1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
C **********
C
C THIS PROGRAM CHECKS THE CONSTANTS OF MACHINE PRECISION AND
C SMALLEST AND LARGEST MACHINE REPRESENTABLE NUMBERS SPECIFIED IN
C FUNCTION DPMPAR, AGAINST THE CORRESPONDING HARDWARE-DETERMINED
C MACHINE CONSTANTS OBTAINED BY DMCHAR, A SUBROUTINE DUE TO
C W. J. CODY.
C
C DATA STATEMENTS IN DPMPAR CORRESPONDING TO THE MACHINE USED MUST
C BE ACTIVATED BY REMOVING C IN COLUMN 1.
C
C THE PRINTED OUTPUT CONSISTS OF THE MACHINE CONSTANTS OBTAINED BY
C DMCHAR AND COMPARISONS OF THE DPMPAR CONSTANTS WITH THEIR
C DMCHAR COUNTERPARTS. DESCRIPTIONS OF THE MACHINE CONSTANTS ARE
C GIVEN IN THE PROLOGUE COMMENTS OF DMCHAR.
C
C SUBPROGRAMS CALLED
C
C MINPACK-SUPPLIED ... DMCHAR,DPMPAR
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C **********
INTEGER IBETA,IEXP,IRND,IT,MACHEP,MAXEXP,MINEXP,NEGEP,NGRD,
* NWRITE
DOUBLE PRECISION DWARF,EPS,EPSMCH,EPSNEG,GIANT,XMAX,XMIN
DOUBLE PRECISION RERR(3)
DOUBLE PRECISION DPMPAR
C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C
DATA NWRITE /6/
C
C DETERMINE THE MACHINE CONSTANTS DYNAMICALLY FROM DMCHAR.
C
CALL DMCHAR(IBETA,IT,IRND,NGRD,MACHEP,NEGEP,IEXP,MINEXP,MAXEXP,
* EPS,EPSNEG,XMIN,XMAX)
C
C COMPARE THE DPMPAR CONSTANTS WITH THEIR DMCHAR COUNTERPARTS AND
C STORE THE RELATIVE DIFFERENCES IN RERR.
C
EPSMCH = DPMPAR(1)
DWARF = DPMPAR(2)
GIANT = DPMPAR(3)
RERR(1) = (EPSMCH - EPS)/EPSMCH
RERR(2) = (DWARF - XMIN)/DWARF
RERR(3) = (XMAX - GIANT)/GIANT
C
C WRITE THE DMCHAR CONSTANTS.
C
WRITE (NWRITE,10)
* IBETA,IT,IRND,NGRD,MACHEP,NEGEP,IEXP,MINEXP,MAXEXP,EPS,
* EPSNEG,XMIN,XMAX
C
C WRITE THE DPMPAR CONSTANTS AND THE RELATIVE DIFFERENCES.
C
WRITE (NWRITE,20) EPSMCH,RERR(1),DWARF,RERR(2),GIANT,RERR(3)
STOP
10 FORMAT (17H1DMCHAR CONSTANTS /// 8H IBETA =, I6 // 8H IT =,
* I6 // 8H IRND =, I6 // 8H NGRD =, I6 // 9H MACHEP =,
* I6 // 8H NEGEP =, I6 // 7H IEXP =, I6 // 9H MINEXP =,
* I6 // 9H MAXEXP =, I6 // 6H EPS =, D15.7 // 9H EPSNEG =,
* D15.7 // 7H XMIN =, D15.7 // 7H XMAX =, D15.7)
20 FORMAT ( /// 42H DPMPAR CONSTANTS AND RELATIVE DIFFERENCES ///
* 9H EPSMCH =, D15.7 / 10H RERR(1) =, D15.7 //
* 8H DWARF =, D15.7 / 10H RERR(2) =, D15.7 // 8H GIANT =,
* D15.7 / 10H RERR(3) =, D15.7)
C
C LAST CARD OF DRIVER.
C
END
SUBROUTINE DMCHAR(IBETA,IT,IRND,NGRD,MACHEP,NEGEP,IEXP,MINEXP,
1 MAXEXP,EPS,EPSNEG,XMIN,XMAX)
C
INTEGER I,IBETA,IEXP,IRND,IT,IZ,J,K,MACHEP,MAXEXP,MINEXP,
1 MX,NEGEP,NGRD
DOUBLE PRECISION A,B,BETA,BETAIN,BETAM1,EPS,EPSNEG,ONE,XMAX,
1 XMIN,Y,Z,ZERO
C
C THIS SUBROUTINE IS INTENDED TO DETERMINE THE CHARACTERISTICS
C OF THE FLOATING-POINT ARITHMETIC SYSTEM THAT ARE SPECIFIED
C BELOW. THE FIRST THREE ARE DETERMINED ACCORDING TO AN
C ALGORITHM DUE TO M. MALCOLM, CACM 15 (1972), PP. 949-951,
C INCORPORATING SOME, BUT NOT ALL, OF THE IMPROVEMENTS
C SUGGESTED BY M. GENTLEMAN AND S. MAROVICH, CACM 17 (1974),
C PP. 276-277.
C
C
C IBETA - THE RADIX OF THE FLOATING-POINT REPRESENTATION
C IT - THE NUMBER OF BASE IBETA DIGITS IN THE FLOATING-POINT
C SIGNIFICAND
C IRND - 0 IF FLOATING-POINT ADDITION CHOPS,
C 1 IF FLOATING-POINT ADDITION ROUNDS
C NGRD - THE NUMBER OF GUARD DIGITS FOR MULTIPLICATION. IT IS
C 0 IF IRND=1, OR IF IRND=0 AND ONLY IT BASE IBET
C DIGITS PARTICIPATE IN THE POST NORMALIZATION SHIFT
C OF THE FLOATING-POINT SIGNIFICAND IN MULTIPLICATION
C 1 IF IRND=0 AND MORE THAN IT BASE IBETA DIGITS
C PARTICIPATE IN THE POST NORMALIZATION SHIFT OF THE
C FLOATING-POINT SIGNIFICAND IN MULTIPLICATION
C MACHEP - THE LARGEST NEGATIVE INTEGER SUCH THAT
C 1.0+FLOAT(IBETA)**MACHEP .NE. 1.0, EXCEPT THAT
C MACHEP IS BOUNDED BELOW BY -(IT+3)
C NEGEPS - THE LARGEST NEGATIVE INTEGER SUCH THAT
C 1.0-FLOAT(IBETA)**NEGEPS .NE. 1.0, EXCEPT THAT
C NEGEPS IS BOUNDED BELOW BY -(IT+3)
C IEXP - THE NUMBER OF BITS (DECIMAL PLACES IF IBETA = 10)
C RESERVED FOR THE REPRESENTATION OF THE EXPONENT
C (INCLUDING THE BIAS OR SIGN) OF A FLOATING-POINT
C NUMBER
C MINEXP - THE LARGEST IN MAGNITUDE NEGATIVE INTEGER SUCH THAT
C FLOAT(IBETA)**MINEXP IS A POSITIVE FLOATING-POINT
C NUMBER
C MAXEXP - THE LARGEST POSITIVE INTEGER EXPONENT FOR A FINITE
C FLOATING-POINT NUMBER
C EPS - THE SMALLEST POSITIVE FLOATING-POINT NUMBER SUCH
C THAT 1.0+EPS .NE. 1.0. IN PARTICULAR, IF EITHER
C IBETA = 2 OR IRND = 0, EPS = FLOAT(IBETA)**MACHEP.
C OTHERWISE, EPS = (FLOAT(IBETA)**MACHEP)/2
C EPSNEG - A SMALL POSITIVE FLOATING-POINT NUMBER SUCH THAT
C 1.0-EPSNEG .NE. 1.0. IN PARTICULAR, IF IBETA = 2
C OR IRND = 0, EPSNEG = FLOAT(IBETA)**NEGEPS.
C OTHERWISE, EPSNEG = (IBETA**NEGEPS)/2. BECAUSE
C NEGEPS IS BOUNDED BELOW BY -(IT+3), EPSNEG MAY NOT
C BE THE SMALLEST NUMBER WHICH CAN ALTER 1.0 BY
C SUBTRACTION.
C XMIN - THE SMALLEST NON-VANISHING FLOATING-POINT POWER OF TH
C RADIX. IN PARTICULAR, XMIN = FLOAT(IBETA)**MINEXP
C XMAX - THE LARGEST FINITE FLOATING-POINT NUMBER. IN
C PARTICULAR XMAX = (1.0-EPSNEG)*FLOAT(IBETA)**MAXEXP
C NOTE - ON SOME MACHINES XMAX WILL BE ONLY THE
C SECOND, OR PERHAPS THIRD, LARGEST NUMBER, BEING
C TOO SMALL BY 1 OR 2 UNITS IN THE LAST DIGIT OF
C THE SIGNIFICAND.
C
C LATEST REVISION - OCTOBER 22, 1979
C
C AUTHOR - W. J. CODY
C ARGONNE NATIONAL LABORATORY
C
C-----------------------------------------------------------------
ONE = DBLE(FLOAT(1))
ZERO = 0.0D0
C-----------------------------------------------------------------
C DETERMINE IBETA,BETA ALA MALCOLM
C-----------------------------------------------------------------
A = ONE
10 A = A + A
IF (((A+ONE)-A)-ONE .EQ. ZERO) GO TO 10
B = ONE
20 B = B + B
IF ((A+B)-A .EQ. ZERO) GO TO 20
IBETA = INT(SNGL((A + B) - A))
BETA = DBLE(FLOAT(IBETA))
C-----------------------------------------------------------------
C DETERMINE IT, IRND
C-----------------------------------------------------------------
IT = 0
B = ONE
100 IT = IT + 1
B = B * BETA
IF (((B+ONE)-B)-ONE .EQ. ZERO) GO TO 100
IRND = 0
BETAM1 = BETA - ONE
IF ((A+BETAM1)-A .NE. ZERO) IRND = 1
C-----------------------------------------------------------------
C DETERMINE NEGEP, EPSNEG
C-----------------------------------------------------------------
NEGEP = IT + 3
BETAIN = ONE / BETA
A = ONE
C
DO 200 I = 1, NEGEP
A = A * BETAIN
200 CONTINUE
C
B = A
210 IF ((ONE-A)-ONE .NE. ZERO) GO TO 220
A = A * BETA
NEGEP = NEGEP - 1
GO TO 210
220 NEGEP = -NEGEP
EPSNEG = A
IF ((IBETA .EQ. 2) .OR. (IRND .EQ. 0)) GO TO 300
A = (A*(ONE+A)) / (ONE+ONE)
IF ((ONE-A)-ONE .NE. ZERO) EPSNEG = A
C-----------------------------------------------------------------
C DETERMINE MACHEP, EPS
C-----------------------------------------------------------------
300 MACHEP = -IT - 3
A = B
310 IF((ONE+A)-ONE .NE. ZERO) GO TO 320
A = A * BETA
MACHEP = MACHEP + 1
GO TO 310
320 EPS = A
IF ((IBETA .EQ. 2) .OR. (IRND .EQ. 0)) GO TO 350
A = (A*(ONE+A)) / (ONE+ONE)
IF ((ONE+A)-ONE .NE. ZERO) EPS = A
C-----------------------------------------------------------------
C DETERMINE NGRD
C-----------------------------------------------------------------
350 NGRD = 0
IF ((IRND .EQ. 0) .AND. ((ONE+EPS)*ONE-ONE) .NE. ZERO) NGRD = 1
C-----------------------------------------------------------------
C DETERMINE IEXP, MINEXP, XMIN
C
C LOOP TO DETERMINE LARGEST I AND K = 2**I SUCH THAT
C (1/BETA) ** (2**(I))
C DOES NOT UNDERFLOW
C EXIT FROM LOOP IS SIGNALED BY AN UNDERFLOW.
C-----------------------------------------------------------------
I = 0
K = 1
Z = BETAIN
400 Y = Z
Z = Y * Y
C-----------------------------------------------------------------
C CHECK FOR UNDERFLOW HERE
C-----------------------------------------------------------------
A = Z * ONE
IF ((A+A .EQ. ZERO) .OR. (DABS(Z) .GE. Y)) GO TO 410
I = I + 1
K = K + K
GO TO 400
410 IF (IBETA .EQ. 10) GO TO 420
IEXP = I + 1
MX = K + K
GO TO 450
C-----------------------------------------------------------------
C FOR DECIMAL MACHINES ONLY
C-----------------------------------------------------------------
420 IEXP = 2
IZ = IBETA
430 IF (K .LT. IZ) GO TO 440
IZ = IZ * IBETA
IEXP = IEXP + 1
GO TO 430
440 MX = IZ + IZ - 1
C-----------------------------------------------------------------
C LOOP TO DETERMINE MINEXP, XMIN
C EXIT FROM LOOP IS SIGNALED BY AN UNDERFLOW.
C-----------------------------------------------------------------
450 XMIN = Y
Y = Y * BETAIN
C-----------------------------------------------------------------
C CHECK FOR UNDERFLOW HERE
C-----------------------------------------------------------------
A = Y * ONE
IF (((A+A) .EQ. ZERO) .OR. (DABS(Y) .GE. XMIN)) GO TO 460
K = K + 1
GO TO 450
460 MINEXP = -K
C-----------------------------------------------------------------
C DETERMINE MAXEXP, XMAX
C-----------------------------------------------------------------
IF ((MX .GT. K+K-3) .OR. (IBETA .EQ. 10)) GO TO 500
MX = MX + MX
IEXP = IEXP + 1
500 MAXEXP = MX + MINEXP
C-----------------------------------------------------------------
C ADJUST FOR MACHINES WITH IMPLICIT LEADING
C BIT IN BINARY SIGNIFICAND AND MACHINES WITH
C RADIX POINT AT EXTREME RIGHT OF SIGNIFICAND
C-----------------------------------------------------------------
I = MAXEXP + MINEXP
IF ((IBETA .EQ. 2) .AND. (I .EQ. 0)) MAXEXP = MAXEXP - 1
IF (I .GT. 20) MAXEXP = MAXEXP - 1
IF (A .NE. Y) MAXEXP = MAXEXP - 2
XMAX = ONE - EPSNEG
IF (XMAX*ONE .NE. XMAX) XMAX = ONE - BETA * EPSNEG
XMAX = XMAX / (BETA * BETA * BETA * XMIN)
I = MAXEXP + MINEXP + 3
IF (I .LE. 0) GO TO 520
C
DO 510 J = 1, I
IF (IBETA .EQ. 2) XMAX = XMAX + XMAX
IF (IBETA .NE. 2) XMAX = XMAX * BETA
510 CONTINUE
C
520 RETURN
C ---------- LAST CARD OF DMCHAR ----------
END
|