File: quant.scm

package info (click to toggle)
minlog 4.0.99.20100221-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,060 kB
  • sloc: lisp: 112,614; makefile: 231; sh: 11
file content (401 lines) | stat: -rw-r--r-- 7,332 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
; $Id: quant.scm 2240 2008-04-18 06:22:33Z schwicht $

(load "~/minlog/init.scm")
(set! DOT-NOTATION #f)

(add-var-name "x" "y" "z" (py "alpha"))
(add-pvar-name "P" (make-arity))
(add-pvar-name "Q" (make-arity (py "alpha")))
(add-pvar-name "R" (make-arity (py "alpha") (py "alpha")))


; "AllImp"
(set-goal (pf "all x(Q1 x -> Q2 x) -> all x Q1 x -> all x Q2 x"))
(assume 1 2 "x")
(use 1)
(use 2)
; Proof finished.

(set-goal (pf "all x(Q1 x -> Q2 x) -> all x Q1 x -> all x Q2 x"))
(search)
; Proof finished.


; "AllAndOne"
(set-goal (pf "all x(Q1 x & Q2 x) -> all x Q1 x & all x Q2 x"))
(assume 1)
(split)
(assume "x")
(use 1)
(assume "x")
(use 1)
; Proof finished.

(set-goal (pf "all x(Q1 x & Q2 x) -> all x Q1 x & all x Q2 x"))
(search)
; Proof finished.


; "AllAndTwo"
(set-goal (pf " all x Q1 x & all x Q2 x -> all x(Q1 x & Q2 x)"))
(assume 1 "x")
(split)
(use 1)
(use 1)
; Proof finished.

(set-goal (pf " all x Q1 x & all x Q2 x -> all x(Q1 x & Q2 x)"))
(search)
; Proof finished.


; "AllExca"
(set-goal (pf "all x Q x -> exca x Q x"))
(assume 1 2)
(use 2 (pt "(Inhab alpha)"))
(use 1)
; Proof finished.

(set-goal (pf "all x Q x -> exca x Q x"))
(search)
; Proof finished.


(set-goal (pf "all x,y(R x y -> R y x) ->
               all x,y,z(R x y -> R y z -> R x z) ->
               all x,y(R x y -> R x x)"))
(assume "Symm" "Trans" "x" "y" 1)
(use "Trans" (pt "y"))
(use 3)
(use "Symm")
(use 3)
; Proof finished.

(set-goal (pf "all x,y(R x y -> R y x) ->
               all x,y,z(R x y -> R y z -> R x z) ->
               all x,y(R x y -> R x x)"))
(search)
; Proof finished.


; Now we treat somewhat systematically how in classical logic one can
; deal with quantifiers in implications.  - Below we shall do the same
; for the constructive existential quantifier.

; qf1m is obtained from the formula (all x Q x -> P) -> ex x(Q x -> P)
; by translating "ex" into "not all not" and adding stability of Q:

(define qf1m (pf "all x(((Q x -> F) -> F) -> Q x) 
               -> (all x Q x -> P) 
               -> all x((Q x -> P) -> F)
               -> F"))
(set-goal qf1m)
(assume 1 2 3)
(use 3 (pt "x"))
(assume 4)
(use 2)
(assume "x1")
(use 1)
(assume 5)
(use 3 (pt "x1"))
(assume 6)
(use 2)
(assume "x2")
(use 1)
(assume 7)
(use 5)
(use 6)
; Proof finished.

(set-goal qf1m)
(search)
; Proof finished.


(define qf2 (pf "(P -> all y Q y) -> all y(P -> Q y)"))
(set-goal qf2)
(assume 1 "y" 2)
(use 1)
(use 2)
; Proof finished.

(set-goal qf2)
(search)
; Proof finished.


; qf3 is obtained from the formula (ex x Q x -> P) -> all x(Q x -> P)
; by translating "ex" into "not all not":

(define qf3 (pf "((all x(Q x -> F) -> F) -> P) -> all x(Q x -> P)"))
(set-goal qf3)
(assume 1 "x" 2)
(use 1)
(assume 3)
(use 3 (pt "x"))
(use 2)
; Proof finished.

(set-goal qf3)
(search)
; Proof finished.


; qf4m is obtained from the formula (P -> ex y Q y) -> ex y(P -> Q y)
; by translating "ex" into "not all not" and adding ef-falso for Q:

(define qf4m (pf "all y(F -> Q y)
               -> (P -> all y(Q y -> F) -> F)
               -> all y((P -> Q y) -> F) 
               -> F"))
(set-goal qf4m)
(assume 1 2 3)
(use 3 (pt "y"))
(assume 4)
(use 1)
(use 2)
(use 4)
(assume "y1" 5)
(use 3 (pt "y1"))
(assume 6)
(use 5)
; Proof finished.

(set-goal qf4m)
(search)
; Proof finished.


; qf5m is obtained from the formula ex x(Q x -> P) -> all x Q x -> P
; by translating "ex" into "not all not" and adding stability of P:

(define qf5m (pf "(((P -> F) -> F) -> P)
               -> (all x((Q x -> P) -> F) -> F)
               -> all x Q x
               -> P"))
(set-goal qf5m)
(assume 1 2 3)
(use 1)
(assume 4)
(use 2)
(assume "x" 5)
(use 4)
(use 5)
(use 3)
; Proof finished.

(set-goal qf5m)
(search)
; Proof finished.


(define qf6 (pf "all y( P -> Q y) -> P -> all y Q y"))
(set-goal qf6)
(assume 1 2 "y")
(use 1)
(use 2)
; Proof finished.

(set-goal qf6)
(search)
; Proof finished.


; qf7m is obtained from the formula all x(Q x -> P) -> ex x Q x -> P
; by translating "ex" into "not all not" and adding stability of P:

(define qf7m (pf "(((P -> F) -> F) -> P)
               -> all x(Q x -> P) 
               -> (all x(Q x -> F) -> F) 
               -> P"))
(set-goal qf7m)
(assume 1 2 3)
(use 1)
(assume 4)
(use 3)
(assume "x" 5)
(use 4)
(use 2 (pt "x"))
(use 5)
; Proof finished.

(set-goal qf7m)
(search)
; Proof finished.


; qf8 is obtained from the formula ex y(P -> Q y) -> P -> ex y Q y
; by translating "ex" into "not all not":

(define qf8 (pf "(all y((P -> Q y) -> F) -> F)
              -> P 
              -> all y(Q y -> F)
              -> F"))
(set-goal qf8)
(assume 1 2 3)
(use 1)
(assume "y" 4)
(use 3 (pt "y"))
(use 4)
(use 2)
; Proof finished.

(set-goal qf8)
(search)
; Proof finished.


; Some more examples involving classical existence

; "Drinker"
(set-goal (pf "all y(((Q y -> F) -> F) -> Q y) -> exca x(Q x -> all y Q y)"))
(assume 1 2)
(use 2 (pt "(Inhab alpha)"))
(assume 3 "y")
(use 1)
(assume 4)
(use 2 (pt "y"))
(assume 5 "z")
(use 1)
(assume 6)
(use 4)
(use 5)
; Proof finished.

(set-goal (pf "all y(((Q y -> F) -> F) -> Q y) -> exca x(Q x -> all y Q y)"))
(search)
; Proof finished.


; Now we treat the constructive existential quantifier

; "ExAndOne"
(set-goal (pf "ex x(Q1 x & Q2 x) -> ex x Q1 x & ex x Q2 x"))
(assume 1)
(split)
(ex-elim 1)
(assume "x" 2)
(ex-intro (pt "x"))
(use 2)
(ex-elim 1)
(assume "x" 2)
(ex-intro (pt "x"))
(use 2)
; Proof finished.

(set-goal (pf "ex x(Q^1 x & Q^2 x) -> ex x Q^1 x & ex x Q^2 x"))
(search)
; Proof finished.

; Normalized extracted term:
(dnet) ;"[x0]x0@x0"


; ExAndTwo"
(set-goal (pf "ex x Q x & P -> ex x(Q x & P)"))
(assume 1)
(inst-with 1 'left)
(ex-elim 2)
(assume "x" 3)
(ex-intro (pt "x"))
(split)
(use 3)
(use 1)
; Proof finished.

(set-goal (pf "ex x Q^ x & P^ -> ex x(Q^ x & P^)"))
(search)
; Proof finished.

; Normalized extracted term:
(dnet) ;"[x0]x0"


; "AllEx"
(set-goal (pf "all x Q^ x -> ex x Q^ x"))
(assume 1)
(ex-intro (pt "(Inhab alpha)"))
(use 1)
; Proof finished.

; Normalized extracted term:
(dnet) ;"(Inhab alpha)"

(set-goal (pf "all x Q^ x -> ex x Q^ x"))
(search)
; Proof finished.

; Normalized extracted term:
(dnet) ;"x"


; qf1 is the formula (all x Q x -> P) -> ex x(Q x -> P)
; It is not provable in minimal logic.

; (define qf2 (pf "(P -> all y Q y) -> all y(P -> Q y)")) see above

(define qf3 (pf "(ex x Q x -> P) -> all x(Q x -> P)"))
(set-goal qf3)
(assume 1 "x" 2)
(use 1)
(ex-intro (pt "x"))
(use 2)
; Proof finished.

(set-goal qf3)
(search)
; Proof finished.


; qf4 is the formula (P -> ex y Q y) -> ex y(P -> Q y)
; It is not provable in minimal logic.

(define qf5 (pf "ex x(Q x -> P) -> all x Q x -> P"))
(set-goal qf5)
(assume 1 2)
(ex-elim 1)
(assume "x" 3)
(use 3)
(use 2)
; Proof finished.

(set-goal qf5)
(assume 1 2)
(ex-elim 1)
(search)
; Proof finished.


; (define qf6 (pf "all y(P -> Q y) -> P -> all y Q y")) see above


(define qf7 (pf "all x(Q x -> P) -> ex x Q x -> P"))
(set-goal qf7)
(assume 1 2)
(ex-elim 2)
(use 1)
; Proof finished.

(set-goal qf7)
(assume 1 2)
(ex-elim 2)
(search)
; Proof finished.


(define qf8 (pf "ex y(P^ -> Q^ y) -> P^ -> ex y Q^ y"))
(set-goal qf8)
(assume 1 2)
(ex-elim 1)
(assume "x" 3)
(ex-intro (pt "x"))
(use 3)
(use 2)
; Proof finished.

(set-goal qf8)
(search)
; Proof finished.

; Normalized extracted term:
(dnet) ;"[x0]x0"