1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
C DRIVER FOR HYBRD1 EXAMPLE.
C DOUBLE PRECISION VERSION
C
C **********
INTEGER J,N,INFO,LWA,NWRITE
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(9),FVEC(9),WA(180)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN
C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C
DATA NWRITE /6/
C
N = 9
C
C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
C
DO 10 J = 1, 9
X(J) = -1.D0
10 CONTINUE
C
LWA = 180
C
C SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C THIS IS THE RECOMMENDED SETTING.
C
TOL = DSQRT(DPMPAR(1))
C
CALL HYBRD1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)
FNORM = ENORM(N,FVEC)
WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER,16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))
C
C LAST CARD OF DRIVER FOR HYBRD1 EXAMPLE.
C
END
SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG
DOUBLE PRECISION X(N),FVEC(N)
C
C SUBROUTINE FCN FOR HYBRD1 EXAMPLE.
C
INTEGER K
DOUBLE PRECISION ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE /0.D0,1.D0,2.D0,3.D0/
C
DO 10 K = 1, N
TEMP = (THREE - TWO*X(K))*X(K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP1 = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
10 CONTINUE
RETURN
C
C LAST CARD OF SUBROUTINE FCN.
C
END
|