1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
|
C **********
C
C THIS PROGRAM TESTS CODES FOR THE LEAST-SQUARES SOLUTION OF
C M NONLINEAR EQUATIONS IN N VARIABLES. IT CONSISTS OF A DRIVER
C AND AN INTERFACE SUBROUTINE FCN. THE DRIVER READS IN DATA,
C CALLS THE NONLINEAR LEAST-SQUARES SOLVER, AND FINALLY PRINTS
C OUT INFORMATION ON THE PERFORMANCE OF THE SOLVER. THIS IS
C ONLY A SAMPLE DRIVER, MANY OTHER DRIVERS ARE POSSIBLE. THE
C INTERFACE SUBROUTINE FCN IS NECESSARY TO TAKE INTO ACCOUNT THE
C FORMS OF CALLING SEQUENCES USED BY THE FUNCTION AND JACOBIAN
C SUBROUTINES IN THE VARIOUS NONLINEAR LEAST-SQUARES SOLVERS.
C
C SUBPROGRAMS CALLED
C
C USER-SUPPLIED ...... FCN
C
C MINPACK-SUPPLIED ... SPMPAR,ENORM,INITPT,LMDIF1,SSQFCN
C
C FORTRAN-SUPPLIED ... SQRT
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C **********
INTEGER I,IC,INFO,K,LWA,M,N,NFEV,NJEV,NPROB,NREAD,NTRIES,NWRITE
INTEGER IWA(40),MA(60),NA(60),NF(60),NJ(60),NP(60),NX(60)
REAL FACTOR,FNORM1,FNORM2,ONE,TEN,TOL
REAL FNM(60),FVEC(65),WA(2865),X(40)
REAL SPMPAR,ENORM
EXTERNAL FCN
COMMON /REFNUM/ NPROB,NFEV,NJEV
C
C LOGICAL INPUT UNIT IS ASSUMED TO BE NUMBER 5.
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C
DATA NREAD,NWRITE /5,6/
C
DATA ONE,TEN /1.0E0,1.0E1/
TOL = SQRT(SPMPAR(1))
LWA = 2865
IC = 0
10 CONTINUE
READ (NREAD,50) NPROB,N,M,NTRIES
IF (NPROB .LE. 0) GO TO 30
FACTOR = ONE
DO 20 K = 1, NTRIES
IC = IC + 1
CALL INITPT(N,X,NPROB,FACTOR)
CALL SSQFCN(M,N,X,FVEC,NPROB)
FNORM1 = ENORM(M,FVEC)
WRITE (NWRITE,60) NPROB,N,M
NFEV = 0
NJEV = 0
CALL LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)
CALL SSQFCN(M,N,X,FVEC,NPROB)
FNORM2 = ENORM(M,FVEC)
NP(IC) = NPROB
NA(IC) = N
MA(IC) = M
NF(IC) = NFEV
NJEV = NJEV/N
NJ(IC) = NJEV
NX(IC) = INFO
FNM(IC) = FNORM2
WRITE (NWRITE,70)
* FNORM1,FNORM2,NFEV,NJEV,INFO,(X(I), I = 1, N)
FACTOR = TEN*FACTOR
20 CONTINUE
GO TO 10
30 CONTINUE
WRITE (NWRITE,80) IC
WRITE (NWRITE,90)
DO 40 I = 1, IC
WRITE (NWRITE,100) NP(I),NA(I),MA(I),NF(I),NJ(I),NX(I),FNM(I)
40 CONTINUE
STOP
50 FORMAT (4I5)
60 FORMAT ( //// 5X, 8H PROBLEM, I5, 5X, 11H DIMENSIONS, 2I5, 5X //
* )
70 FORMAT (5X, 33H INITIAL L2 NORM OF THE RESIDUALS, E15.7 // 5X,
* 33H FINAL L2 NORM OF THE RESIDUALS , E15.7 // 5X,
* 33H NUMBER OF FUNCTION EVALUATIONS , I10 // 5X,
* 33H NUMBER OF JACOBIAN EVALUATIONS , I10 // 5X,
* 15H EXIT PARAMETER, 18X, I10 // 5X,
* 27H FINAL APPROXIMATE SOLUTION // (5X, 5E15.7))
80 FORMAT (12H1SUMMARY OF , I3, 16H CALLS TO LMDIF1 /)
90 FORMAT (49H NPROB N M NFEV NJEV INFO FINAL L2 NORM /)
100 FORMAT (3I5, 3I6, 2X, E15.7)
C
C LAST CARD OF DRIVER.
C
END
SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
REAL X(N),FVEC(M)
C **********
C
C THE CALLING SEQUENCE OF FCN SHOULD BE IDENTICAL TO THE
C CALLING SEQUENCE OF THE FUNCTION SUBROUTINE IN THE NONLINEAR
C LEAST-SQUARES SOLVER. FCN SHOULD ONLY CALL THE TESTING
C FUNCTION SUBROUTINE SSQFCN WITH THE APPROPRIATE VALUE OF
C PROBLEM NUMBER (NPROB).
C
C SUBPROGRAMS CALLED
C
C MINPACK-SUPPLIED ... SSQFCN
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C **********
INTEGER NPROB,NFEV,NJEV
COMMON /REFNUM/ NPROB,NFEV,NJEV
CALL SSQFCN(M,N,X,FVEC,NPROB)
IF (IFLAG .EQ. 1) NFEV = NFEV + 1
IF (IFLAG .EQ. 2) NJEV = NJEV + 1
RETURN
C
C LAST CARD OF INTERFACE SUBROUTINE FCN.
C
END
SUBROUTINE SSQFCN(M,N,X,FVEC,NPROB)
INTEGER M,N,NPROB
REAL X(N),FVEC(M)
C **********
C
C SUBROUTINE SSQFCN
C
C THIS SUBROUTINE DEFINES THE FUNCTIONS OF EIGHTEEN NONLINEAR
C LEAST SQUARES PROBLEMS. THE ALLOWABLE VALUES OF (M,N) FOR
C FUNCTIONS 1,2 AND 3 ARE VARIABLE BUT WITH M .GE. N.
C FOR FUNCTIONS 4,5,6,7,8,9 AND 10 THE VALUES OF (M,N) ARE
C (2,2),(3,3),(4,4),(2,2),(15,3),(11,4) AND (16,3), RESPECTIVELY.
C FUNCTION 11 (WATSON) HAS M = 31 WITH N USUALLY 6 OR 9.
C HOWEVER, ANY N, N = 2,...,31, IS PERMITTED.
C FUNCTIONS 12,13 AND 14 HAVE N = 3,2 AND 4, RESPECTIVELY, BUT
C ALLOW ANY M .GE. N, WITH THE USUAL CHOICES BEING 10,10 AND 20.
C FUNCTION 15 (CHEBYQUAD) ALLOWS M AND N VARIABLE WITH M .GE. N.
C FUNCTION 16 (BROWN) ALLOWS N VARIABLE WITH M = N.
C FOR FUNCTIONS 17 AND 18, THE VALUES OF (M,N) ARE
C (33,5) AND (65,11), RESPECTIVELY.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE SSQFCN(M,N,X,FVEC,NPROB)
C
C WHERE
C
C M AND N ARE POSITIVE INTEGER INPUT VARIABLES. N MUST NOT
C EXCEED M.
C
C X IS AN INPUT ARRAY OF LENGTH N.
C
C FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS THE NPROB
C FUNCTION EVALUATED AT X.
C
C NPROB IS A POSITIVE INTEGER INPUT VARIABLE WHICH DEFINES THE
C NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 18.
C
C SUBPROGRAMS CALLED
C
C FORTRAN-SUPPLIED ... ATAN,COS,EXP,SIN,SQRT,SIGN
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C **********
INTEGER I,IEV,IVAR,J,NM1
REAL C13,C14,C29,C45,DIV,DX,EIGHT,FIVE,ONE,PROD,SUM,S1,S2,TEMP,
* TEN,TI,TMP1,TMP2,TMP3,TMP4,TPI,TWO,ZERO,ZP25,ZP5
REAL V(11),Y1(15),Y2(11),Y3(16),Y4(33),Y5(65)
REAL FLOAT
DATA ZERO,ZP25,ZP5,ONE,TWO,FIVE,EIGHT,TEN,C13,C14,C29,C45
* /0.0E0,2.5E-1,5.0E-1,1.0E0,2.0E0,5.0E0,8.0E0,1.0E1,1.3E1,
* 1.4E1,2.9E1,4.5E1/
DATA V(1),V(2),V(3),V(4),V(5),V(6),V(7),V(8),V(9),V(10),V(11)
* /4.0E0,2.0E0,1.0E0,5.0E-1,2.5E-1,1.67E-1,1.25E-1,1.0E-1,
* 8.33E-2,7.14E-2,6.25E-2/
DATA Y1(1),Y1(2),Y1(3),Y1(4),Y1(5),Y1(6),Y1(7),Y1(8),Y1(9),
* Y1(10),Y1(11),Y1(12),Y1(13),Y1(14),Y1(15)
* /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
* 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
DATA Y2(1),Y2(2),Y2(3),Y2(4),Y2(5),Y2(6),Y2(7),Y2(8),Y2(9),
* Y2(10),Y2(11)
* /1.957E-1,1.947E-1,1.735E-1,1.6E-1,8.44E-2,6.27E-2,4.56E-2,
* 3.42E-2,3.23E-2,2.35E-2,2.46E-2/
DATA Y3(1),Y3(2),Y3(3),Y3(4),Y3(5),Y3(6),Y3(7),Y3(8),Y3(9),
* Y3(10),Y3(11),Y3(12),Y3(13),Y3(14),Y3(15),Y3(16)
* /3.478E4,2.861E4,2.365E4,1.963E4,1.637E4,1.372E4,1.154E4,
* 9.744E3,8.261E3,7.03E3,6.005E3,5.147E3,4.427E3,3.82E3,
* 3.307E3,2.872E3/
DATA Y4(1),Y4(2),Y4(3),Y4(4),Y4(5),Y4(6),Y4(7),Y4(8),Y4(9),
* Y4(10),Y4(11),Y4(12),Y4(13),Y4(14),Y4(15),Y4(16),Y4(17),
* Y4(18),Y4(19),Y4(20),Y4(21),Y4(22),Y4(23),Y4(24),Y4(25),
* Y4(26),Y4(27),Y4(28),Y4(29),Y4(30),Y4(31),Y4(32),Y4(33)
* /8.44E-1,9.08E-1,9.32E-1,9.36E-1,9.25E-1,9.08E-1,8.81E-1,
* 8.5E-1,8.18E-1,7.84E-1,7.51E-1,7.18E-1,6.85E-1,6.58E-1,
* 6.28E-1,6.03E-1,5.8E-1,5.58E-1,5.38E-1,5.22E-1,5.06E-1,
* 4.9E-1,4.78E-1,4.67E-1,4.57E-1,4.48E-1,4.38E-1,4.31E-1,
* 4.24E-1,4.2E-1,4.14E-1,4.11E-1,4.06E-1/
DATA Y5(1),Y5(2),Y5(3),Y5(4),Y5(5),Y5(6),Y5(7),Y5(8),Y5(9),
* Y5(10),Y5(11),Y5(12),Y5(13),Y5(14),Y5(15),Y5(16),Y5(17),
* Y5(18),Y5(19),Y5(20),Y5(21),Y5(22),Y5(23),Y5(24),Y5(25),
* Y5(26),Y5(27),Y5(28),Y5(29),Y5(30),Y5(31),Y5(32),Y5(33),
* Y5(34),Y5(35),Y5(36),Y5(37),Y5(38),Y5(39),Y5(40),Y5(41),
* Y5(42),Y5(43),Y5(44),Y5(45),Y5(46),Y5(47),Y5(48),Y5(49),
* Y5(50),Y5(51),Y5(52),Y5(53),Y5(54),Y5(55),Y5(56),Y5(57),
* Y5(58),Y5(59),Y5(60),Y5(61),Y5(62),Y5(63),Y5(64),Y5(65)
* /1.366E0,1.191E0,1.112E0,1.013E0,9.91E-1,8.85E-1,8.31E-1,
* 8.47E-1,7.86E-1,7.25E-1,7.46E-1,6.79E-1,6.08E-1,6.55E-1,
* 6.16E-1,6.06E-1,6.02E-1,6.26E-1,6.51E-1,7.24E-1,6.49E-1,
* 6.49E-1,6.94E-1,6.44E-1,6.24E-1,6.61E-1,6.12E-1,5.58E-1,
* 5.33E-1,4.95E-1,5.0E-1,4.23E-1,3.95E-1,3.75E-1,3.72E-1,
* 3.91E-1,3.96E-1,4.05E-1,4.28E-1,4.29E-1,5.23E-1,5.62E-1,
* 6.07E-1,6.53E-1,6.72E-1,7.08E-1,6.33E-1,6.68E-1,6.45E-1,
* 6.32E-1,5.91E-1,5.59E-1,5.97E-1,6.25E-1,7.39E-1,7.1E-1,
* 7.29E-1,7.2E-1,6.36E-1,5.81E-1,4.28E-1,2.92E-1,1.62E-1,
* 9.8E-2,5.4E-2/
FLOAT(IVAR) = IVAR
C
C FUNCTION ROUTINE SELECTOR.
C
GO TO (10,40,70,110,120,130,140,150,170,190,210,250,270,290,310,
* 360,390,410), NPROB
C
C LINEAR FUNCTION - FULL RANK.
C
10 CONTINUE
SUM = ZERO
DO 20 J = 1, N
SUM = SUM + X(J)
20 CONTINUE
TEMP = TWO*SUM/FLOAT(M) + ONE
DO 30 I = 1, M
FVEC(I) = -TEMP
IF (I .LE. N) FVEC(I) = FVEC(I) + X(I)
30 CONTINUE
GO TO 430
C
C LINEAR FUNCTION - RANK 1.
C
40 CONTINUE
SUM = ZERO
DO 50 J = 1, N
SUM = SUM + FLOAT(J)*X(J)
50 CONTINUE
DO 60 I = 1, M
FVEC(I) = FLOAT(I)*SUM - ONE
60 CONTINUE
GO TO 430
C
C LINEAR FUNCTION - RANK 1 WITH ZERO COLUMNS AND ROWS.
C
70 CONTINUE
SUM = ZERO
NM1 = N - 1
IF (NM1 .LT. 2) GO TO 90
DO 80 J = 2, NM1
SUM = SUM + FLOAT(J)*X(J)
80 CONTINUE
90 CONTINUE
DO 100 I = 1, M
FVEC(I) = FLOAT(I-1)*SUM - ONE
100 CONTINUE
FVEC(M) = -ONE
GO TO 430
C
C ROSENBROCK FUNCTION.
C
110 CONTINUE
FVEC(1) = TEN*(X(2) - X(1)**2)
FVEC(2) = ONE - X(1)
GO TO 430
C
C HELICAL VALLEY FUNCTION.
C
120 CONTINUE
TPI = EIGHT*ATAN(ONE)
TMP1 = SIGN(ZP25,X(2))
IF (X(1) .GT. ZERO) TMP1 = ATAN(X(2)/X(1))/TPI
IF (X(1) .LT. ZERO) TMP1 = ATAN(X(2)/X(1))/TPI + ZP5
TMP2 = SQRT(X(1)**2+X(2)**2)
FVEC(1) = TEN*(X(3) - TEN*TMP1)
FVEC(2) = TEN*(TMP2 - ONE)
FVEC(3) = X(3)
GO TO 430
C
C POWELL SINGULAR FUNCTION.
C
130 CONTINUE
FVEC(1) = X(1) + TEN*X(2)
FVEC(2) = SQRT(FIVE)*(X(3) - X(4))
FVEC(3) = (X(2) - TWO*X(3))**2
FVEC(4) = SQRT(TEN)*(X(1) - X(4))**2
GO TO 430
C
C FREUDENSTEIN AND ROTH FUNCTION.
C
140 CONTINUE
FVEC(1) = -C13 + X(1) + ((FIVE - X(2))*X(2) - TWO)*X(2)
FVEC(2) = -C29 + X(1) + ((ONE + X(2))*X(2) - C14)*X(2)
GO TO 430
C
C BARD FUNCTION.
C
150 CONTINUE
DO 160 I = 1, 15
TMP1 = FLOAT(I)
TMP2 = FLOAT(16-I)
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y1(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
160 CONTINUE
GO TO 430
C
C KOWALIK AND OSBORNE FUNCTION.
C
170 CONTINUE
DO 180 I = 1, 11
TMP1 = V(I)*(V(I) + X(2))
TMP2 = V(I)*(V(I) + X(3)) + X(4)
FVEC(I) = Y2(I) - X(1)*TMP1/TMP2
180 CONTINUE
GO TO 430
C
C MEYER FUNCTION.
C
190 CONTINUE
DO 200 I = 1, 16
TEMP = FIVE*FLOAT(I) + C45 + X(3)
TMP1 = X(2)/TEMP
TMP2 = EXP(TMP1)
FVEC(I) = X(1)*TMP2 - Y3(I)
200 CONTINUE
GO TO 430
C
C WATSON FUNCTION.
C
210 CONTINUE
DO 240 I = 1, 29
DIV = FLOAT(I)/C29
S1 = ZERO
DX = ONE
DO 220 J = 2, N
S1 = S1 + FLOAT(J-1)*DX*X(J)
DX = DIV*DX
220 CONTINUE
S2 = ZERO
DX = ONE
DO 230 J = 1, N
S2 = S2 + DX*X(J)
DX = DIV*DX
230 CONTINUE
FVEC(I) = S1 - S2**2 - ONE
240 CONTINUE
FVEC(30) = X(1)
FVEC(31) = X(2) - X(1)**2 - ONE
GO TO 430
C
C BOX 3-DIMENSIONAL FUNCTION.
C
250 CONTINUE
DO 260 I = 1, M
TEMP = FLOAT(I)
TMP1 = TEMP/TEN
FVEC(I) = EXP(-TMP1*X(1)) - EXP(-TMP1*X(2))
* + (EXP(-TEMP) - EXP(-TMP1))*X(3)
260 CONTINUE
GO TO 430
C
C JENNRICH AND SAMPSON FUNCTION.
C
270 CONTINUE
DO 280 I = 1, M
TEMP = FLOAT(I)
FVEC(I) = TWO + TWO*TEMP - EXP(TEMP*X(1)) - EXP(TEMP*X(2))
280 CONTINUE
GO TO 430
C
C BROWN AND DENNIS FUNCTION.
C
290 CONTINUE
DO 300 I = 1, M
TEMP = FLOAT(I)/FIVE
TMP1 = X(1) + TEMP*X(2) - EXP(TEMP)
TMP2 = X(3) + SIN(TEMP)*X(4) - COS(TEMP)
FVEC(I) = TMP1**2 + TMP2**2
300 CONTINUE
GO TO 430
C
C CHEBYQUAD FUNCTION.
C
310 CONTINUE
DO 320 I = 1, M
FVEC(I) = ZERO
320 CONTINUE
DO 340 J = 1, N
TMP1 = ONE
TMP2 = TWO*X(J) - ONE
TEMP = TWO*TMP2
DO 330 I = 1, M
FVEC(I) = FVEC(I) + TMP2
TI = TEMP*TMP2 - TMP1
TMP1 = TMP2
TMP2 = TI
330 CONTINUE
340 CONTINUE
DX = ONE/FLOAT(N)
IEV = -1
DO 350 I = 1, M
FVEC(I) = DX*FVEC(I)
IF (IEV .GT. 0) FVEC(I) = FVEC(I) + ONE/(FLOAT(I)**2 - ONE)
IEV = -IEV
350 CONTINUE
GO TO 430
C
C BROWN ALMOST-LINEAR FUNCTION.
C
360 CONTINUE
SUM = -FLOAT(N+1)
PROD = ONE
DO 370 J = 1, N
SUM = SUM + X(J)
PROD = X(J)*PROD
370 CONTINUE
DO 380 I = 1, N
FVEC(I) = X(I) + SUM
380 CONTINUE
FVEC(N) = PROD - ONE
GO TO 430
C
C OSBORNE 1 FUNCTION.
C
390 CONTINUE
DO 400 I = 1, 33
TEMP = TEN*FLOAT(I-1)
TMP1 = EXP(-X(4)*TEMP)
TMP2 = EXP(-X(5)*TEMP)
FVEC(I) = Y4(I) - (X(1) + X(2)*TMP1 + X(3)*TMP2)
400 CONTINUE
GO TO 430
C
C OSBORNE 2 FUNCTION.
C
410 CONTINUE
DO 420 I = 1, 65
TEMP = FLOAT(I-1)/TEN
TMP1 = EXP(-X(5)*TEMP)
TMP2 = EXP(-X(6)*(TEMP-X(9))**2)
TMP3 = EXP(-X(7)*(TEMP-X(10))**2)
TMP4 = EXP(-X(8)*(TEMP-X(11))**2)
FVEC(I) = Y5(I)
* - (X(1)*TMP1 + X(2)*TMP2 + X(3)*TMP3 + X(4)*TMP4)
420 CONTINUE
430 CONTINUE
RETURN
C
C LAST CARD OF SUBROUTINE SSQFCN.
C
END
SUBROUTINE INITPT(N,X,NPROB,FACTOR)
INTEGER N,NPROB
REAL FACTOR
REAL X(N)
C **********
C
C SUBROUTINE INITPT
C
C THIS SUBROUTINE SPECIFIES THE STANDARD STARTING POINTS FOR THE
C FUNCTIONS DEFINED BY SUBROUTINE SSQFCN. THE SUBROUTINE RETURNS
C IN X A MULTIPLE (FACTOR) OF THE STANDARD STARTING POINT. FOR
C THE 11TH FUNCTION THE STANDARD STARTING POINT IS ZERO, SO IN
C THIS CASE, IF FACTOR IS NOT UNITY, THEN THE SUBROUTINE RETURNS
C THE VECTOR X(J) = FACTOR, J=1,...,N.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE INITPT(N,X,NPROB,FACTOR)
C
C WHERE
C
C N IS A POSITIVE INTEGER INPUT VARIABLE.
C
C X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE STANDARD
C STARTING POINT FOR PROBLEM NPROB MULTIPLIED BY FACTOR.
C
C NPROB IS A POSITIVE INTEGER INPUT VARIABLE WHICH DEFINES THE
C NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 18.
C
C FACTOR IS AN INPUT VARIABLE WHICH SPECIFIES THE MULTIPLE OF
C THE STANDARD STARTING POINT. IF FACTOR IS UNITY, NO
C MULTIPLICATION IS PERFORMED.
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C **********
INTEGER IVAR,J
REAL C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16,C17,
* FIVE,H,HALF,ONE,SEVEN,TEN,THREE,TWENTY,TWNTF,TWO,ZERO
REAL FLOAT
DATA ZERO,HALF,ONE,TWO,THREE,FIVE,SEVEN,TEN,TWENTY,TWNTF
* /0.0E0,5.0E-1,1.0E0,2.0E0,3.0E0,5.0E0,7.0E0,1.0E1,2.0E1,
* 2.5E1/
DATA C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16,C17
* /1.2E0,2.5E-1,3.9E-1,4.15E-1,2.0E-2,4.0E3,2.5E2,3.0E-1,
* 4.0E-1,1.5E0,1.0E-2,1.3E0,6.5E-1,7.0E-1,6.0E-1,4.5E0,
* 5.5E0/
FLOAT(IVAR) = IVAR
C
C SELECTION OF INITIAL POINT.
C
GO TO (10,10,10,30,40,50,60,70,80,90,100,120,130,140,150,170,
* 190,200), NPROB
C
C LINEAR FUNCTION - FULL RANK OR RANK 1.
C
10 CONTINUE
DO 20 J = 1, N
X(J) = ONE
20 CONTINUE
GO TO 210
C
C ROSENBROCK FUNCTION.
C
30 CONTINUE
X(1) = -C1
X(2) = ONE
GO TO 210
C
C HELICAL VALLEY FUNCTION.
C
40 CONTINUE
X(1) = -ONE
X(2) = ZERO
X(3) = ZERO
GO TO 210
C
C POWELL SINGULAR FUNCTION.
C
50 CONTINUE
X(1) = THREE
X(2) = -ONE
X(3) = ZERO
X(4) = ONE
GO TO 210
C
C FREUDENSTEIN AND ROTH FUNCTION.
C
60 CONTINUE
X(1) = HALF
X(2) = -TWO
GO TO 210
C
C BARD FUNCTION.
C
70 CONTINUE
X(1) = ONE
X(2) = ONE
X(3) = ONE
GO TO 210
C
C KOWALIK AND OSBORNE FUNCTION.
C
80 CONTINUE
X(1) = C2
X(2) = C3
X(3) = C4
X(4) = C3
GO TO 210
C
C MEYER FUNCTION.
C
90 CONTINUE
X(1) = C5
X(2) = C6
X(3) = C7
GO TO 210
C
C WATSON FUNCTION.
C
100 CONTINUE
DO 110 J = 1, N
X(J) = ZERO
110 CONTINUE
GO TO 210
C
C BOX 3-DIMENSIONAL FUNCTION.
C
120 CONTINUE
X(1) = ZERO
X(2) = TEN
X(3) = TWENTY
GO TO 210
C
C JENNRICH AND SAMPSON FUNCTION.
C
130 CONTINUE
X(1) = C8
X(2) = C9
GO TO 210
C
C BROWN AND DENNIS FUNCTION.
C
140 CONTINUE
X(1) = TWNTF
X(2) = FIVE
X(3) = -FIVE
X(4) = -ONE
GO TO 210
C
C CHEBYQUAD FUNCTION.
C
150 CONTINUE
H = ONE/FLOAT(N+1)
DO 160 J = 1, N
X(J) = FLOAT(J)*H
160 CONTINUE
GO TO 210
C
C BROWN ALMOST-LINEAR FUNCTION.
C
170 CONTINUE
DO 180 J = 1, N
X(J) = HALF
180 CONTINUE
GO TO 210
C
C OSBORNE 1 FUNCTION.
C
190 CONTINUE
X(1) = HALF
X(2) = C10
X(3) = -ONE
X(4) = C11
X(5) = C5
GO TO 210
C
C OSBORNE 2 FUNCTION.
C
200 CONTINUE
X(1) = C12
X(2) = C13
X(3) = C13
X(4) = C14
X(5) = C15
X(6) = THREE
X(7) = FIVE
X(8) = SEVEN
X(9) = TWO
X(10) = C16
X(11) = C17
210 CONTINUE
C
C COMPUTE MULTIPLE OF INITIAL POINT.
C
IF (FACTOR .EQ. ONE) GO TO 260
IF (NPROB .EQ. 11) GO TO 230
DO 220 J = 1, N
X(J) = FACTOR*X(J)
220 CONTINUE
GO TO 250
230 CONTINUE
DO 240 J = 1, N
X(J) = FACTOR
240 CONTINUE
250 CONTINUE
260 CONTINUE
RETURN
C
C LAST CARD OF SUBROUTINE INITPT.
C
END
|