1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
; $Id: quant.scm 2240 2008-04-18 06:22:33Z schwicht $
(load "~/minlog/init.scm")
(set! DOT-NOTATION #f)
(add-var-name "x" "y" "z" (py "alpha"))
(add-pvar-name "P" (make-arity))
(add-pvar-name "Q" (make-arity (py "alpha")))
(add-pvar-name "R" (make-arity (py "alpha") (py "alpha")))
; "AllImp"
(set-goal (pf "all x(Q1 x -> Q2 x) -> all x Q1 x -> all x Q2 x"))
(assume 1 2 "x")
(use 1)
(use 2)
; Proof finished.
(set-goal (pf "all x(Q1 x -> Q2 x) -> all x Q1 x -> all x Q2 x"))
(search)
; Proof finished.
; "AllAndOne"
(set-goal (pf "all x(Q1 x & Q2 x) -> all x Q1 x & all x Q2 x"))
(assume 1)
(split)
(assume "x")
(use 1)
(assume "x")
(use 1)
; Proof finished.
(set-goal (pf "all x(Q1 x & Q2 x) -> all x Q1 x & all x Q2 x"))
(search)
; Proof finished.
; "AllAndTwo"
(set-goal (pf " all x Q1 x & all x Q2 x -> all x(Q1 x & Q2 x)"))
(assume 1 "x")
(split)
(use 1)
(use 1)
; Proof finished.
(set-goal (pf " all x Q1 x & all x Q2 x -> all x(Q1 x & Q2 x)"))
(search)
; Proof finished.
; "AllExca"
(set-goal (pf "all x Q x -> exca x Q x"))
(assume 1 2)
(use 2 (pt "(Inhab alpha)"))
(use 1)
; Proof finished.
(set-goal (pf "all x Q x -> exca x Q x"))
(search)
; Proof finished.
(set-goal (pf "all x,y(R x y -> R y x) ->
all x,y,z(R x y -> R y z -> R x z) ->
all x,y(R x y -> R x x)"))
(assume "Symm" "Trans" "x" "y" 1)
(use "Trans" (pt "y"))
(use 3)
(use "Symm")
(use 3)
; Proof finished.
(set-goal (pf "all x,y(R x y -> R y x) ->
all x,y,z(R x y -> R y z -> R x z) ->
all x,y(R x y -> R x x)"))
(search)
; Proof finished.
; Now we treat somewhat systematically how in classical logic one can
; deal with quantifiers in implications. - Below we shall do the same
; for the constructive existential quantifier.
; qf1m is obtained from the formula (all x Q x -> P) -> ex x(Q x -> P)
; by translating "ex" into "not all not" and adding stability of Q:
(define qf1m (pf "all x(((Q x -> F) -> F) -> Q x)
-> (all x Q x -> P)
-> all x((Q x -> P) -> F)
-> F"))
(set-goal qf1m)
(assume 1 2 3)
(use 3 (pt "x"))
(assume 4)
(use 2)
(assume "x1")
(use 1)
(assume 5)
(use 3 (pt "x1"))
(assume 6)
(use 2)
(assume "x2")
(use 1)
(assume 7)
(use 5)
(use 6)
; Proof finished.
(set-goal qf1m)
(search)
; Proof finished.
(define qf2 (pf "(P -> all y Q y) -> all y(P -> Q y)"))
(set-goal qf2)
(assume 1 "y" 2)
(use 1)
(use 2)
; Proof finished.
(set-goal qf2)
(search)
; Proof finished.
; qf3 is obtained from the formula (ex x Q x -> P) -> all x(Q x -> P)
; by translating "ex" into "not all not":
(define qf3 (pf "((all x(Q x -> F) -> F) -> P) -> all x(Q x -> P)"))
(set-goal qf3)
(assume 1 "x" 2)
(use 1)
(assume 3)
(use 3 (pt "x"))
(use 2)
; Proof finished.
(set-goal qf3)
(search)
; Proof finished.
; qf4m is obtained from the formula (P -> ex y Q y) -> ex y(P -> Q y)
; by translating "ex" into "not all not" and adding ef-falso for Q:
(define qf4m (pf "all y(F -> Q y)
-> (P -> all y(Q y -> F) -> F)
-> all y((P -> Q y) -> F)
-> F"))
(set-goal qf4m)
(assume 1 2 3)
(use 3 (pt "y"))
(assume 4)
(use 1)
(use 2)
(use 4)
(assume "y1" 5)
(use 3 (pt "y1"))
(assume 6)
(use 5)
; Proof finished.
(set-goal qf4m)
(search)
; Proof finished.
; qf5m is obtained from the formula ex x(Q x -> P) -> all x Q x -> P
; by translating "ex" into "not all not" and adding stability of P:
(define qf5m (pf "(((P -> F) -> F) -> P)
-> (all x((Q x -> P) -> F) -> F)
-> all x Q x
-> P"))
(set-goal qf5m)
(assume 1 2 3)
(use 1)
(assume 4)
(use 2)
(assume "x" 5)
(use 4)
(use 5)
(use 3)
; Proof finished.
(set-goal qf5m)
(search)
; Proof finished.
(define qf6 (pf "all y( P -> Q y) -> P -> all y Q y"))
(set-goal qf6)
(assume 1 2 "y")
(use 1)
(use 2)
; Proof finished.
(set-goal qf6)
(search)
; Proof finished.
; qf7m is obtained from the formula all x(Q x -> P) -> ex x Q x -> P
; by translating "ex" into "not all not" and adding stability of P:
(define qf7m (pf "(((P -> F) -> F) -> P)
-> all x(Q x -> P)
-> (all x(Q x -> F) -> F)
-> P"))
(set-goal qf7m)
(assume 1 2 3)
(use 1)
(assume 4)
(use 3)
(assume "x" 5)
(use 4)
(use 2 (pt "x"))
(use 5)
; Proof finished.
(set-goal qf7m)
(search)
; Proof finished.
; qf8 is obtained from the formula ex y(P -> Q y) -> P -> ex y Q y
; by translating "ex" into "not all not":
(define qf8 (pf "(all y((P -> Q y) -> F) -> F)
-> P
-> all y(Q y -> F)
-> F"))
(set-goal qf8)
(assume 1 2 3)
(use 1)
(assume "y" 4)
(use 3 (pt "y"))
(use 4)
(use 2)
; Proof finished.
(set-goal qf8)
(search)
; Proof finished.
; Some more examples involving classical existence
; "Drinker"
(set-goal (pf "all y(((Q y -> F) -> F) -> Q y) -> exca x(Q x -> all y Q y)"))
(assume 1 2)
(use 2 (pt "(Inhab alpha)"))
(assume 3 "y")
(use 1)
(assume 4)
(use 2 (pt "y"))
(assume 5 "z")
(use 1)
(assume 6)
(use 4)
(use 5)
; Proof finished.
(set-goal (pf "all y(((Q y -> F) -> F) -> Q y) -> exca x(Q x -> all y Q y)"))
(search)
; Proof finished.
; Now we treat the constructive existential quantifier
; "ExAndOne"
(set-goal (pf "ex x(Q1 x & Q2 x) -> ex x Q1 x & ex x Q2 x"))
(assume 1)
(split)
(ex-elim 1)
(assume "x" 2)
(ex-intro (pt "x"))
(use 2)
(ex-elim 1)
(assume "x" 2)
(ex-intro (pt "x"))
(use 2)
; Proof finished.
(set-goal (pf "ex x(Q^1 x & Q^2 x) -> ex x Q^1 x & ex x Q^2 x"))
(search)
; Proof finished.
; Normalized extracted term:
(dnet) ;"[x0]x0@x0"
; ExAndTwo"
(set-goal (pf "ex x Q x & P -> ex x(Q x & P)"))
(assume 1)
(inst-with 1 'left)
(ex-elim 2)
(assume "x" 3)
(ex-intro (pt "x"))
(split)
(use 3)
(use 1)
; Proof finished.
(set-goal (pf "ex x Q^ x & P^ -> ex x(Q^ x & P^)"))
(search)
; Proof finished.
; Normalized extracted term:
(dnet) ;"[x0]x0"
; "AllEx"
(set-goal (pf "all x Q^ x -> ex x Q^ x"))
(assume 1)
(ex-intro (pt "(Inhab alpha)"))
(use 1)
; Proof finished.
; Normalized extracted term:
(dnet) ;"(Inhab alpha)"
(set-goal (pf "all x Q^ x -> ex x Q^ x"))
(search)
; Proof finished.
; Normalized extracted term:
(dnet) ;"x"
; qf1 is the formula (all x Q x -> P) -> ex x(Q x -> P)
; It is not provable in minimal logic.
; (define qf2 (pf "(P -> all y Q y) -> all y(P -> Q y)")) see above
(define qf3 (pf "(ex x Q x -> P) -> all x(Q x -> P)"))
(set-goal qf3)
(assume 1 "x" 2)
(use 1)
(ex-intro (pt "x"))
(use 2)
; Proof finished.
(set-goal qf3)
(search)
; Proof finished.
; qf4 is the formula (P -> ex y Q y) -> ex y(P -> Q y)
; It is not provable in minimal logic.
(define qf5 (pf "ex x(Q x -> P) -> all x Q x -> P"))
(set-goal qf5)
(assume 1 2)
(ex-elim 1)
(assume "x" 3)
(use 3)
(use 2)
; Proof finished.
(set-goal qf5)
(assume 1 2)
(ex-elim 1)
(search)
; Proof finished.
; (define qf6 (pf "all y(P -> Q y) -> P -> all y Q y")) see above
(define qf7 (pf "all x(Q x -> P) -> ex x Q x -> P"))
(set-goal qf7)
(assume 1 2)
(ex-elim 2)
(use 1)
; Proof finished.
(set-goal qf7)
(assume 1 2)
(ex-elim 2)
(search)
; Proof finished.
(define qf8 (pf "ex y(P^ -> Q^ y) -> P^ -> ex y Q^ y"))
(set-goal qf8)
(assume 1 2)
(ex-elim 1)
(assume "x" 3)
(ex-intro (pt "x"))
(use 3)
(use 2)
; Proof finished.
(set-goal qf8)
(search)
; Proof finished.
; Normalized extracted term:
(dnet) ;"[x0]x0"
|