File: file09

package info (click to toggle)
minpack 19961126-13
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 2,676 kB
  • ctags: 643
  • sloc: sh: 8,051; fortran: 2,400; ansic: 736; makefile: 137; awk: 13
file content (879 lines) | stat: -rw-r--r-- 22,708 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
C     **********
C
C     THIS PROGRAM TESTS CODES FOR THE SOLUTION OF N NONLINEAR
C     EQUATIONS IN N VARIABLES. IT CONSISTS OF A DRIVER AND AN
C     INTERFACE SUBROUTINE FCN. THE DRIVER READS IN DATA, CALLS THE
C     NONLINEAR EQUATION SOLVER, AND FINALLY PRINTS OUT INFORMATION
C     ON THE PERFORMANCE OF THE SOLVER. THIS IS ONLY A SAMPLE DRIVER,
C     MANY OTHER DRIVERS ARE POSSIBLE. THE INTERFACE SUBROUTINE FCN
C     IS NECESSARY TO TAKE INTO ACCOUNT THE FORMS OF CALLING
C     SEQUENCES USED BY THE FUNCTION AND JACOBIAN SUBROUTINES IN
C     THE VARIOUS NONLINEAR EQUATION SOLVERS.
C
C     SUBPROGRAMS CALLED
C
C       USER-SUPPLIED ...... FCN
C
C       MINPACK-SUPPLIED ... SPMPAR,ENORM,HYBRJ1,INITPT,VECFCN
C
C       FORTRAN-SUPPLIED ... SQRT
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C     **********
      INTEGER I,IC,INFO,K,LDFJAC,LWA,N,NFEV,NJEV,NPROB,NREAD,NTRIES,
     *        NWRITE
      INTEGER NA(60),NF(60),NJ(60),NP(60),NX(60)
      REAL FACTOR,FNORM1,FNORM2,ONE,TEN,TOL
      REAL FNM(60),FJAC(40,40),FVEC(40),WA(1060),X(40)
      REAL SPMPAR,ENORM
      EXTERNAL FCN
      COMMON /REFNUM/ NPROB,NFEV,NJEV
C
C     LOGICAL INPUT UNIT IS ASSUMED TO BE NUMBER 5.
C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C
      DATA NREAD,NWRITE /5,6/
C
      DATA ONE,TEN /1.0E0,1.0E1/
      TOL = SQRT(SPMPAR(1))
      LDFJAC = 40
      LWA = 1060
      IC = 0
   10 CONTINUE
         READ (NREAD,50) NPROB,N,NTRIES
         IF (NPROB .LE. 0) GO TO 30
         FACTOR = ONE
         DO 20 K = 1, NTRIES
            IC = IC + 1
            CALL INITPT(N,X,NPROB,FACTOR)
            CALL VECFCN(N,X,FVEC,NPROB)
            FNORM1 = ENORM(N,FVEC)
            WRITE (NWRITE,60) NPROB,N
            NFEV = 0
            NJEV = 0
            CALL HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA)
            FNORM2 = ENORM(N,FVEC)
            NP(IC) = NPROB
            NA(IC) = N
            NF(IC) = NFEV
            NJ(IC) = NJEV
            NX(IC) = INFO
            FNM(IC) = FNORM2
            WRITE (NWRITE,70)
     *            FNORM1,FNORM2,NFEV,NJEV,INFO,(X(I), I = 1, N)
            FACTOR = TEN*FACTOR
   20       CONTINUE
         GO TO 10
   30 CONTINUE
      WRITE (NWRITE,80) IC
      WRITE (NWRITE,90)
      DO 40 I = 1, IC
         WRITE (NWRITE,100) NP(I),NA(I),NF(I),NJ(I),NX(I),FNM(I)
   40    CONTINUE
      STOP
   50 FORMAT (3I5)
   60 FORMAT ( //// 5X, 8H PROBLEM, I5, 5X, 10H DIMENSION, I5, 5X //)
   70 FORMAT (5X, 33H INITIAL L2 NORM OF THE RESIDUALS, E15.7 // 5X,
     *        33H FINAL L2 NORM OF THE RESIDUALS  , E15.7 // 5X,
     *        33H NUMBER OF FUNCTION EVALUATIONS  , I10 // 5X,
     *        33H NUMBER OF JACOBIAN EVALUATIONS  , I10 // 5X,
     *        15H EXIT PARAMETER, 18X, I10 // 5X,
     *        27H FINAL APPROXIMATE SOLUTION // (5X, 5E15.7))
   80 FORMAT (12H1SUMMARY OF , I3, 16H CALLS TO HYBRJ1 /)
   90 FORMAT (46H NPROB   N    NFEV   NJEV  INFO  FINAL L2 NORM /)
  100 FORMAT (I4, I6, 2I7, I6, 1X, E15.7)
C
C     LAST CARD OF DRIVER.
C
      END
      SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
      INTEGER N,LDFJAC,IFLAG
      REAL X(N),FVEC(N),FJAC(LDFJAC,N)
C     **********
C
C     THE CALLING SEQUENCE OF FCN SHOULD BE IDENTICAL TO THE
C     CALLING SEQUENCE OF THE FUNCTION SUBROUTINE IN THE NONLINEAR
C     EQUATION SOLVER. FCN SHOULD ONLY CALL THE TESTING FUNCTION
C     AND JACOBIAN SUBROUTINES VECFCN AND VECJAC WITH THE
C     APPROPRIATE VALUE OF PROBLEM NUMBER (NPROB).
C
C     SUBPROGRAMS CALLED
C
C       MINPACK-SUPPLIED ... VECFCN,VECJAC
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C     **********
      INTEGER NPROB,NFEV,NJEV
      COMMON /REFNUM/ NPROB,NFEV,NJEV
      IF (IFLAG .EQ. 1) CALL VECFCN(N,X,FVEC,NPROB)
      IF (IFLAG .EQ. 2) CALL VECJAC(N,X,FJAC,LDFJAC,NPROB)
      IF (IFLAG .EQ. 1) NFEV = NFEV + 1
      IF (IFLAG .EQ. 2) NJEV = NJEV + 1
      RETURN
C
C     LAST CARD OF INTERFACE SUBROUTINE FCN.
C
      END
      SUBROUTINE VECJAC(N,X,FJAC,LDFJAC,NPROB)
      INTEGER N,LDFJAC,NPROB
      REAL X(N),FJAC(LDFJAC,N)
C     **********
C
C     SUBROUTINE VECJAC
C
C     THIS SUBROUTINE DEFINES THE JACOBIAN MATRICES OF FOURTEEN
C     TEST FUNCTIONS. THE PROBLEM DIMENSIONS ARE AS DESCRIBED
C     IN THE PROLOGUE COMMENTS OF VECFCN.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE VECJAC(N,X,FJAC,LDFJAC,NPROB)
C
C     WHERE
C
C       N IS A POSITIVE INTEGER VARIABLE.
C
C       X IS AN ARRAY OF LENGTH N.
C
C       FJAC IS AN N BY N ARRAY. ON OUTPUT FJAC CONTAINS THE
C         JACOBIAN MATRIX OF THE NPROB FUNCTION EVALUATED AT X.
C
C       LDFJAC IS A POSITIVE INTEGER VARIABLE NOT LESS THAN N
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
C
C       NPROB IS A POSITIVE INTEGER VARIABLE WHICH DEFINES THE
C         NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 14.
C
C     SUBPROGRAMS CALLED
C
C       FORTRAN-SUPPLIED ... ATAN,COS,EXP,AMIN1,SIN,SQRT,
C                            MAX0,MIN0
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C     **********
      INTEGER I,IVAR,J,K,K1,K2,ML,MU
      REAL C1,C3,C4,C5,C6,C9,EIGHT,FIFTN,FIVE,FOUR,H,HUNDRD,ONE,PROD,
     *     SIX,SUM,SUM1,SUM2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4,TEN,THREE,
     *     TI,TJ,TK,TPI,TWENTY,TWO,ZERO
      REAL FLOAT
      DATA ZERO,ONE,TWO,THREE,FOUR,FIVE,SIX,EIGHT,TEN,FIFTN,TWENTY,
     *     HUNDRD
     *     /0.0E0,1.0E0,2.0E0,3.0E0,4.0E0,5.0E0,6.0E0,8.0E0,1.0E1,
     *      1.5E1,2.0E1,1.0E2/
      DATA C1,C3,C4,C5,C6,C9 /1.0E4,2.0E2,2.02E1,1.98E1,1.8E2,2.9E1/
      FLOAT(IVAR) = IVAR
C
C     JACOBIAN ROUTINE SELECTOR.
C
      GO TO (10,20,50,60,90,100,200,230,290,320,350,380,420,450),
     *      NPROB
C
C     ROSENBROCK FUNCTION.
C
   10 CONTINUE
      FJAC(1,1) = -ONE
      FJAC(1,2) = ZERO
      FJAC(2,1) = -TWENTY*X(1)
      FJAC(2,2) = TEN
      GO TO 490
C
C     POWELL SINGULAR FUNCTION.
C
   20 CONTINUE
      DO 40 K = 1, 4
         DO 30 J = 1, 4
            FJAC(K,J) = ZERO
   30       CONTINUE
   40    CONTINUE
      FJAC(1,1) = ONE
      FJAC(1,2) = TEN
      FJAC(2,3) = SQRT(FIVE)
      FJAC(2,4) = -FJAC(2,3)
      FJAC(3,2) = TWO*(X(2) - TWO*X(3))
      FJAC(3,3) = -TWO*FJAC(3,2)
      FJAC(4,1) = TWO*SQRT(TEN)*(X(1) - X(4))
      FJAC(4,4) = -FJAC(4,1)
      GO TO 490
C
C     POWELL BADLY SCALED FUNCTION.
C
   50 CONTINUE
      FJAC(1,1) = C1*X(2)
      FJAC(1,2) = C1*X(1)
      FJAC(2,1) = -EXP(-X(1))
      FJAC(2,2) = -EXP(-X(2))
      GO TO 490
C
C     WOOD FUNCTION.
C
   60 CONTINUE
      DO 80 K = 1, 4
         DO 70 J = 1, 4
            FJAC(K,J) = ZERO
   70       CONTINUE
   80    CONTINUE
      TEMP1 = X(2) - THREE*X(1)**2
      TEMP2 = X(4) - THREE*X(3)**2
      FJAC(1,1) = -C3*TEMP1 + ONE
      FJAC(1,2) = -C3*X(1)
      FJAC(2,1) = -TWO*C3*X(1)
      FJAC(2,2) = C3 + C4
      FJAC(2,4) = C5
      FJAC(3,3) = -C6*TEMP2 + ONE
      FJAC(3,4) = -C6*X(3)
      FJAC(4,2) = C5
      FJAC(4,3) = -TWO*C6*X(3)
      FJAC(4,4) = C6 + C4
      GO TO 490
C
C     HELICAL VALLEY FUNCTION.
C
   90 CONTINUE
      TPI = EIGHT*ATAN(ONE)
      TEMP = X(1)**2 + X(2)**2
      TEMP1 = TPI*TEMP
      TEMP2 = SQRT(TEMP)
      FJAC(1,1) = HUNDRD*X(2)/TEMP1
      FJAC(1,2) = -HUNDRD*X(1)/TEMP1
      FJAC(1,3) = TEN
      FJAC(2,1) = TEN*X(1)/TEMP2
      FJAC(2,2) = TEN*X(2)/TEMP2
      FJAC(2,3) = ZERO
      FJAC(3,1) = ZERO
      FJAC(3,2) = ZERO
      FJAC(3,3) = ONE
      GO TO 490
C
C     WATSON FUNCTION.
C
  100 CONTINUE
      DO 120 K = 1, N
         DO 110 J = K, N
            FJAC(K,J) = ZERO
  110       CONTINUE
  120    CONTINUE
      DO 170 I = 1, 29
         TI = FLOAT(I)/C9
         SUM1 = ZERO
         TEMP = ONE
         DO 130 J = 2, N
            SUM1 = SUM1 + FLOAT(J-1)*TEMP*X(J)
            TEMP = TI*TEMP
  130       CONTINUE
         SUM2 = ZERO
         TEMP = ONE
         DO 140 J = 1, N
            SUM2 = SUM2 + TEMP*X(J)
            TEMP = TI*TEMP
  140       CONTINUE
         TEMP1 = TWO*(SUM1 - SUM2**2 - ONE)
         TEMP2 = TWO*SUM2
         TEMP = TI**2
         TK = ONE
         DO 160 K = 1, N
            TJ = TK
            DO 150 J = K, N
               FJAC(K,J) = FJAC(K,J)
     *                     + TJ
     *                       *((FLOAT(K-1)/TI - TEMP2)
     *                         *(FLOAT(J-1)/TI - TEMP2) - TEMP1)
               TJ = TI*TJ
  150          CONTINUE
            TK = TEMP*TK
  160       CONTINUE
  170    CONTINUE
      FJAC(1,1) = FJAC(1,1) + SIX*X(1)**2 - TWO*X(2) + THREE
      FJAC(1,2) = FJAC(1,2) - TWO*X(1)
      FJAC(2,2) = FJAC(2,2) + ONE
      DO 190 K = 1, N
         DO 180 J = K, N
            FJAC(J,K) = FJAC(K,J)
  180       CONTINUE
  190    CONTINUE
      GO TO 490
C
C     CHEBYQUAD FUNCTION.
C
  200 CONTINUE
      TK = ONE/FLOAT(N)
      DO 220 J = 1, N
         TEMP1 = ONE
         TEMP2 = TWO*X(J) - ONE
         TEMP = TWO*TEMP2
         TEMP3 = ZERO
         TEMP4 = TWO
         DO 210 K = 1, N
            FJAC(K,J) = TK*TEMP4
            TI = FOUR*TEMP2 + TEMP*TEMP4 - TEMP3
            TEMP3 = TEMP4
            TEMP4 = TI
            TI = TEMP*TEMP2 - TEMP1
            TEMP1 = TEMP2
            TEMP2 = TI
  210       CONTINUE
  220    CONTINUE
      GO TO 490
C
C     BROWN ALMOST-LINEAR FUNCTION.
C
  230 CONTINUE
      PROD = ONE
      DO 250 J = 1, N
         PROD = X(J)*PROD
         DO 240 K = 1, N
            FJAC(K,J) = ONE
  240       CONTINUE
         FJAC(J,J) = TWO
  250    CONTINUE
      DO 280 J = 1, N
         TEMP = X(J)
         IF (TEMP .NE. ZERO) GO TO 270
         TEMP = ONE
         PROD = ONE
         DO 260 K = 1, N
            IF (K .NE. J) PROD = X(K)*PROD
  260       CONTINUE
  270    CONTINUE
         FJAC(N,J) = PROD/TEMP
  280    CONTINUE
      GO TO 490
C
C     DISCRETE BOUNDARY VALUE FUNCTION.
C
  290 CONTINUE
      H = ONE/FLOAT(N+1)
      DO 310 K = 1, N
         TEMP = THREE*(X(K) + FLOAT(K)*H + ONE)**2
         DO 300 J = 1, N
            FJAC(K,J) = ZERO
  300       CONTINUE
         FJAC(K,K) = TWO + TEMP*H**2/TWO
         IF (K .NE. 1) FJAC(K,K-1) = -ONE
         IF (K .NE. N) FJAC(K,K+1) = -ONE
  310    CONTINUE
      GO TO 490
C
C     DISCRETE INTEGRAL EQUATION FUNCTION.
C
  320 CONTINUE
      H = ONE/FLOAT(N+1)
      DO 340 K = 1, N
         TK = FLOAT(K)*H
         DO 330 J = 1, N
            TJ = FLOAT(J)*H
            TEMP = THREE*(X(J) + TJ + ONE)**2
            FJAC(K,J) = H*AMIN1(TJ*(ONE-TK),TK*(ONE-TJ))*TEMP/TWO
  330       CONTINUE
         FJAC(K,K) = FJAC(K,K) + ONE
  340    CONTINUE
      GO TO 490
C
C     TRIGONOMETRIC FUNCTION.
C
  350 CONTINUE
      DO 370 J = 1, N
         TEMP = SIN(X(J))
         DO 360 K = 1, N
            FJAC(K,J) = TEMP
  360       CONTINUE
         FJAC(J,J) = FLOAT(J+1)*TEMP - COS(X(J))
  370    CONTINUE
      GO TO 490
C
C     VARIABLY DIMENSIONED FUNCTION.
C
  380 CONTINUE
      SUM = ZERO
      DO 390 J = 1, N
         SUM = SUM + FLOAT(J)*(X(J) - ONE)
  390    CONTINUE
      TEMP = ONE + SIX*SUM**2
      DO 410 K = 1, N
         DO 400 J = K, N
            FJAC(K,J) = FLOAT(K*J)*TEMP
            FJAC(J,K) = FJAC(K,J)
  400       CONTINUE
         FJAC(K,K) = FJAC(K,K) + ONE
  410    CONTINUE
      GO TO 490
C
C     BROYDEN TRIDIAGONAL FUNCTION.
C
  420 CONTINUE
      DO 440 K = 1, N
         DO 430 J = 1, N
            FJAC(K,J) = ZERO
  430       CONTINUE
         FJAC(K,K) = THREE - FOUR*X(K)
         IF (K .NE. 1) FJAC(K,K-1) = -ONE
         IF (K .NE. N) FJAC(K,K+1) = -TWO
  440    CONTINUE
      GO TO 490
C
C     BROYDEN BANDED FUNCTION.
C
  450 CONTINUE
      ML = 5
      MU = 1
      DO 480 K = 1, N
         DO 460 J = 1, N
            FJAC(K,J) = ZERO
  460       CONTINUE
         K1 = MAX0(1,K-ML)
         K2 = MIN0(K+MU,N)
         DO 470 J = K1, K2
            IF (J .NE. K) FJAC(K,J) = -(ONE + TWO*X(J))
  470       CONTINUE
         FJAC(K,K) = TWO + FIFTN*X(K)**2
  480    CONTINUE
  490 CONTINUE
      RETURN
C
C     LAST CARD OF SUBROUTINE VECJAC.
C
      END
      SUBROUTINE INITPT(N,X,NPROB,FACTOR)
      INTEGER N,NPROB
      REAL FACTOR
      REAL X(N)
C     **********
C
C     SUBROUTINE INITPT
C
C     THIS SUBROUTINE SPECIFIES THE STANDARD STARTING POINTS FOR
C     THE FUNCTIONS DEFINED BY SUBROUTINE VECFCN. THE SUBROUTINE
C     RETURNS IN X A MULTIPLE (FACTOR) OF THE STANDARD STARTING
C     POINT. FOR THE SIXTH FUNCTION THE STANDARD STARTING POINT IS
C     ZERO, SO IN THIS CASE, IF FACTOR IS NOT UNITY, THEN THE
C     SUBROUTINE RETURNS THE VECTOR  X(J) = FACTOR, J=1,...,N.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE INITPT(N,X,NPROB,FACTOR)
C
C     WHERE
C
C       N IS A POSITIVE INTEGER INPUT VARIABLE.
C
C       X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE STANDARD
C         STARTING POINT FOR PROBLEM NPROB MULTIPLIED BY FACTOR.
C
C       NPROB IS A POSITIVE INTEGER INPUT VARIABLE WHICH DEFINES THE
C         NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 14.
C
C       FACTOR IS AN INPUT VARIABLE WHICH SPECIFIES THE MULTIPLE OF
C         THE STANDARD STARTING POINT. IF FACTOR IS UNITY, NO
C         MULTIPLICATION IS PERFORMED.
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C     **********
      INTEGER IVAR,J
      REAL C1,H,HALF,ONE,THREE,TJ,ZERO
      REAL FLOAT
      DATA ZERO,HALF,ONE,THREE,C1 /0.0E0,5.0E-1,1.0E0,3.0E0,1.2E0/
      FLOAT(IVAR) = IVAR
C
C     SELECTION OF INITIAL POINT.
C
      GO TO (10,20,30,40,50,60,80,100,120,120,140,160,180,180), NPROB
C
C     ROSENBROCK FUNCTION.
C
   10 CONTINUE
      X(1) = -C1
      X(2) = ONE
      GO TO 200
C
C     POWELL SINGULAR FUNCTION.
C
   20 CONTINUE
      X(1) = THREE
      X(2) = -ONE
      X(3) = ZERO
      X(4) = ONE
      GO TO 200
C
C     POWELL BADLY SCALED FUNCTION.
C
   30 CONTINUE
      X(1) = ZERO
      X(2) = ONE
      GO TO 200
C
C     WOOD FUNCTION.
C
   40 CONTINUE
      X(1) = -THREE
      X(2) = -ONE
      X(3) = -THREE
      X(4) = -ONE
      GO TO 200
C
C     HELICAL VALLEY FUNCTION.
C
   50 CONTINUE
      X(1) = -ONE
      X(2) = ZERO
      X(3) = ZERO
      GO TO 200
C
C     WATSON FUNCTION.
C
   60 CONTINUE
      DO 70 J = 1, N
         X(J) = ZERO
   70    CONTINUE
      GO TO 200
C
C     CHEBYQUAD FUNCTION.
C
   80 CONTINUE
      H = ONE/FLOAT(N+1)
      DO 90 J = 1, N
         X(J) = FLOAT(J)*H
   90    CONTINUE
      GO TO 200
C
C     BROWN ALMOST-LINEAR FUNCTION.
C
  100 CONTINUE
      DO 110 J = 1, N
         X(J) = HALF
  110    CONTINUE
      GO TO 200
C
C     DISCRETE BOUNDARY VALUE AND INTEGRAL EQUATION FUNCTIONS.
C
  120 CONTINUE
      H = ONE/FLOAT(N+1)
      DO 130 J = 1, N
         TJ = FLOAT(J)*H
         X(J) = TJ*(TJ - ONE)
  130    CONTINUE
      GO TO 200
C
C     TRIGONOMETRIC FUNCTION.
C
  140 CONTINUE
      H = ONE/FLOAT(N)
      DO 150 J = 1, N
         X(J) = H
  150    CONTINUE
      GO TO 200
C
C     VARIABLY DIMENSIONED FUNCTION.
C
  160 CONTINUE
      H = ONE/FLOAT(N)
      DO 170 J = 1, N
         X(J) = ONE - FLOAT(J)*H
  170    CONTINUE
      GO TO 200
C
C     BROYDEN TRIDIAGONAL AND BANDED FUNCTIONS.
C
  180 CONTINUE
      DO 190 J = 1, N
         X(J) = -ONE
  190    CONTINUE
  200 CONTINUE
C
C     COMPUTE MULTIPLE OF INITIAL POINT.
C
      IF (FACTOR .EQ. ONE) GO TO 250
      IF (NPROB .EQ. 6) GO TO 220
         DO 210 J = 1, N
            X(J) = FACTOR*X(J)
  210       CONTINUE
         GO TO 240
  220 CONTINUE
         DO 230 J = 1, N
            X(J) = FACTOR
  230       CONTINUE
  240 CONTINUE
  250 CONTINUE
      RETURN
C
C     LAST CARD OF SUBROUTINE INITPT.
C
      END
      SUBROUTINE VECFCN(N,X,FVEC,NPROB)
      INTEGER N,NPROB
      REAL X(N),FVEC(N)
C     **********
C
C     SUBROUTINE VECFCN
C
C     THIS SUBROUTINE DEFINES FOURTEEN TEST FUNCTIONS. THE FIRST
C     FIVE TEST FUNCTIONS ARE OF DIMENSIONS 2,4,2,4,3, RESPECTIVELY,
C     WHILE THE REMAINING TEST FUNCTIONS ARE OF VARIABLE DIMENSION
C     N FOR ANY N GREATER THAN OR EQUAL TO 1 (PROBLEM 6 IS AN
C     EXCEPTION TO THIS, SINCE IT DOES NOT ALLOW N = 1).
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE VECFCN(N,X,FVEC,NPROB)
C
C     WHERE
C
C       N IS A POSITIVE INTEGER INPUT VARIABLE.
C
C       X IS AN INPUT ARRAY OF LENGTH N.
C
C       FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE NPROB
C         FUNCTION VECTOR EVALUATED AT X.
C
C       NPROB IS A POSITIVE INTEGER INPUT VARIABLE WHICH DEFINES THE
C         NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 14.
C
C     SUBPROGRAMS CALLED
C
C       FORTRAN-SUPPLIED ... ATAN,COS,EXP,SIGN,SIN,SQRT,
C                            MAX0,MIN0
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C     **********
      INTEGER I,IEV,IVAR,J,K,K1,K2,KP1,ML,MU
      REAL C1,C2,C3,C4,C5,C6,C7,C8,C9,EIGHT,FIVE,H,ONE,PROD,SUM,SUM1,
     *     SUM2,TEMP,TEMP1,TEMP2,TEN,THREE,TI,TJ,TK,TPI,TWO,ZERO
      REAL FLOAT
      DATA ZERO,ONE,TWO,THREE,FIVE,EIGHT,TEN
     *     /0.0E0,1.0E0,2.0E0,3.0E0,5.0E0,8.0E0,1.0E1/
      DATA C1,C2,C3,C4,C5,C6,C7,C8,C9
     *     /1.0E4,1.0001E0,2.0E2,2.02E1,1.98E1,1.8E2,2.5E-1,5.0E-1,
     *      2.9E1/
      FLOAT(IVAR) = IVAR
C
C     PROBLEM SELECTOR.
C
      GO TO (10,20,30,40,50,60,120,170,200,220,270,300,330,350), NPROB
C
C     ROSENBROCK FUNCTION.
C
   10 CONTINUE
      FVEC(1) = ONE - X(1)
      FVEC(2) = TEN*(X(2) - X(1)**2)
      GO TO 380
C
C     POWELL SINGULAR FUNCTION.
C
   20 CONTINUE
      FVEC(1) = X(1) + TEN*X(2)
      FVEC(2) = SQRT(FIVE)*(X(3) - X(4))
      FVEC(3) = (X(2) - TWO*X(3))**2
      FVEC(4) = SQRT(TEN)*(X(1) - X(4))**2
      GO TO 380
C
C     POWELL BADLY SCALED FUNCTION.
C
   30 CONTINUE
      FVEC(1) = C1*X(1)*X(2) - ONE
      FVEC(2) = EXP(-X(1)) + EXP(-X(2)) - C2
      GO TO 380
C
C     WOOD FUNCTION.
C
   40 CONTINUE
      TEMP1 = X(2) - X(1)**2
      TEMP2 = X(4) - X(3)**2
      FVEC(1) = -C3*X(1)*TEMP1 - (ONE - X(1))
      FVEC(2) = C3*TEMP1 + C4*(X(2) - ONE) + C5*(X(4) - ONE)
      FVEC(3) = -C6*X(3)*TEMP2 - (ONE - X(3))
      FVEC(4) = C6*TEMP2 + C4*(X(4) - ONE) + C5*(X(2) - ONE)
      GO TO 380
C
C     HELICAL VALLEY FUNCTION.
C
   50 CONTINUE
      TPI = EIGHT*ATAN(ONE)
      TEMP1 = SIGN(C7,X(2))
      IF (X(1) .GT. ZERO) TEMP1 = ATAN(X(2)/X(1))/TPI
      IF (X(1) .LT. ZERO) TEMP1 = ATAN(X(2)/X(1))/TPI + C8
      TEMP2 = SQRT(X(1)**2+X(2)**2)
      FVEC(1) = TEN*(X(3) - TEN*TEMP1)
      FVEC(2) = TEN*(TEMP2 - ONE)
      FVEC(3) = X(3)
      GO TO 380
C
C     WATSON FUNCTION.
C
   60 CONTINUE
      DO 70 K = 1, N
         FVEC(K) = ZERO
   70    CONTINUE
      DO 110 I = 1, 29
         TI = FLOAT(I)/C9
         SUM1 = ZERO
         TEMP = ONE
         DO 80 J = 2, N
            SUM1 = SUM1 + FLOAT(J-1)*TEMP*X(J)
            TEMP = TI*TEMP
   80       CONTINUE
         SUM2 = ZERO
         TEMP = ONE
         DO 90 J = 1, N
            SUM2 = SUM2 + TEMP*X(J)
            TEMP = TI*TEMP
   90       CONTINUE
         TEMP1 = SUM1 - SUM2**2 - ONE
         TEMP2 = TWO*TI*SUM2
         TEMP = ONE/TI
         DO 100 K = 1, N
            FVEC(K) = FVEC(K) + TEMP*(FLOAT(K-1) - TEMP2)*TEMP1
            TEMP = TI*TEMP
  100       CONTINUE
  110    CONTINUE
      TEMP = X(2) - X(1)**2 - ONE
      FVEC(1) = FVEC(1) + X(1)*(ONE - TWO*TEMP)
      FVEC(2) = FVEC(2) + TEMP
      GO TO 380
C
C     CHEBYQUAD FUNCTION.
C
  120 CONTINUE
      DO 130 K = 1, N
         FVEC(K) = ZERO
  130    CONTINUE
      DO 150 J = 1, N
         TEMP1 = ONE
         TEMP2 = TWO*X(J) - ONE
         TEMP = TWO*TEMP2
         DO 140 I = 1, N
            FVEC(I) = FVEC(I) + TEMP2
            TI = TEMP*TEMP2 - TEMP1
            TEMP1 = TEMP2
            TEMP2 = TI
  140       CONTINUE
  150    CONTINUE
      TK = ONE/FLOAT(N)
      IEV = -1
      DO 160 K = 1, N
         FVEC(K) = TK*FVEC(K)
         IF (IEV .GT. 0) FVEC(K) = FVEC(K) + ONE/(FLOAT(K)**2 - ONE)
         IEV = -IEV
  160    CONTINUE
      GO TO 380
C
C     BROWN ALMOST-LINEAR FUNCTION.
C
  170 CONTINUE
      SUM = -FLOAT(N+1)
      PROD = ONE
      DO 180 J = 1, N
         SUM = SUM + X(J)
         PROD = X(J)*PROD
  180    CONTINUE
      DO 190 K = 1, N
         FVEC(K) = X(K) + SUM
  190    CONTINUE
      FVEC(N) = PROD - ONE
      GO TO 380
C
C     DISCRETE BOUNDARY VALUE FUNCTION.
C
  200 CONTINUE
      H = ONE/FLOAT(N+1)
      DO 210 K = 1, N
         TEMP = (X(K) + FLOAT(K)*H + ONE)**3
         TEMP1 = ZERO
         IF (K .NE. 1) TEMP1 = X(K-1)
         TEMP2 = ZERO
         IF (K .NE. N) TEMP2 = X(K+1)
         FVEC(K) = TWO*X(K) - TEMP1 - TEMP2 + TEMP*H**2/TWO
  210    CONTINUE
      GO TO 380
C
C     DISCRETE INTEGRAL EQUATION FUNCTION.
C
  220 CONTINUE
      H = ONE/FLOAT(N+1)
      DO 260 K = 1, N
         TK = FLOAT(K)*H
         SUM1 = ZERO
         DO 230 J = 1, K
            TJ = FLOAT(J)*H
            TEMP = (X(J) + TJ + ONE)**3
            SUM1 = SUM1 + TJ*TEMP
  230       CONTINUE
         SUM2 = ZERO
         KP1 = K + 1
         IF (N .LT. KP1) GO TO 250
         DO 240 J = KP1, N
            TJ = FLOAT(J)*H
            TEMP = (X(J) + TJ + ONE)**3
            SUM2 = SUM2 + (ONE - TJ)*TEMP
  240       CONTINUE
  250    CONTINUE
         FVEC(K) = X(K) + H*((ONE - TK)*SUM1 + TK*SUM2)/TWO
  260    CONTINUE
      GO TO 380
C
C     TRIGONOMETRIC FUNCTION.
C
  270 CONTINUE
      SUM = ZERO
      DO 280 J = 1, N
         FVEC(J) = COS(X(J))
         SUM = SUM + FVEC(J)
  280    CONTINUE
      DO 290 K = 1, N
         FVEC(K) = FLOAT(N+K) - SIN(X(K)) - SUM - FLOAT(K)*FVEC(K)
  290    CONTINUE
      GO TO 380
C
C     VARIABLY DIMENSIONED FUNCTION.
C
  300 CONTINUE
      SUM = ZERO
      DO 310 J = 1, N
         SUM = SUM + FLOAT(J)*(X(J) - ONE)
  310    CONTINUE
      TEMP = SUM*(ONE + TWO*SUM**2)
      DO 320 K = 1, N
         FVEC(K) = X(K) - ONE + FLOAT(K)*TEMP
  320    CONTINUE
      GO TO 380
C
C     BROYDEN TRIDIAGONAL FUNCTION.
C
  330 CONTINUE
      DO 340 K = 1, N
         TEMP = (THREE - TWO*X(K))*X(K)
         TEMP1 = ZERO
         IF (K .NE. 1) TEMP1 = X(K-1)
         TEMP2 = ZERO
         IF (K .NE. N) TEMP2 = X(K+1)
         FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
  340    CONTINUE
      GO TO 380
C
C     BROYDEN BANDED FUNCTION.
C
  350 CONTINUE
      ML = 5
      MU = 1
      DO 370 K = 1, N
         K1 = MAX0(1,K-ML)
         K2 = MIN0(K+MU,N)
         TEMP = ZERO
         DO 360 J = K1, K2
            IF (J .NE. K) TEMP = TEMP + X(J)*(ONE + X(J))
  360       CONTINUE
         FVEC(K) = X(K)*(TWO + FIVE*X(K)**2) + ONE - TEMP
  370    CONTINUE
  380 CONTINUE
      RETURN
C
C     LAST CARD OF SUBROUTINE VECFCN.
C
      END