x -> P by imp intro u179
; (((P -> F) -> F) -> P) -> (exca x.Q x -> P) -> all x Q x -> P by imp intro u178
> > ; ?_1: (all y.P -> Q y) -> P -> all y Q y
> ; ok, we now have the new goal
; ?_2: Q y from
; 1:all y.P -> Q y
; 2:P
; y
> ; ok, ?_2 can be obtained from
; ?_3: P from
; 1:all y.P -> Q y
; 2:P
; y
> ; ok, ?_3 is proved. Proof finished.
> ; ?_1: (all y.P -> Q y) -> P -> all y Q y
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; .....all y.P -> Q y by assumption u191
; .....y
; ....P -> Q y by all elim
; ....P by assumption u192
; ...Q y by imp elim
; ..all y Q y by all intro
; .P -> all y Q y by imp intro u192
; (all y.P -> Q y) -> P -> all y Q y by imp intro u191
> > ; ?_1: (((P -> F) -> F) -> P) -> (all x.Q x -> P) -> exca x Q x -> P
> ; ok, we now have the new goal
; ?_2: P from
; 1:((P -> F) -> F) -> P
; 2:all x.Q x -> P
; 3:exca x Q x
> ; ok, ?_2 can be obtained from
; ?_3: (P -> F) -> F from
; 1:((P -> F) -> F) -> P
; 2:all x.Q x -> P
; 3:exca x Q x
> ; ok, we now have the new goal
; ?_4: F from
; 1:((P -> F) -> F) -> P
; 2:all x.Q x -> P
; 3:exca x Q x
; 4:P -> F
> ; ok, ?_4 can be obtained from
; ?_5: all x.Q x -> F from
; 1:((P -> F) -> F) -> P
; 2:all x.Q x -> P
; 3:exca x Q x
; 4:P -> F
> ; ok, we now have the new goal
; ?_6: F from
; 1:((P -> F) -> F) -> P
; 2:all x.Q x -> P
; 3:exca x Q x
; 4:P -> F
; x 5:Q x
> ; ok, ?_6 can be obtained from
; ?_7: P from
; 1:((P -> F) -> F) -> P
; 2:all x.Q x -> P
; 3:exca x Q x
; 4:P -> F
; x 5:Q x
> ; ok, ?_7 can be obtained from
; ?_8: Q x from
; 1:((P -> F) -> F) -> P
; 2:all x.Q x -> P
; 3:exca x Q x
; 4:P -> F
; x 5:Q x
> ; ok, ?_8 is proved. Proof finished.
> ; ?_1: (((P -> F) -> F) -> P) -> (all x.Q x -> P) -> exca x Q x -> P
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; ....((P -> F) -> F) -> P by assumption u210
; ......P -> F by assumption u213
; .......((P -> F) -> F) -> P by assumption u210
; .........exca x Q x by assumption u212
; ............P -> F by assumption u214
; ..............all x.Q x -> P by assumption u211
; ..............x
; .............Q x -> P by all elim
; .............Q x by assumption u215
; ............P by imp elim
; ...........F by imp elim
; ..........Q x -> F by imp intro u215
; .........all x.Q x -> F by all intro
; ........F by imp elim
; .......(P -> F) -> F by imp intro u214
; ......P by imp elim
; .....F by imp elim
; ....(P -> F) -> F by imp intro u213
; ...P by imp elim
; ..exca x Q x -> P by imp intro u212
; .(all x.Q x -> P) -> exca x Q x -> P by imp intro u211
; (((P -> F) -> F) -> P) -> (all x.Q x -> P) -> exca x Q x -> P by imp intro u210
> > ; ?_1: (exca y.P -> Q y) -> P -> exca y Q y
> ; ok, we now have the new goal
; ?_2: F from
; 1:exca y.P -> Q y
; 2:P
; 3:all y.Q y -> F
> ; ok, ?_2 can be obtained from
; ?_3: all y.(P -> Q y) -> F from
; 1:exca y.P -> Q y
; 2:P
; 3:all y.Q y -> F
> ; ok, we now have the new goal
; ?_4: F from
; 1:exca y.P -> Q y
; 2:P
; 3:all y.Q y -> F
; y 4:P -> Q y
> ; ok, ?_4 can be obtained from
; ?_5: Q y from
; 1:exca y.P -> Q y
; 2:P
; 3:all y.Q y -> F
; y 4:P -> Q y
> ; ok, ?_5 can be obtained from
; ?_6: P from
; 1:exca y.P -> Q y
; 2:P
; 3:all y.Q y -> F
; y 4:P -> Q y
> ; ok, ?_6 is proved. Proof finished.
> ; ?_1: (exca y.P -> Q y) -> P -> exca y Q y
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; ....exca y.P -> Q y by assumption u229
; ........all y.Q y -> F by assumption u231
; ........y
; .......Q y -> F by all elim
; ........P -> Q y by assumption u232
; ........P by assumption u230
; .......Q y by imp elim
; ......F by imp elim
; .....(P -> Q y) -> F by imp intro u232
; ....all y.(P -> Q y) -> F by all intro
; ...F by imp elim
; ..exca y Q y by imp intro u231
; .P -> exca y Q y by imp intro u230
; (exca y.P -> Q y) -> P -> exca y Q y by imp intro u229
> > ; ?_1: (all y.((Q y -> F) -> F) -> Q y) -> exca x.Q x -> all y Q y
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; ....all x.(Q x -> all y Q y) -> F by assumption u243
; ....x
; ...(Q x -> all y Q y) -> F by all elim
; .......all y.((Q y -> F) -> F) -> Q y by assumption u242
; .......y
; ......((Q y -> F) -> F) -> Q y by all elim
; .........all x.(Q x -> all y Q y) -> F by assumption u243
; .........y
; ........(Q y -> all y Q y) -> F by all elim
; ............all y.((Q y -> F) -> F) -> Q y by assumption u242
; ............y179
; ...........((Q y179 -> F) -> F) -> Q y179 by all elim
; .............Q y -> F by assumption u245
; .............Q y by assumption u246
; ............F by imp elim
; ...........(Q y179 -> F) -> F by imp intro u247
; ..........Q y179 by imp elim
; .........all y179 Q y179 by all intro
; ........Q y -> all y179 Q y179 by imp intro u246
; .......F by imp elim
; ......(Q y -> F) -> F by imp intro u245
; .....Q y by imp elim
; ....all y Q y by all intro
; ...Q x -> all y Q y by imp intro u244
; ..F by imp elim
; .exca x.Q x -> all y Q y by imp intro u243
; (all y.((Q y -> F) -> F) -> Q y) -> exca x.Q x -> all y Q y by imp intro u242
> > ; ?_1: (ex x.Q1 x & Q2 x) -> ex x Q1 x & ex x Q2 x
> ; ok, we now have the new goal
; ?_2: ex x Q1 x & ex x Q2 x from
; 1:ex x.Q1 x & Q2 x
> ; ok, we now have the new goals
; ?_4: ex x Q2 x from
; 1:ex x.Q1 x & Q2 x
; ?_3: ex x Q1 x from
; 1:ex x.Q1 x & Q2 x
> ; ok, ?_3 can be obtained from
; ?_5: all x181.Q1 x181 & Q2 x181 -> ex x Q1 x from
; 1:ex x.Q1 x & Q2 x
> ; ok, we now have the new goal
; ?_6: ex x Q1 x from
; 1:ex x.Q1 x & Q2 x
; x 2:Q1 x & Q2 x
> ; ok, ?_6 can be obtained from
; ?_7: Q1 x from
; 1:ex x.Q1 x & Q2 x
; x 2:Q1 x & Q2 x
> ; ok, ?_7 is proved. The active goal now is
; ?_4: ex x Q2 x from
; 1:ex x.Q1 x & Q2 x
> ; ok, ?_4 can be obtained from
; ?_8: all x185.Q1 x185 & Q2 x185 -> ex x Q2 x from
; 1:ex x.Q1 x & Q2 x
> ; ok, we now have the new goal
; ?_9: ex x Q2 x from
; 1:ex x.Q1 x & Q2 x
; x 2:Q1 x & Q2 x
> ; ok, ?_9 can be obtained from
; ?_10: Q2 x from
; 1:ex x.Q1 x & Q2 x
; x 2:Q1 x & Q2 x
> ; ok, ?_10 is proved. Proof finished.
> ; ?_1: (ex x.Q1 x & Q2 x) -> ex x Q1 x & ex x Q2 x
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; ....(ex x220.Q1 x220 & Q2 x220) -> (all x220.Q1 x220 & Q2 x220 -> ex x Q1 x) -> ex x Q1 x by axiom Ex-Elim
; ....ex x.Q1 x & Q2 x by assumption u264
; ...(all x220.Q1 x220 & Q2 x220 -> ex x Q1 x) -> ex x Q1 x by imp elim
; .......all x222.Q1 x222 -> ex x222 Q1 x222 by axiom Ex-Intro
; .......x220
; ......Q1 x220 -> ex x222 Q1 x222 by all elim
; .......Q1 x220 & Q2 x220 by assumption u266
; ......Q1 x220 by and elim left
; .....ex x222 Q1 x222 by imp elim
; ....Q1 x220 & Q2 x220 -> ex x222 Q1 x222 by imp intro u266
; ...all x220.Q1 x220 & Q2 x220 -> ex x222 Q1 x222 by all intro
; ..ex x Q1 x by imp elim
; ....(ex x216.Q1 x216 & Q2 x216) -> (all x216.Q1 x216 & Q2 x216 -> ex x Q2 x) -> ex x Q2 x by axiom Ex-Elim
; ....ex x.Q1 x & Q2 x by assumption u264
; ...(all x216.Q1 x216 & Q2 x216 -> ex x Q2 x) -> ex x Q2 x by imp elim
; .......all x218.Q2 x218 -> ex x218 Q2 x218 by axiom Ex-Intro
; .......x216
; ......Q2 x216 -> ex x218 Q2 x218 by all elim
; .......Q1 x216 & Q2 x216 by assumption u265
; ......Q2 x216 by and elim right
; .....ex x218 Q2 x218 by imp elim
; ....Q1 x216 & Q2 x216 -> ex x218 Q2 x218 by imp intro u265
; ...all x216.Q1 x216 & Q2 x216 -> ex x218 Q2 x218 by all intro
; ..ex x Q2 x by imp elim
; .ex x Q1 x & ex x Q2 x by and intro
; (ex x.Q1 x & Q2 x) -> ex x Q1 x & ex x Q2 x by imp intro u264
> "[x0]x0@x0"
> > ; ?_1: ex x Q x & P -> ex x.Q x & P
> ; ok, we now have the new goal
; ?_2: ex x.Q x & P from
; 1:ex x Q x & P
> ; ok, ?_2 can be obtained from
; ?_3: ex x.Q x & P from
; 1:ex x Q x & P
; 2:ex x Q x
> ; ok, ?_3 can be obtained from
; ?_4: all x227.Q x227 -> ex x.Q x & P from
; 1:ex x Q x & P
; 2:ex x Q x
> ; ok, we now have the new goal
; ?_5: ex x.Q x & P from
; 1:ex x Q x & P
; 2:ex x Q x
; x 3:Q x
> ; ok, ?_5 can be obtained from
; ?_6: Q x & P from
; 1:ex x Q x & P
; 2:ex x Q x
; x 3:Q x
> ; ok, we now have the new goals
; ?_8: P from
; 1:ex x Q x & P
; 2:ex x Q x
; x 3:Q x
; ?_7: Q x from
; 1:ex x Q x & P
; 2:ex x Q x
; x 3:Q x
> ; ok, ?_7 is proved. The active goal now is
; ?_8: P from
; 1:ex x Q x & P
; 2:ex x Q x
; x 3:Q x
> ; ok, ?_8 is proved. Proof finished.
> ; ?_1: ex x Q x & P -> ex x.Q x & P
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; ...ex x242 Q x242 -> (all x242.Q x242 -> ex x.Q x & P) -> ex x.Q x & P by axiom Ex-Elim
; ....ex x Q x & P by assumption u280
; ...ex x Q x by and elim left
; ..(all x242.Q x242 -> ex x.Q x & P) -> ex x.Q x & P by imp elim
; ......all x244.Q x244 & P -> ex x244.Q x244 & P by axiom Ex-Intro
; ......x242
; .....Q x242 & P -> ex x244.Q x244 & P by all elim
; ......Q x242 by assumption u281
; .......ex x Q x & P by assumption u280
; ......P by and elim right
; .....Q x242 & P by and intro
; ....ex x244.Q x244 & P by imp elim
; ...Q x242 -> ex x244.Q x244 & P by imp intro u281
; ..all x242.Q x242 -> ex x244.Q x244 & P by all intro
; .ex x.Q x & P by imp elim
; ex x Q x & P -> ex x.Q x & P by imp intro u280
> "[x0]x0"
> > ; ?_1: all x Q x -> ex x Q x
> ; ok, we now have the new goal
; ?_2: ex x Q x from
; 1:all x Q x
> ; ok, ?_2 can be obtained from
; ?_3: Q x from
; 1:all x Q x
; x
> ; ok, ?_3 is proved. Proof finished.
> ; ?_1: all x Q x -> ex x Q x
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; ...all x255.Q x255 -> ex x255 Q x255 by axiom Ex-Intro
; ...x
; ..Q x -> ex x255 Q x255 by all elim
; ...all x Q x by assumption u287
; ...x
; ..Q x by all elim
; .ex x255 Q x255 by imp elim
; all x Q x -> ex x255 Q x255 by imp intro u287
> "x"
> > ; ?_1: (ex x Q x -> P) -> all x.Q x -> P
> ; ok, we now have the new goal
; ?_2: P from
; 1:ex x Q x -> P
; x 2:Q x
> ; ok, ?_2 can be obtained from
; ?_3: ex x Q x from
; 1:ex x Q x -> P
; x 2:Q x
> ; ok, ?_3 can be obtained from
; ?_4: Q x from
; 1:ex x Q x -> P
; x 2:Q x
> ; ok, ?_4 is proved. Proof finished.
> ; ?_1: (ex x Q x -> P) -> all x.Q x -> P
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; ....ex x Q x -> P by assumption u296
; ......all x264.Q x264 -> ex x264 Q x264 by axiom Ex-Intro
; ......x
; .....Q x -> ex x264 Q x264 by all elim
; .....Q x by assumption u297
; ....ex x264 Q x264 by imp elim
; ...P by imp elim
; ..Q x -> P by imp intro u297
; .all x.Q x -> P by all intro
; (ex x Q x -> P) -> all x.Q x -> P by imp intro u296
> > ; ?_1: (ex x.Q x -> P) -> all x Q x -> P
> ; ok, we now have the new goal
; ?_2: P from
; 1:ex x.Q x -> P
; 2:all x Q x
> ; ok, ?_2 can be obtained from
; ?_3: all x266.(Q x266 -> P) -> P from
; 1:ex x.Q x -> P
; 2:all x Q x
> ; ok, we now have the new goal
; ?_4: P from
; 1:ex x.Q x -> P
; 2:all x Q x
; x 3:Q x -> P
> ; ok, ?_4 can be obtained from
; ?_5: Q x from
; 1:ex x.Q x -> P
; 2:all x Q x
; x 3:Q x -> P
> ; ok, ?_5 is proved. Proof finished.
> ; ?_1: (ex x.Q x -> P) -> all x Q x -> P
> ; ok, we now have the new goal
; ?_2: P from
; 1:ex x.Q x -> P
; 2:all x Q x
> ; ok, ?_2 can be obtained from
; ?_3: all x269.(Q x269 -> P) -> P from
; 1:ex x.Q x -> P
; 2:all x Q x
> ; ok, ?_3 is proved by minimal quantifier logic. Proof finished.
> ; ....(ex x276.Q x276 -> P) -> (all x276.(Q x276 -> P) -> P) -> P by axiom Ex-Elim
; ....ex x.Q x -> P by assumption u310
; ...(all x276.(Q x276 -> P) -> P) -> P by imp elim
; ......Q x276 -> P by assumption u312
; .......all x Q x by assumption u311
; .......x276
; ......Q x276 by all elim
; .....P by imp elim
; ....(Q x276 -> P) -> P by imp intro u312
; ...all x276.(Q x276 -> P) -> P by all intro
; ..P by imp elim
; .all x Q x -> P by imp intro u311
; (ex x.Q x -> P) -> all x Q x -> P by imp intro u310
> > ; ?_1: (all x.Q x -> P) -> ex x Q x -> P
> ; ok, we now have the new goal
; ?_2: P from
; 1:all x.Q x -> P
; 2:ex x Q x
> ; ok, ?_2 can be obtained from
; ?_3: all x278.Q x278 -> P from
; 1:all x.Q x -> P
; 2:ex x Q x
> ; ok, ?_3 is proved. Proof finished.
> ; ?_1: (all x.Q x -> P) -> ex x Q x -> P
> ; ok, we now have the new goal
; ?_2: P from
; 1:all x.Q x -> P
; 2:ex x Q x
> ; ok, ?_2 can be obtained from
; ?_3: all x281.Q x281 -> P from
; 1:all x.Q x -> P
; 2:ex x Q x
> ; ok, ?_3 is proved by minimal quantifier logic. Proof finished.
> > ; ?_1: (ex y.P -> Q y) -> P -> ex y Q y
> ; ok, we now have the new goal
; ?_2: ex y Q y from
; 1:ex y.P -> Q y
; 2:P
> ; ok, ?_2 can be obtained from
; ?_3: all x283.(P -> Q x283) -> ex y Q y from
; 1:ex y.P -> Q y
; 2:P
> ; ok, we now have the new goal
; ?_4: ex y Q y from
; 1:ex y.P -> Q y
; 2:P
; x 3:P -> Q x
> ; ok, ?_4 can be obtained from
; ?_5: Q x from
; 1:ex y.P -> Q y
; 2:P
; x 3:P -> Q x
> ; ok, ?_5 can be obtained from
; ?_6: P from
; 1:ex y.P -> Q y
; 2:P
; x 3:P -> Q x
> ; ok, ?_6 is proved. Proof finished.
> ; ?_1: (ex y.P -> Q y) -> P -> ex y Q y
> ; ok, ?_1 is proved by minimal quantifier logic. Proof finished.
> ; ....(ex x299.P -> Q x299) -> (all x299.(P -> Q x299) -> ex y Q y) -> ex y Q y by axiom Ex-Elim
; ....ex y.P -> Q y by assumption u334
; ...(all x299.(P -> Q x299) -> ex y Q y) -> ex y Q y by imp elim
; .......all x301.Q x301 -> ex x301 Q x301 by axiom Ex-Intro
; .......x299
; ......Q x299 -> ex x301 Q x301 by all elim
; .......P -> Q x299 by assumption u336
; .......P by assumption u335
; ......Q x299 by imp elim
; .....ex x301 Q x301 by imp elim
; ....(P -> Q x299) -> ex x301 Q x301 by imp intro u336
; ...all x299.(P -> Q x299) -> ex x301 Q x301 by all intro
; ..ex y Q y by imp elim
; .P -> ex y Q y by imp intro u335
; (ex y.P -> Q y) -> P -> ex y Q y by imp intro u334
> "[x0]x0"
>
|