File: file11

package info (click to toggle)
minpack 19961126-13
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 2,676 kB
  • ctags: 643
  • sloc: sh: 8,051; fortran: 2,400; ansic: 736; makefile: 137; awk: 13
file content (1033 lines) | stat: -rw-r--r-- 28,092 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
C     **********
C
C     THIS PROGRAM TESTS CODES FOR THE LEAST-SQUARES SOLUTION OF
C     M NONLINEAR EQUATIONS IN N VARIABLES. IT CONSISTS OF A DRIVER
C     AND AN INTERFACE SUBROUTINE FCN. THE DRIVER READS IN DATA,
C     CALLS THE NONLINEAR LEAST-SQUARES SOLVER, AND FINALLY PRINTS
C     OUT INFORMATION ON THE PERFORMANCE OF THE SOLVER. THIS IS
C     ONLY A SAMPLE DRIVER, MANY OTHER DRIVERS ARE POSSIBLE. THE
C     INTERFACE SUBROUTINE FCN IS NECESSARY TO TAKE INTO ACCOUNT THE
C     FORMS OF CALLING SEQUENCES USED BY THE FUNCTION AND JACOBIAN
C     SUBROUTINES IN THE VARIOUS NONLINEAR LEAST-SQUARES SOLVERS.
C
C     SUBPROGRAMS CALLED
C
C       USER-SUPPLIED ...... FCN
C
C       MINPACK-SUPPLIED ... SPMPAR,ENORM,INITPT,LMSTR1,SSQFCN
C
C       FORTRAN-SUPPLIED ... SQRT
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C     **********
      INTEGER I,IC,INFO,K,LDFJAC,LWA,M,N,NFEV,NJEV,NPROB,NREAD,NTRIES,
     *        NWRITE
      INTEGER IWA(40),MA(60),NA(60),NF(60),NJ(60),NP(60),NX(60)
      REAL FACTOR,FNORM1,FNORM2,ONE,TEN,TOL
      REAL FJAC(40,40),FNM(60),FVEC(65),WA(265),X(40)
      REAL SPMPAR,ENORM
      EXTERNAL FCN
      COMMON /REFNUM/ NPROB,NFEV,NJEV
C
C     LOGICAL INPUT UNIT IS ASSUMED TO BE NUMBER 5.
C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C
      DATA NREAD,NWRITE /5,6/
C
      DATA ONE,TEN /1.0E0,1.0E1/
      TOL = SQRT(SPMPAR(1))
      LDFJAC = 40
      LWA = 265
      IC = 0
   10 CONTINUE
         READ (NREAD,50) NPROB,N,M,NTRIES
         IF (NPROB .LE. 0) GO TO 30
         FACTOR = ONE
         DO 20 K = 1, NTRIES
            IC = IC + 1
            CALL INITPT(N,X,NPROB,FACTOR)
            CALL SSQFCN(M,N,X,FVEC,NPROB)
            FNORM1 = ENORM(M,FVEC)
            WRITE (NWRITE,60) NPROB,N,M
            NFEV = 0
            NJEV = 0
            CALL LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IWA,WA,
     *                  LWA)
            CALL SSQFCN(M,N,X,FVEC,NPROB)
            FNORM2 = ENORM(M,FVEC)
            NP(IC) = NPROB
            NA(IC) = N
            MA(IC) = M
            NF(IC) = NFEV
            NJ(IC) = NJEV
            NX(IC) = INFO
            FNM(IC) = FNORM2
            WRITE (NWRITE,70)
     *            FNORM1,FNORM2,NFEV,NJEV,INFO,(X(I), I = 1, N)
            FACTOR = TEN*FACTOR
   20       CONTINUE
         GO TO 10
   30 CONTINUE
      WRITE (NWRITE,80) IC
      WRITE (NWRITE,90)
      DO 40 I = 1, IC
         WRITE (NWRITE,100) NP(I),NA(I),MA(I),NF(I),NJ(I),NX(I),FNM(I)
   40    CONTINUE
      STOP
   50 FORMAT (4I5)
   60 FORMAT ( //// 5X, 8H PROBLEM, I5, 5X, 11H DIMENSIONS, 2I5, 5X //
     *         )
   70 FORMAT (5X, 33H INITIAL L2 NORM OF THE RESIDUALS, E15.7 // 5X,
     *        33H FINAL L2 NORM OF THE RESIDUALS  , E15.7 // 5X,
     *        33H NUMBER OF FUNCTION EVALUATIONS  , I10 // 5X,
     *        33H NUMBER OF JACOBIAN EVALUATIONS  , I10 // 5X,
     *        15H EXIT PARAMETER, 18X, I10 // 5X,
     *        27H FINAL APPROXIMATE SOLUTION // (5X, 5E15.7))
   80 FORMAT (12H1SUMMARY OF , I3, 16H CALLS TO LMSTR1 /)
   90 FORMAT (49H NPROB   N    M   NFEV  NJEV  INFO  FINAL L2 NORM /)
  100 FORMAT (3I5, 3I6, 2X, E15.7)
C
C     LAST CARD OF DRIVER.
C
      END
      SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
      INTEGER M,N,IFLAG
      REAL X(N),FVEC(M),FJROW(N)
C     **********
C
C     THE CALLING SEQUENCE OF FCN SHOULD BE IDENTICAL TO THE
C     CALLING SEQUENCE OF THE FUNCTION SUBROUTINE IN THE NONLINEAR
C     LEAST SQUARES SOLVER. IF IFLAG = 1, FCN SHOULD ONLY CALL THE
C     TESTING FUNCTION SUBROUTINE SSQFCN. IF IFLAG = I, I .GE. 2,
C     FCN SHOULD ONLY CALL SUBROUTINE SSQJAC TO CALCULATE THE
C     (I-1)-ST ROW OF THE JACOBIAN. (THE SSQJAC SUBROUTINE PROVIDED
C     HERE FOR TESTING PURPOSES CALCULATES THE ENTIRE JACOBIAN
C     MATRIX AND IS THEREFORE CALLED ONLY WHEN IFLAG = 2.) EACH
C     CALL TO SSQFCN OR SSQJAC SHOULD SPECIFY THE APPROPRIATE
C     VALUE OF PROBLEM NUMBER (NPROB).
C
C     SUBPROGRAMS CALLED
C
C       MINPACK-SUPPLIED ... SSQFCN,SSQJAC
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C     **********
      INTEGER NPROB,NFEV,NJEV,J
      REAL TEMP(65,40)
      COMMON /REFNUM/ NPROB,NFEV,NJEV
      IF (IFLAG .EQ. 1) CALL SSQFCN(M,N,X,FVEC,NPROB)
      IF (IFLAG .EQ. 2) CALL SSQJAC(M,N,X,TEMP,65,NPROB)
      IF (IFLAG .EQ. 1) NFEV = NFEV + 1
      IF (IFLAG .EQ. 2) NJEV = NJEV + 1
      IF (IFLAG .EQ. 1) GO TO 120
      DO 110 J = 1, N
         FJROW(J) = TEMP(IFLAG-1,J)
  110    CONTINUE
  120 CONTINUE
      RETURN
C
C     LAST CARD OF INTERFACE SUBROUTINE FCN.
C
      END
      SUBROUTINE SSQJAC(M,N,X,FJAC,LDFJAC,NPROB)
      INTEGER M,N,LDFJAC,NPROB
      REAL X(N),FJAC(LDFJAC,N)
C     **********
C
C     SUBROUTINE SSQJAC
C
C     THIS SUBROUTINE DEFINES THE JACOBIAN MATRICES OF EIGHTEEN
C     NONLINEAR LEAST SQUARES PROBLEMS. THE PROBLEM DIMENSIONS ARE
C     AS DESCRIBED IN THE PROLOGUE COMMENTS OF SSQFCN.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE SSQJAC(M,N,X,FJAC,LDFJAC,NPROB)
C
C     WHERE
C
C       M AND N ARE POSITIVE INTEGER INPUT VARIABLES. N MUST NOT
C         EXCEED M.
C
C       X IS AN INPUT ARRAY OF LENGTH N.
C
C       FJAC IS AN M BY N OUTPUT ARRAY WHICH CONTAINS THE JACOBIAN
C         MATRIX OF THE NPROB FUNCTION EVALUATED AT X.
C
C       LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
C
C       NPROB IS A POSITIVE INTEGER VARIABLE WHICH DEFINES THE
C         NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 18.
C
C     SUBPROGRAMS CALLED
C
C       FORTRAN-SUPPLIED ... ATAN,COS,EXP,SIN,SQRT
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C     **********
      INTEGER I,IVAR,J,K,MM1,NM1
      REAL C14,C20,C29,C45,C100,DIV,DX,EIGHT,FIVE,FOUR,ONE,PROD,S2,
     *     TEMP,TEN,THREE,TI,TMP1,TMP2,TMP3,TMP4,TPI,TWO,ZERO
      REAL V(11)
      REAL FLOAT
      DATA ZERO,ONE,TWO,THREE,FOUR,FIVE,EIGHT,TEN,C14,C20,C29,C45,C100
     *     /0.0E0,1.0E0,2.0E0,3.0E0,4.0E0,5.0E0,8.0E0,1.0E1,1.4E1,
     *      2.0E1,2.9E1,4.5E1,1.0E2/
      DATA V(1),V(2),V(3),V(4),V(5),V(6),V(7),V(8),V(9),V(10),V(11)
     *     /4.0E0,2.0E0,1.0E0,5.0E-1,2.5E-1,1.67E-1,1.25E-1,1.0E-1,
     *      8.33E-2,7.14E-2,6.25E-2/
      FLOAT(IVAR) = IVAR
C
C     JACOBIAN ROUTINE SELECTOR.
C
      GO TO (10,40,70,130,140,150,180,190,210,230,250,310,330,350,370,
     *       400,460,480), NPROB
C
C     LINEAR FUNCTION - FULL RANK.
C
   10 CONTINUE
      TEMP = TWO/FLOAT(M)
      DO 30 J = 1, N
         DO 20 I = 1, M
            FJAC(I,J) = -TEMP
   20       CONTINUE
         FJAC(J,J) = FJAC(J,J) + ONE
   30    CONTINUE
      GO TO 500
C
C     LINEAR FUNCTION - RANK 1.
C
   40 CONTINUE
      DO 60 J = 1, N
         DO 50 I = 1, M
            FJAC(I,J) = FLOAT(I)*FLOAT(J)
   50       CONTINUE
   60    CONTINUE
      GO TO 500
C
C     LINEAR FUNCTION - RANK 1 WITH ZERO COLUMNS AND ROWS.
C
   70 CONTINUE
      DO 90 J = 1, N
         DO 80 I = 1, M
            FJAC(I,J) = ZERO
   80       CONTINUE
   90    CONTINUE
      NM1 = N - 1
      MM1 = M - 1
      IF (NM1 .LT. 2) GO TO 120
      DO 110 J = 2, NM1
         DO 100 I = 2, MM1
            FJAC(I,J) = FLOAT(I-1)*FLOAT(J)
  100       CONTINUE
  110    CONTINUE
  120 CONTINUE
      GO TO 500
C
C     ROSENBROCK FUNCTION.
C
  130 CONTINUE
      FJAC(1,1) = -C20*X(1)
      FJAC(1,2) = TEN
      FJAC(2,1) = -ONE
      FJAC(2,2) = ZERO
      GO TO 500
C
C     HELICAL VALLEY FUNCTION.
C
  140 CONTINUE
      TPI = EIGHT*ATAN(ONE)
      TEMP = X(1)**2 + X(2)**2
      TMP1 = TPI*TEMP
      TMP2 = SQRT(TEMP)
      FJAC(1,1) = C100*X(2)/TMP1
      FJAC(1,2) = -C100*X(1)/TMP1
      FJAC(1,3) = TEN
      FJAC(2,1) = TEN*X(1)/TMP2
      FJAC(2,2) = TEN*X(2)/TMP2
      FJAC(2,3) = ZERO
      FJAC(3,1) = ZERO
      FJAC(3,2) = ZERO
      FJAC(3,3) = ONE
      GO TO 500
C
C     POWELL SINGULAR FUNCTION.
C
  150 CONTINUE
      DO 170 J = 1, 4
         DO 160 I = 1, 4
            FJAC(I,J) = ZERO
  160       CONTINUE
  170    CONTINUE
      FJAC(1,1) = ONE
      FJAC(1,2) = TEN
      FJAC(2,3) = SQRT(FIVE)
      FJAC(2,4) = -FJAC(2,3)
      FJAC(3,2) = TWO*(X(2) - TWO*X(3))
      FJAC(3,3) = -TWO*FJAC(3,2)
      FJAC(4,1) = TWO*SQRT(TEN)*(X(1) - X(4))
      FJAC(4,4) = -FJAC(4,1)
      GO TO 500
C
C     FREUDENSTEIN AND ROTH FUNCTION.
C
  180 CONTINUE
      FJAC(1,1) = ONE
      FJAC(1,2) = X(2)*(TEN - THREE*X(2)) - TWO
      FJAC(2,1) = ONE
      FJAC(2,2) = X(2)*(TWO + THREE*X(2)) - C14
      GO TO 500
C
C     BARD FUNCTION.
C
  190 CONTINUE
      DO 200 I = 1, 15
         TMP1 = FLOAT(I)
         TMP2 = FLOAT(16-I)
         TMP3 = TMP1
         IF (I .GT. 8) TMP3 = TMP2
         TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
         FJAC(I,1) = -ONE
         FJAC(I,2) = TMP1*TMP2/TMP4
         FJAC(I,3) = TMP1*TMP3/TMP4
  200    CONTINUE
      GO TO 500
C
C     KOWALIK AND OSBORNE FUNCTION.
C
  210 CONTINUE
      DO 220 I = 1, 11
         TMP1 = V(I)*(V(I) + X(2))
         TMP2 = V(I)*(V(I) + X(3)) + X(4)
         FJAC(I,1) = -TMP1/TMP2
         FJAC(I,2) = -V(I)*X(1)/TMP2
         FJAC(I,3) = FJAC(I,1)*FJAC(I,2)
         FJAC(I,4) = FJAC(I,3)/V(I)
  220    CONTINUE
      GO TO 500
C
C     MEYER FUNCTION.
C
  230 CONTINUE
      DO 240 I = 1, 16
         TEMP = FIVE*FLOAT(I) + C45 + X(3)
         TMP1 = X(2)/TEMP
         TMP2 = EXP(TMP1)
         FJAC(I,1) = TMP2
         FJAC(I,2) = X(1)*TMP2/TEMP
         FJAC(I,3) = -TMP1*FJAC(I,2)
  240    CONTINUE
      GO TO 500
C
C     WATSON FUNCTION.
C
  250 CONTINUE
      DO 280 I = 1, 29
         DIV = FLOAT(I)/C29
         S2 = ZERO
         DX = ONE
         DO 260 J = 1, N
            S2 = S2 + DX*X(J)
            DX = DIV*DX
  260       CONTINUE
         TEMP = TWO*DIV*S2
         DX = ONE/DIV
         DO 270 J = 1, N
            FJAC(I,J) = DX*(FLOAT(J-1) - TEMP)
            DX = DIV*DX
  270       CONTINUE
  280    CONTINUE
      DO 300 J = 1, N
         DO 290 I = 30, 31
            FJAC(I,J) = ZERO
  290       CONTINUE
  300    CONTINUE
      FJAC(30,1) = ONE
      FJAC(31,1) = -TWO*X(1)
      FJAC(31,2) = ONE
      GO TO 500
C
C     BOX 3-DIMENSIONAL FUNCTION.
C
  310 CONTINUE
      DO 320 I = 1, M
         TEMP = FLOAT(I)
         TMP1 = TEMP/TEN
         FJAC(I,1) = -TMP1*EXP(-TMP1*X(1))
         FJAC(I,2) = TMP1*EXP(-TMP1*X(2))
         FJAC(I,3) = EXP(-TEMP) - EXP(-TMP1)
  320    CONTINUE
      GO TO 500
C
C     JENNRICH AND SAMPSON FUNCTION.
C
  330 CONTINUE
      DO 340 I = 1, M
         TEMP = FLOAT(I)
         FJAC(I,1) = -TEMP*EXP(TEMP*X(1))
         FJAC(I,2) = -TEMP*EXP(TEMP*X(2))
  340    CONTINUE
      GO TO 500
C
C     BROWN AND DENNIS FUNCTION.
C
  350 CONTINUE
      DO 360 I = 1, M
         TEMP = FLOAT(I)/FIVE
         TI = SIN(TEMP)
         TMP1 = X(1) + TEMP*X(2) - EXP(TEMP)
         TMP2 = X(3) + TI*X(4) - COS(TEMP)
         FJAC(I,1) = TWO*TMP1
         FJAC(I,2) = TEMP*FJAC(I,1)
         FJAC(I,3) = TWO*TMP2
         FJAC(I,4) = TI*FJAC(I,3)
  360    CONTINUE
      GO TO 500
C
C     CHEBYQUAD FUNCTION.
C
  370 CONTINUE
      DX = ONE/FLOAT(N)
      DO 390 J = 1, N
         TMP1 = ONE
         TMP2 = TWO*X(J) - ONE
         TEMP = TWO*TMP2
         TMP3 = ZERO
         TMP4 = TWO
         DO 380 I = 1, M
            FJAC(I,J) = DX*TMP4
            TI = FOUR*TMP2 + TEMP*TMP4 - TMP3
            TMP3 = TMP4
            TMP4 = TI
            TI = TEMP*TMP2 - TMP1
            TMP1 = TMP2
            TMP2 = TI
  380       CONTINUE
  390    CONTINUE
      GO TO 500
C
C     BROWN ALMOST-LINEAR FUNCTION.
C
  400 CONTINUE
      PROD = ONE
      DO 420 J = 1, N
         PROD = X(J)*PROD
         DO 410 I = 1, N
            FJAC(I,J) = ONE
  410       CONTINUE
         FJAC(J,J) = TWO
  420    CONTINUE
      DO 450 J = 1, N
         TEMP = X(J)
         IF (TEMP .NE. ZERO) GO TO 440
         TEMP = ONE
         PROD = ONE
         DO 430 K = 1, N
            IF (K .NE. J) PROD = X(K)*PROD
  430       CONTINUE
  440    CONTINUE
         FJAC(N,J) = PROD/TEMP
  450    CONTINUE
      GO TO 500
C
C     OSBORNE 1 FUNCTION.
C
  460 CONTINUE
      DO 470 I = 1, 33
         TEMP = TEN*FLOAT(I-1)
         TMP1 = EXP(-X(4)*TEMP)
         TMP2 = EXP(-X(5)*TEMP)
         FJAC(I,1) = -ONE
         FJAC(I,2) = -TMP1
         FJAC(I,3) = -TMP2
         FJAC(I,4) = TEMP*X(2)*TMP1
         FJAC(I,5) = TEMP*X(3)*TMP2
  470    CONTINUE
      GO TO 500
C
C     OSBORNE 2 FUNCTION.
C
  480 CONTINUE
      DO 490 I = 1, 65
         TEMP = FLOAT(I-1)/TEN
         TMP1 = EXP(-X(5)*TEMP)
         TMP2 = EXP(-X(6)*(TEMP-X(9))**2)
         TMP3 = EXP(-X(7)*(TEMP-X(10))**2)
         TMP4 = EXP(-X(8)*(TEMP-X(11))**2)
         FJAC(I,1) = -TMP1
         FJAC(I,2) = -TMP2
         FJAC(I,3) = -TMP3
         FJAC(I,4) = -TMP4
         FJAC(I,5) = TEMP*X(1)*TMP1
         FJAC(I,6) = X(2)*(TEMP - X(9))**2*TMP2
         FJAC(I,7) = X(3)*(TEMP - X(10))**2*TMP3
         FJAC(I,8) = X(4)*(TEMP - X(11))**2*TMP4
         FJAC(I,9) = -TWO*X(2)*X(6)*(TEMP - X(9))*TMP2
         FJAC(I,10) = -TWO*X(3)*X(7)*(TEMP - X(10))*TMP3
         FJAC(I,11) = -TWO*X(4)*X(8)*(TEMP - X(11))*TMP4
  490    CONTINUE
  500 CONTINUE
      RETURN
C
C     LAST CARD OF SUBROUTINE SSQJAC.
C
      END
      SUBROUTINE INITPT(N,X,NPROB,FACTOR)
      INTEGER N,NPROB
      REAL FACTOR
      REAL X(N)
C     **********
C
C     SUBROUTINE INITPT
C
C     THIS SUBROUTINE SPECIFIES THE STANDARD STARTING POINTS FOR THE
C     FUNCTIONS DEFINED BY SUBROUTINE SSQFCN. THE SUBROUTINE RETURNS
C     IN X A MULTIPLE (FACTOR) OF THE STANDARD STARTING POINT. FOR
C     THE 11TH FUNCTION THE STANDARD STARTING POINT IS ZERO, SO IN
C     THIS CASE, IF FACTOR IS NOT UNITY, THEN THE SUBROUTINE RETURNS
C     THE VECTOR  X(J) = FACTOR, J=1,...,N.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE INITPT(N,X,NPROB,FACTOR)
C
C     WHERE
C
C       N IS A POSITIVE INTEGER INPUT VARIABLE.
C
C       X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE STANDARD
C         STARTING POINT FOR PROBLEM NPROB MULTIPLIED BY FACTOR.
C
C       NPROB IS A POSITIVE INTEGER INPUT VARIABLE WHICH DEFINES THE
C         NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 18.
C
C       FACTOR IS AN INPUT VARIABLE WHICH SPECIFIES THE MULTIPLE OF
C         THE STANDARD STARTING POINT. IF FACTOR IS UNITY, NO
C         MULTIPLICATION IS PERFORMED.
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C     **********
      INTEGER IVAR,J
      REAL C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16,C17,
     *     FIVE,H,HALF,ONE,SEVEN,TEN,THREE,TWENTY,TWNTF,TWO,ZERO
      REAL FLOAT
      DATA ZERO,HALF,ONE,TWO,THREE,FIVE,SEVEN,TEN,TWENTY,TWNTF
     *     /0.0E0,5.0E-1,1.0E0,2.0E0,3.0E0,5.0E0,7.0E0,1.0E1,2.0E1,
     *      2.5E1/
      DATA C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16,C17
     *     /1.2E0,2.5E-1,3.9E-1,4.15E-1,2.0E-2,4.0E3,2.5E2,3.0E-1,
     *      4.0E-1,1.5E0,1.0E-2,1.3E0,6.5E-1,7.0E-1,6.0E-1,4.5E0,
     *      5.5E0/
      FLOAT(IVAR) = IVAR
C
C     SELECTION OF INITIAL POINT.
C
      GO TO (10,10,10,30,40,50,60,70,80,90,100,120,130,140,150,170,
     *       190,200), NPROB
C
C     LINEAR FUNCTION - FULL RANK OR RANK 1.
C
   10 CONTINUE
      DO 20 J = 1, N
         X(J) = ONE
   20    CONTINUE
      GO TO 210
C
C     ROSENBROCK FUNCTION.
C
   30 CONTINUE
      X(1) = -C1
      X(2) = ONE
      GO TO 210
C
C     HELICAL VALLEY FUNCTION.
C
   40 CONTINUE
      X(1) = -ONE
      X(2) = ZERO
      X(3) = ZERO
      GO TO 210
C
C     POWELL SINGULAR FUNCTION.
C
   50 CONTINUE
      X(1) = THREE
      X(2) = -ONE
      X(3) = ZERO
      X(4) = ONE
      GO TO 210
C
C     FREUDENSTEIN AND ROTH FUNCTION.
C
   60 CONTINUE
      X(1) = HALF
      X(2) = -TWO
      GO TO 210
C
C     BARD FUNCTION.
C
   70 CONTINUE
      X(1) = ONE
      X(2) = ONE
      X(3) = ONE
      GO TO 210
C
C     KOWALIK AND OSBORNE FUNCTION.
C
   80 CONTINUE
      X(1) = C2
      X(2) = C3
      X(3) = C4
      X(4) = C3
      GO TO 210
C
C     MEYER FUNCTION.
C
   90 CONTINUE
      X(1) = C5
      X(2) = C6
      X(3) = C7
      GO TO 210
C
C     WATSON FUNCTION.
C
  100 CONTINUE
      DO 110 J = 1, N
         X(J) = ZERO
  110    CONTINUE
      GO TO 210
C
C     BOX 3-DIMENSIONAL FUNCTION.
C
  120 CONTINUE
      X(1) = ZERO
      X(2) = TEN
      X(3) = TWENTY
      GO TO 210
C
C     JENNRICH AND SAMPSON FUNCTION.
C
  130 CONTINUE
      X(1) = C8
      X(2) = C9
      GO TO 210
C
C     BROWN AND DENNIS FUNCTION.
C
  140 CONTINUE
      X(1) = TWNTF
      X(2) = FIVE
      X(3) = -FIVE
      X(4) = -ONE
      GO TO 210
C
C     CHEBYQUAD FUNCTION.
C
  150 CONTINUE
      H = ONE/FLOAT(N+1)
      DO 160 J = 1, N
         X(J) = FLOAT(J)*H
  160    CONTINUE
      GO TO 210
C
C     BROWN ALMOST-LINEAR FUNCTION.
C
  170 CONTINUE
      DO 180 J = 1, N
         X(J) = HALF
  180    CONTINUE
      GO TO 210
C
C     OSBORNE 1 FUNCTION.
C
  190 CONTINUE
      X(1) = HALF
      X(2) = C10
      X(3) = -ONE
      X(4) = C11
      X(5) = C5
      GO TO 210
C
C     OSBORNE 2 FUNCTION.
C
  200 CONTINUE
      X(1) = C12
      X(2) = C13
      X(3) = C13
      X(4) = C14
      X(5) = C15
      X(6) = THREE
      X(7) = FIVE
      X(8) = SEVEN
      X(9) = TWO
      X(10) = C16
      X(11) = C17
  210 CONTINUE
C
C     COMPUTE MULTIPLE OF INITIAL POINT.
C
      IF (FACTOR .EQ. ONE) GO TO 260
      IF (NPROB .EQ. 11) GO TO 230
         DO 220 J = 1, N
            X(J) = FACTOR*X(J)
  220       CONTINUE
         GO TO 250
  230 CONTINUE
         DO 240 J = 1, N
            X(J) = FACTOR
  240       CONTINUE
  250 CONTINUE
  260 CONTINUE
      RETURN
C
C     LAST CARD OF SUBROUTINE INITPT.
C
      END
      SUBROUTINE SSQFCN(M,N,X,FVEC,NPROB)
      INTEGER M,N,NPROB
      REAL X(N),FVEC(M)
C     **********
C
C     SUBROUTINE SSQFCN
C
C     THIS SUBROUTINE DEFINES THE FUNCTIONS OF EIGHTEEN NONLINEAR
C     LEAST SQUARES PROBLEMS. THE ALLOWABLE VALUES OF (M,N) FOR
C     FUNCTIONS 1,2 AND 3 ARE VARIABLE BUT WITH M .GE. N.
C     FOR FUNCTIONS 4,5,6,7,8,9 AND 10 THE VALUES OF (M,N) ARE
C     (2,2),(3,3),(4,4),(2,2),(15,3),(11,4) AND (16,3), RESPECTIVELY.
C     FUNCTION 11 (WATSON) HAS M = 31 WITH N USUALLY 6 OR 9.
C     HOWEVER, ANY N, N = 2,...,31, IS PERMITTED.
C     FUNCTIONS 12,13 AND 14 HAVE N = 3,2 AND 4, RESPECTIVELY, BUT
C     ALLOW ANY M .GE. N, WITH THE USUAL CHOICES BEING 10,10 AND 20.
C     FUNCTION 15 (CHEBYQUAD) ALLOWS M AND N VARIABLE WITH M .GE. N.
C     FUNCTION 16 (BROWN) ALLOWS N VARIABLE WITH M = N.
C     FOR FUNCTIONS 17 AND 18, THE VALUES OF (M,N) ARE
C     (33,5) AND (65,11), RESPECTIVELY.
C
C     THE SUBROUTINE STATEMENT IS
C
C       SUBROUTINE SSQFCN(M,N,X,FVEC,NPROB)
C
C     WHERE
C
C       M AND N ARE POSITIVE INTEGER INPUT VARIABLES. N MUST NOT
C         EXCEED M.
C
C       X IS AN INPUT ARRAY OF LENGTH N.
C
C       FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS THE NPROB
C         FUNCTION EVALUATED AT X.
C
C       NPROB IS A POSITIVE INTEGER INPUT VARIABLE WHICH DEFINES THE
C         NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 18.
C
C     SUBPROGRAMS CALLED
C
C       FORTRAN-SUPPLIED ... ATAN,COS,EXP,SIN,SQRT,SIGN
C
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C     **********
      INTEGER I,IEV,IVAR,J,NM1
      REAL C13,C14,C29,C45,DIV,DX,EIGHT,FIVE,ONE,PROD,SUM,S1,S2,TEMP,
     *     TEN,TI,TMP1,TMP2,TMP3,TMP4,TPI,TWO,ZERO,ZP25,ZP5
      REAL V(11),Y1(15),Y2(11),Y3(16),Y4(33),Y5(65)
      REAL FLOAT
      DATA ZERO,ZP25,ZP5,ONE,TWO,FIVE,EIGHT,TEN,C13,C14,C29,C45
     *     /0.0E0,2.5E-1,5.0E-1,1.0E0,2.0E0,5.0E0,8.0E0,1.0E1,1.3E1,
     *      1.4E1,2.9E1,4.5E1/
      DATA V(1),V(2),V(3),V(4),V(5),V(6),V(7),V(8),V(9),V(10),V(11)
     *     /4.0E0,2.0E0,1.0E0,5.0E-1,2.5E-1,1.67E-1,1.25E-1,1.0E-1,
     *      8.33E-2,7.14E-2,6.25E-2/
      DATA Y1(1),Y1(2),Y1(3),Y1(4),Y1(5),Y1(6),Y1(7),Y1(8),Y1(9),
     *     Y1(10),Y1(11),Y1(12),Y1(13),Y1(14),Y1(15)
     *     /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
     *      3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
      DATA Y2(1),Y2(2),Y2(3),Y2(4),Y2(5),Y2(6),Y2(7),Y2(8),Y2(9),
     *     Y2(10),Y2(11)
     *     /1.957E-1,1.947E-1,1.735E-1,1.6E-1,8.44E-2,6.27E-2,4.56E-2,
     *      3.42E-2,3.23E-2,2.35E-2,2.46E-2/
      DATA Y3(1),Y3(2),Y3(3),Y3(4),Y3(5),Y3(6),Y3(7),Y3(8),Y3(9),
     *     Y3(10),Y3(11),Y3(12),Y3(13),Y3(14),Y3(15),Y3(16)
     *     /3.478E4,2.861E4,2.365E4,1.963E4,1.637E4,1.372E4,1.154E4,
     *      9.744E3,8.261E3,7.03E3,6.005E3,5.147E3,4.427E3,3.82E3,
     *      3.307E3,2.872E3/
      DATA Y4(1),Y4(2),Y4(3),Y4(4),Y4(5),Y4(6),Y4(7),Y4(8),Y4(9),
     *     Y4(10),Y4(11),Y4(12),Y4(13),Y4(14),Y4(15),Y4(16),Y4(17),
     *     Y4(18),Y4(19),Y4(20),Y4(21),Y4(22),Y4(23),Y4(24),Y4(25),
     *     Y4(26),Y4(27),Y4(28),Y4(29),Y4(30),Y4(31),Y4(32),Y4(33)
     *     /8.44E-1,9.08E-1,9.32E-1,9.36E-1,9.25E-1,9.08E-1,8.81E-1,
     *      8.5E-1,8.18E-1,7.84E-1,7.51E-1,7.18E-1,6.85E-1,6.58E-1,
     *      6.28E-1,6.03E-1,5.8E-1,5.58E-1,5.38E-1,5.22E-1,5.06E-1,
     *      4.9E-1,4.78E-1,4.67E-1,4.57E-1,4.48E-1,4.38E-1,4.31E-1,
     *      4.24E-1,4.2E-1,4.14E-1,4.11E-1,4.06E-1/
      DATA Y5(1),Y5(2),Y5(3),Y5(4),Y5(5),Y5(6),Y5(7),Y5(8),Y5(9),
     *     Y5(10),Y5(11),Y5(12),Y5(13),Y5(14),Y5(15),Y5(16),Y5(17),
     *     Y5(18),Y5(19),Y5(20),Y5(21),Y5(22),Y5(23),Y5(24),Y5(25),
     *     Y5(26),Y5(27),Y5(28),Y5(29),Y5(30),Y5(31),Y5(32),Y5(33),
     *     Y5(34),Y5(35),Y5(36),Y5(37),Y5(38),Y5(39),Y5(40),Y5(41),
     *     Y5(42),Y5(43),Y5(44),Y5(45),Y5(46),Y5(47),Y5(48),Y5(49),
     *     Y5(50),Y5(51),Y5(52),Y5(53),Y5(54),Y5(55),Y5(56),Y5(57),
     *     Y5(58),Y5(59),Y5(60),Y5(61),Y5(62),Y5(63),Y5(64),Y5(65)
     *     /1.366E0,1.191E0,1.112E0,1.013E0,9.91E-1,8.85E-1,8.31E-1,
     *      8.47E-1,7.86E-1,7.25E-1,7.46E-1,6.79E-1,6.08E-1,6.55E-1,
     *      6.16E-1,6.06E-1,6.02E-1,6.26E-1,6.51E-1,7.24E-1,6.49E-1,
     *      6.49E-1,6.94E-1,6.44E-1,6.24E-1,6.61E-1,6.12E-1,5.58E-1,
     *      5.33E-1,4.95E-1,5.0E-1,4.23E-1,3.95E-1,3.75E-1,3.72E-1,
     *      3.91E-1,3.96E-1,4.05E-1,4.28E-1,4.29E-1,5.23E-1,5.62E-1,
     *      6.07E-1,6.53E-1,6.72E-1,7.08E-1,6.33E-1,6.68E-1,6.45E-1,
     *      6.32E-1,5.91E-1,5.59E-1,5.97E-1,6.25E-1,7.39E-1,7.1E-1,
     *      7.29E-1,7.2E-1,6.36E-1,5.81E-1,4.28E-1,2.92E-1,1.62E-1,
     *      9.8E-2,5.4E-2/
      FLOAT(IVAR) = IVAR
C
C     FUNCTION ROUTINE SELECTOR.
C
      GO TO (10,40,70,110,120,130,140,150,170,190,210,250,270,290,310,
     *       360,390,410), NPROB
C
C     LINEAR FUNCTION - FULL RANK.
C
   10 CONTINUE
      SUM = ZERO
      DO 20 J = 1, N
         SUM = SUM + X(J)
   20    CONTINUE
      TEMP = TWO*SUM/FLOAT(M) + ONE
      DO 30 I = 1, M
         FVEC(I) = -TEMP
         IF (I .LE. N) FVEC(I) = FVEC(I) + X(I)
   30    CONTINUE
      GO TO 430
C
C     LINEAR FUNCTION - RANK 1.
C
   40 CONTINUE
      SUM = ZERO
      DO 50 J = 1, N
         SUM = SUM + FLOAT(J)*X(J)
   50    CONTINUE
      DO 60 I = 1, M
         FVEC(I) = FLOAT(I)*SUM - ONE
   60    CONTINUE
      GO TO 430
C
C     LINEAR FUNCTION - RANK 1 WITH ZERO COLUMNS AND ROWS.
C
   70 CONTINUE
      SUM = ZERO
      NM1 = N - 1
      IF (NM1 .LT. 2) GO TO 90
      DO 80 J = 2, NM1
         SUM = SUM + FLOAT(J)*X(J)
   80    CONTINUE
   90 CONTINUE
      DO 100 I = 1, M
         FVEC(I) = FLOAT(I-1)*SUM - ONE
  100    CONTINUE
      FVEC(M) = -ONE
      GO TO 430
C
C     ROSENBROCK FUNCTION.
C
  110 CONTINUE
      FVEC(1) = TEN*(X(2) - X(1)**2)
      FVEC(2) = ONE - X(1)
      GO TO 430
C
C     HELICAL VALLEY FUNCTION.
C
  120 CONTINUE
      TPI = EIGHT*ATAN(ONE)
      TMP1 = SIGN(ZP25,X(2))
      IF (X(1) .GT. ZERO) TMP1 = ATAN(X(2)/X(1))/TPI
      IF (X(1) .LT. ZERO) TMP1 = ATAN(X(2)/X(1))/TPI + ZP5
      TMP2 = SQRT(X(1)**2+X(2)**2)
      FVEC(1) = TEN*(X(3) - TEN*TMP1)
      FVEC(2) = TEN*(TMP2 - ONE)
      FVEC(3) = X(3)
      GO TO 430
C
C     POWELL SINGULAR FUNCTION.
C
  130 CONTINUE
      FVEC(1) = X(1) + TEN*X(2)
      FVEC(2) = SQRT(FIVE)*(X(3) - X(4))
      FVEC(3) = (X(2) - TWO*X(3))**2
      FVEC(4) = SQRT(TEN)*(X(1) - X(4))**2
      GO TO 430
C
C     FREUDENSTEIN AND ROTH FUNCTION.
C
  140 CONTINUE
      FVEC(1) = -C13 + X(1) + ((FIVE - X(2))*X(2) - TWO)*X(2)
      FVEC(2) = -C29 + X(1) + ((ONE + X(2))*X(2) - C14)*X(2)
      GO TO 430
C
C     BARD FUNCTION.
C
  150 CONTINUE
      DO 160 I = 1, 15
         TMP1 = FLOAT(I)
         TMP2 = FLOAT(16-I)
         TMP3 = TMP1
         IF (I .GT. 8) TMP3 = TMP2
         FVEC(I) = Y1(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
  160    CONTINUE
      GO TO 430
C
C     KOWALIK AND OSBORNE FUNCTION.
C
  170 CONTINUE
      DO 180 I = 1, 11
         TMP1 = V(I)*(V(I) + X(2))
         TMP2 = V(I)*(V(I) + X(3)) + X(4)
         FVEC(I) = Y2(I) - X(1)*TMP1/TMP2
  180    CONTINUE
      GO TO 430
C
C     MEYER FUNCTION.
C
  190 CONTINUE
      DO 200 I = 1, 16
         TEMP = FIVE*FLOAT(I) + C45 + X(3)
         TMP1 = X(2)/TEMP
         TMP2 = EXP(TMP1)
         FVEC(I) = X(1)*TMP2 - Y3(I)
  200    CONTINUE
      GO TO 430
C
C     WATSON FUNCTION.
C
  210 CONTINUE
      DO 240 I = 1, 29
         DIV = FLOAT(I)/C29
         S1 = ZERO
         DX = ONE
         DO 220 J = 2, N
            S1 = S1 + FLOAT(J-1)*DX*X(J)
            DX = DIV*DX
  220       CONTINUE
         S2 = ZERO
         DX = ONE
         DO 230 J = 1, N
            S2 = S2 + DX*X(J)
            DX = DIV*DX
  230       CONTINUE
         FVEC(I) = S1 - S2**2 - ONE
  240    CONTINUE
      FVEC(30) = X(1)
      FVEC(31) = X(2) - X(1)**2 - ONE
      GO TO 430
C
C     BOX 3-DIMENSIONAL FUNCTION.
C
  250 CONTINUE
      DO 260 I = 1, M
         TEMP = FLOAT(I)
         TMP1 = TEMP/TEN
         FVEC(I) = EXP(-TMP1*X(1)) - EXP(-TMP1*X(2))
     *             + (EXP(-TEMP) - EXP(-TMP1))*X(3)
  260    CONTINUE
      GO TO 430
C
C     JENNRICH AND SAMPSON FUNCTION.
C
  270 CONTINUE
      DO 280 I = 1, M
         TEMP = FLOAT(I)
         FVEC(I) = TWO + TWO*TEMP - EXP(TEMP*X(1)) - EXP(TEMP*X(2))
  280    CONTINUE
      GO TO 430
C
C     BROWN AND DENNIS FUNCTION.
C
  290 CONTINUE
      DO 300 I = 1, M
         TEMP = FLOAT(I)/FIVE
         TMP1 = X(1) + TEMP*X(2) - EXP(TEMP)
         TMP2 = X(3) + SIN(TEMP)*X(4) - COS(TEMP)
         FVEC(I) = TMP1**2 + TMP2**2
  300    CONTINUE
      GO TO 430
C
C     CHEBYQUAD FUNCTION.
C
  310 CONTINUE
      DO 320 I = 1, M
         FVEC(I) = ZERO
  320    CONTINUE
      DO 340 J = 1, N
         TMP1 = ONE
         TMP2 = TWO*X(J) - ONE
         TEMP = TWO*TMP2
         DO 330 I = 1, M
            FVEC(I) = FVEC(I) + TMP2
            TI = TEMP*TMP2 - TMP1
            TMP1 = TMP2
            TMP2 = TI
  330       CONTINUE
  340    CONTINUE
      DX = ONE/FLOAT(N)
      IEV = -1
      DO 350 I = 1, M
         FVEC(I) = DX*FVEC(I)
         IF (IEV .GT. 0) FVEC(I) = FVEC(I) + ONE/(FLOAT(I)**2 - ONE)
         IEV = -IEV
  350    CONTINUE
      GO TO 430
C
C     BROWN ALMOST-LINEAR FUNCTION.
C
  360 CONTINUE
      SUM = -FLOAT(N+1)
      PROD = ONE
      DO 370 J = 1, N
         SUM = SUM + X(J)
         PROD = X(J)*PROD
  370    CONTINUE
      DO 380 I = 1, N
         FVEC(I) = X(I) + SUM
  380    CONTINUE
      FVEC(N) = PROD - ONE
      GO TO 430
C
C     OSBORNE 1 FUNCTION.
C
  390 CONTINUE
      DO 400 I = 1, 33
         TEMP = TEN*FLOAT(I-1)
         TMP1 = EXP(-X(4)*TEMP)
         TMP2 = EXP(-X(5)*TEMP)
         FVEC(I) = Y4(I) - (X(1) + X(2)*TMP1 + X(3)*TMP2)
  400    CONTINUE
      GO TO 430
C
C     OSBORNE 2 FUNCTION.
C
  410 CONTINUE
      DO 420 I = 1, 65
         TEMP = FLOAT(I-1)/TEN
         TMP1 = EXP(-X(5)*TEMP)
         TMP2 = EXP(-X(6)*(TEMP-X(9))**2)
         TMP3 = EXP(-X(7)*(TEMP-X(10))**2)
         TMP4 = EXP(-X(8)*(TEMP-X(11))**2)
         FVEC(I) = Y5(I)
     *             - (X(1)*TMP1 + X(2)*TMP2 + X(3)*TMP3 + X(4)*TMP4)
  420    CONTINUE
  430 CONTINUE
      RETURN
C
C     LAST CARD OF SUBROUTINE SSQFCN.
C
      END