1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
|
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include "test.hpp"
#include <array>
#include <iostream>
#include <iterator>
#include <limits>
#include <memory>
#include <miopen/batch_norm.hpp>
#include <miopen/miopen.h>
#include <miopen/tensor.hpp>
#include <utility>
#include "driver.hpp"
#include "get_handle.hpp"
#include "tensor_holder.hpp"
#include "verify.hpp"
#include "random.hpp"
#include <cmath>
#include <ctime>
#include <cfloat>
#include <iomanip>
// Run CPU emulations in hierarchical reduction mode.
//#define MIO_HEIRARCH_SEL 0
#define MIO_BN_TEST_EXPAVGFACTOR 0.1
#define MIO_BN_TEST_EPSILON 1e-5
#define MIO_BN_USE_MIX_PREC 1
#if MIO_BN_USE_MIX_PREC == 1
#define PREC_TYPE float
#else
#define PREC_TYPE T
#endif
//****************************************************
// FORWARD TRAIN
//****************************************************
template <class T, class U>
struct verify_forward_train_bn_per_activation
{
const tensor<T> input;
const tensor<U> scale;
const tensor<U> shift;
std::tuple<tensor<T>, tensor<U>, tensor<U>, tensor<U>, tensor<U>> cpu() const
{
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_start = std::chrono::high_resolution_clock::now();
#endif
double epsilon = MIO_BN_TEST_EPSILON;
double expAvgFactor = MIO_BN_TEST_EXPAVGFACTOR;
std::size_t n_batch, channels, height, width;
std::tie(n_batch, channels, height, width) = miopen::tien<4>(input.desc.GetLengths());
auto out = tensor<T>{n_batch, channels, height, width};
std::fill(out.begin(), out.end(), 0);
std::size_t rs_n_batch, rs_channels, rs_height, rs_width;
auto derivedBnDesc = miopen::TensorDescriptor{};
miopen::DeriveBNTensorDescriptor(derivedBnDesc, input.desc, miopenBNPerActivation);
std::tie(rs_n_batch, rs_channels, rs_height, rs_width) =
miopen::tien<4>(derivedBnDesc.GetLengths());
tensor<U> runMean;
tensor<U> runVar;
if(input.desc.GetType() == miopenFloat)
{
runMean = tensor<U>{rs_n_batch, rs_channels, rs_height, rs_width}.generate(
tensor_elem_gen_integer{17});
runVar = tensor<U>{rs_n_batch, rs_channels, rs_height, rs_width}.generate(
tensor_elem_gen_integer{17});
}
else
{
prng::reset_seed();
runMean = tensor<U>{rs_n_batch, rs_channels, rs_height, rs_width};
runVar = tensor<U>{rs_n_batch, rs_channels, rs_height, rs_width};
const double Data_scale = 0.001;
for(std::size_t i = 0; i < runMean.desc.GetElementSize(); i++)
{
runMean[i] = prng::gen_descreet_uniform_sign<U>(Data_scale, 100);
runVar[i] = prng::gen_descreet_unsigned<U>(Data_scale, 100);
}
}
auto saveMean = tensor<U>{1, channels, height, width};
auto saveInvVar = tensor<U>{1, channels, height, width};
const auto n = double(n_batch);
par_for(channels, 1, [&](int cidx) {
double mean_accum = 0.;
double variance_accum = 0.;
double elemStd = 0.;
double elemInvVar = 0.;
double inhat = 0.;
double newRunMean = 0.;
double adjust = 0.;
// process the batch per channel
for(std::size_t row = 0; row < height; row++)
{ // via rows
for(std::size_t column = 0; column < width; column++)
{ // via columns
mean_accum = 0.;
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
// #1 calculate the mean :: iterating through the stack of images in the
// mini_batch
mean_accum += input(bidx, cidx, row, column);
}
mean_accum /= n;
elemStd = variance_accum = 0.;
// #2 calculate the variances :: sigma^2 = (1/batch_mean) * sum( (x_i -
// batch_mean)^2 )
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
elemStd = (input(bidx, cidx, row, column) -
mean_accum); // (x_i - mean) //this is reused but needs recalc
variance_accum += elemStd * elemStd; // sum{ (x_i - mean)^2 }
} // end for(n)
variance_accum /= n; // (1/N)*sum{ (x_i - mean)^2 }
// #3 add epsilon for numeric stability, sqr_root, and invert
elemInvVar = 1.0 / double(sqrt(variance_accum + epsilon));
// #4 apply the normalization :: x_hat = (x_i - mean) / sqrt(variance_accum -
// epsilon)
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
elemStd = (input(bidx, cidx, row, column) - mean_accum); // (x_i - mean)
inhat = elemStd * elemInvVar;
// #5 Gamma and Beta adjust :: y_i = gamma*x_hat + beta
out(bidx, cidx, row, column) =
scale(0, cidx, row, column) * inhat + shift(0, cidx, row, column);
} // end for(n_batch)
newRunMean = runMean(0, cidx, row, column) * (1.0 - expAvgFactor);
runMean(0, cidx, row, column) =
mean_accum * expAvgFactor + newRunMean; // newMean*factor + tmp
// var(n+1) = p * var(n-1) + (1 - p)*(b/b-1)*var(n)
adjust = (n_batch == 1) ? variance_accum : (n / (n - 1.0)) * variance_accum;
runVar(0, cidx, row, column) =
(1 - expAvgFactor) * runVar(0, cidx, row, column) + expAvgFactor * adjust;
saveMean(0, cidx, row, column) = mean_accum;
saveInvVar(0, cidx, row, column) = elemInvVar;
} // for (column)
} // for (row)
});
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_end = std::chrono::high_resolution_clock::now();
std::cout << "Wall clock: CPU forward_train_bn_per_activation pass time: "
<< std::chrono::duration<double>(t_end - t_start).count() << " seconds."
<< std::endl;
#endif
return std::make_tuple(out, runMean, runVar, saveMean, saveInvVar);
}
std::tuple<tensor<T>, tensor<U>, tensor<U>, tensor<U>, tensor<U>> gpu() const
{
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_start = std::chrono::high_resolution_clock::now();
#endif
auto&& handle = get_handle();
std::size_t n_batch, channels, height, width;
std::tie(n_batch, channels, height, width) = miopen::tien<4>(input.desc.GetLengths());
auto out = input;
std::fill(out.begin(), out.end(), 0);
std::size_t rs_n_batch, rs_channels, rs_height, rs_width;
auto derivedBnDesc = miopen::TensorDescriptor{};
miopen::DeriveBNTensorDescriptor(derivedBnDesc, input.desc, miopenBNPerActivation);
std::tie(rs_n_batch, rs_channels, rs_height, rs_width) =
miopen::tien<4>(derivedBnDesc.GetLengths());
tensor<U> runMean;
tensor<U> runVar;
if(input.desc.GetType() == miopenFloat)
{
runMean = tensor<U>{rs_n_batch, rs_channels, rs_height, rs_width}.generate(
tensor_elem_gen_integer{17});
runVar = tensor<U>{rs_n_batch, rs_channels, rs_height, rs_width}.generate(
tensor_elem_gen_integer{17});
}
else
{
prng::reset_seed();
runMean = tensor<U>{rs_n_batch, rs_channels, rs_height, rs_width};
runVar = tensor<U>{rs_n_batch, rs_channels, rs_height, rs_width};
const double Data_scale = 0.001;
for(std::size_t i = 0; i < runMean.desc.GetElementSize(); i++)
{
runMean[i] = prng::gen_descreet_uniform_sign<U>(Data_scale, 100);
runVar[i] = prng::gen_descreet_unsigned<U>(Data_scale, 100);
}
}
auto saveMean = tensor<U>{1, channels, height, width};
auto saveInvVar = tensor<U>{1, channels, height, width};
// in buffers
auto in_dev = handle.Write(input.data);
auto scale_dev = handle.Write(scale.data);
auto shift_dev = handle.Write(shift.data);
// out buffers
auto runMean_dev = handle.Write(runMean.data);
auto runVar_dev = handle.Write(runVar.data);
auto saveMean_dev = handle.Create<U>(channels * height * width);
auto saveInvVar_dev = handle.Create<U>(channels * height * width);
auto out_dev = handle.Create<T>(n_batch * channels * height * width);
double epsilon = MIO_BN_TEST_EPSILON;
double expAvgFactor = MIO_BN_TEST_EXPAVGFACTOR;
float alpha = 1.;
float beta = 0.;
miopen::BatchNormForwardTraining(handle,
miopenBNPerActivation,
&alpha,
&beta,
input.desc,
in_dev.get(),
out.desc,
out_dev.get(),
scale.desc,
shift.desc,
shift.desc,
shift.desc,
scale_dev.get(),
shift_dev.get(),
expAvgFactor,
runMean_dev.get(),
runVar_dev.get(),
epsilon,
saveMean_dev.get(),
saveInvVar_dev.get());
saveMean.data = handle.Read<U>(saveMean_dev, saveMean.data.size());
saveInvVar.data = handle.Read<U>(saveInvVar_dev, saveInvVar.data.size());
runMean.data = handle.Read<U>(runMean_dev, runMean.data.size());
runVar.data = handle.Read<U>(runVar_dev, runVar.data.size());
out.data = handle.Read<T>(out_dev, out.data.size());
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_end = std::chrono::high_resolution_clock::now();
std::cout << "Wall clock: GPU forward_train_bn_per_activation pass time: "
<< std::chrono::duration<double>(t_end - t_start).count() << " seconds."
<< std::endl;
#endif
return std::make_tuple(out, runMean, runVar, saveMean, saveInvVar);
}
void fail(int badtensor) const
{
std::cout << "Forward Train Per Activation Batch Normalization: " << std::endl;
std::cout << "Input tensor: " << input.desc.ToString() << std::endl;
switch(badtensor)
{
case(0): std::cout << "Output tensor output failed verification." << std::endl; break;
case(1): std::cout << "Running Mean output tensor failed verification." << std::endl; break;
case(2):
std::cout << "Running Variance output tensor failed verification." << std::endl;
break;
case(3): std::cout << "Saved Mean tensor failed verification." << std::endl; break;
case(4): std::cout << "Saved Variance tensor failed verification." << std::endl; break;
default: break;
}
}
};
//****************************************************
// FORWARD INFERENCE
//****************************************************
template <class T, class U>
struct verify_forward_infer_bn_per_activation_recalc
{
const tensor<T> input;
const tensor<U> scale;
const tensor<U> shift;
tensor<T> cpu() const
{
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_start = std::chrono::high_resolution_clock::now();
#endif
double epsilon = MIO_BN_TEST_EPSILON;
std::size_t n_batch, channels, height, width;
std::tie(n_batch, channels, height, width) = miopen::tien<4>(input.desc.GetLengths());
auto out = tensor<T>{n_batch, channels, height, width};
std::fill(out.begin(), out.end(), 0);
const auto n = double(n_batch);
par_for(channels, 1, [&](int cidx) {
double elemStd = 0.;
double elemInvVar = 0.;
double mean_accum = 0.;
double variance_accum = 0.;
double inhat = 0.;
// process the batch per channel
for(std::size_t row = 0; row < height; row++)
{ // via rows
for(std::size_t column = 0; column < width; column++)
{ // via columns
mean_accum = 0.;
// #1 calculate the mean
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
// iterating through the stack of images in the mini_batch
mean_accum += input(bidx, cidx, row, column);
}
mean_accum /= n;
elemStd = 0.;
variance_accum = 0.;
// #2 calculate the variances
// sigma^2 = (1/batch_mean) * sum( (x_i - batch_mean)^2 )
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
elemStd = input(bidx, cidx, row, column) - mean_accum; // (x_i - mean)
variance_accum += elemStd * elemStd; // sum{ (x_i - mean)^2 }
} // end for(n)
variance_accum /= n; // (1/N)*sum{ (x_i - mean)^2 }
// #3 add epsilon for numeric stability, sqr_root, and invert
elemInvVar = 1.0 / double(sqrt(variance_accum + epsilon));
// #4 apply the normalization
// x_hat = (x_i - mean) / sqrt(variance_accum - epsilon)
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
// per (x-dims) channel load a block of data into LDS
elemStd = input(bidx, cidx, row, column) - mean_accum; // (x_i - mean)
inhat = elemStd * elemInvVar;
// #5 Gamma and Beta adjust // y_i = gamma*x_hat + beta
out(bidx, cidx, row, column) =
scale(0, cidx, row, column) * inhat + shift(0, cidx, row, column);
} // end for(n_batchs)
} // for (column)
} // for (row)
});
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_end = std::chrono::high_resolution_clock::now();
std::cout << "Wall clock: CPU forward_infer_bn_per_activation_recalc pass time: "
<< std::chrono::duration<double>(t_end - t_start).count() << " seconds."
<< std::endl;
#endif
return out;
}
tensor<T> gpu() const
{
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_start = std::chrono::high_resolution_clock::now();
#endif
auto&& handle = get_handle();
auto out = input;
std::fill(out.begin(), out.end(), 0);
auto in_dev = handle.Write(input.data);
auto scale_dev = handle.Write(scale.data);
auto shift_dev = handle.Write(shift.data);
auto out_dev = handle.Write(out.data);
double epsilon = MIO_BN_TEST_EPSILON;
float alpha = 1.;
float beta = 0.;
miopen::BatchNormForwardInference(handle,
miopenBNPerActivation,
&alpha,
&beta,
input.desc,
in_dev.get(),
out.desc,
out_dev.get(),
scale.desc,
shift.desc,
shift.desc,
shift.desc,
scale_dev.get(),
shift_dev.get(),
nullptr,
nullptr,
epsilon);
out.data = handle.Read<T>(out_dev, out.data.size());
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_end = std::chrono::high_resolution_clock::now();
std::cout << "Wall clock: GPU forward_infer_bn_per_activation_recalc pass time: "
<< std::chrono::duration<double>(t_end - t_start).count() << " seconds."
<< std::endl;
#endif
return out;
}
void fail(int) const
{
std::cout << "Forward Inference Per Activation Batch Normalization Recalc: " << std::endl;
std::cout << "Input tensor: " << input.desc.ToString() << std::endl;
}
};
template <class T, class U>
struct verify_forward_infer_bn_per_activation_use_est
{
const tensor<T> input;
const tensor<U> scale;
const tensor<U> shift;
const tensor<U> estMean;
const tensor<U> estVar;
tensor<T> cpu() const
{
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_start = std::chrono::high_resolution_clock::now();
#endif
double epsilon = MIO_BN_TEST_EPSILON;
std::size_t n_batch, channels, height, width;
std::tie(n_batch, channels, height, width) = miopen::tien<4>(input.desc.GetLengths());
auto out = tensor<T>{n_batch, channels, height, width};
std::fill(out.begin(), out.end(), 0);
par_for(channels, 1, [&](int cidx) {
double elemStd = 0.;
double mean = 0.;
double variance = 0.;
double inhat = 0.;
double elemInvVar = 0.;
// process the batch per channel
for(std::size_t row = 0; row < height; row++)
{ // via rows
for(std::size_t column = 0; column < width; column++)
{ // via columns
mean = estMean(0, cidx, row, column);
variance = estVar(0, cidx, row, column);
elemInvVar = 1.0 / double(sqrt(variance + epsilon));
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
elemStd = input(bidx, cidx, row, column) - mean; // (x_i - mean)
inhat = elemStd * elemInvVar;
// #5 Gamma and Beta adjust :: y_i = gamma*x_hat + beta
out(bidx, cidx, row, column) =
scale(0, cidx, row, column) * inhat + shift(0, cidx, row, column);
} // end for(n_batchs)
} // for (column)
} // for (row)
});
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_end = std::chrono::high_resolution_clock::now();
std::cout << "Wall clock: CPU forward_infer_bn_per_activation_use_est pass time: "
<< std::chrono::duration<double>(t_end - t_start).count() << " seconds."
<< std::endl;
#endif
return out;
}
tensor<T> gpu() const
{
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_start = std::chrono::high_resolution_clock::now();
#endif
auto&& handle = get_handle();
auto out = input;
std::fill(out.begin(), out.end(), 0);
auto in_dev = handle.Write(input.data);
auto scale_dev = handle.Write(scale.data);
auto shift_dev = handle.Write(shift.data);
auto estMean_dev = handle.Write(estMean.data);
auto estVar_dev = handle.Write(estVar.data);
auto out_dev = handle.Write(out.data);
double epsilon = MIO_BN_TEST_EPSILON;
float alpha = 1.;
float beta = 0.;
miopen::BatchNormForwardInference(handle,
miopenBNPerActivation,
&alpha,
&beta,
input.desc,
in_dev.get(),
out.desc,
out_dev.get(),
scale.desc,
shift.desc,
shift.desc,
shift.desc,
scale_dev.get(),
shift_dev.get(),
estMean_dev.get(),
estVar_dev.get(),
epsilon); // TODO: add multi-in
out.data = handle.Read<T>(out_dev, out.data.size());
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_end = std::chrono::high_resolution_clock::now();
std::cout << "Wall clock: GPU forward_infer_bn_per_activation_use_est pass time: "
<< std::chrono::duration<double>(t_end - t_start).count() << " seconds."
<< std::endl;
#endif
return out;
}
void fail(int) const
{
std::cout << "Forward Inference Per Activation Batch Normalization Use Estimated: "
<< std::endl;
std::cout << "Input tensor: " << input.desc.ToString() << std::endl;
}
};
//****************************************************
// BACKWARDS PROPAGATION
//****************************************************
template <class T, class U>
struct verify_backward_bn_per_activation_use_saved
{
const tensor<T> x_input;
const tensor<T> dy_input;
const tensor<U> scale;
const tensor<U> savedMean;
const tensor<U> savedInvVar;
std::tuple<tensor<T>, tensor<U>, tensor<U>> cpu() const
{
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_start = std::chrono::high_resolution_clock::now();
#endif
std::size_t n_batch, channels, height, width;
std::tie(n_batch, channels, height, width) = miopen::tien<4>(x_input.desc.GetLengths());
auto dx_out = tensor<T>{n_batch, channels, height, width};
std::fill(dx_out.begin(), dx_out.end(), 0);
auto dscale = tensor<U>{1, channels, height, width};
std::fill(dscale.begin(), dscale.end(), 0);
auto dshift = tensor<U>{1, channels, height, width};
std::fill(dshift.begin(), dshift.end(), 0);
const unsigned int in_cstride = height * width;
const auto n = double(n_batch);
par_for(channels, 1, [&](int cidx) {
double elemStd = 0.;
unsigned int xhat_index;
double mean = 0.;
double elemInvVar = 0.;
double dyelem = 0.;
double dxhat = 0.;
double dxhathat = 0.;
double tmp1 = 0.;
std::vector<double> xhat(n_batch * in_cstride);
// process the batch per channel
for(std::size_t row = 0; row < height; row++)
{ // via rows
for(std::size_t column = 0; column < width; column++)
{ // via columns
dxhat = 0.;
dxhathat = 0.;
mean = savedMean(0, cidx, row, column); // HxW elements
elemInvVar = savedInvVar(0, cidx, row, column); // HxW elements
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
xhat_index = in_cstride * bidx + (width * row + column);
// per (x-dims) channel load a block of data into LDS
elemStd = x_input(bidx, cidx, row, column) - mean; // (x_i - mean)
xhat[xhat_index] = elemStd * elemInvVar;
dyelem = dy_input(bidx, cidx, row, column);
dshift(0, cidx, row, column) += dyelem;
dscale(0, cidx, row, column) += xhat[xhat_index] * dyelem;
tmp1 = scale(0, cidx, row, column) * dyelem;
dxhat += tmp1;
dxhathat += tmp1 * xhat[xhat_index];
} // end for(n_batchs)
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
xhat_index = in_cstride * bidx + (width * row + column);
tmp1 = xhat[xhat_index] * dxhathat + dxhat;
double tmp2 = n_batch * (scale(0, cidx, row, column) *
dy_input(bidx, cidx, row, column)) -
tmp1;
double tmp3 = elemInvVar / (double(n));
dx_out(bidx, cidx, row, column) = tmp3 * tmp2;
} // end for(n_batchs)
} // for (column)
} // for (row)
});
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_end = std::chrono::high_resolution_clock::now();
std::cout << "Wall clock: CPU backward_bn_per_activation_use_saved pass time: "
<< std::chrono::duration<double>(t_end - t_start).count() << " seconds."
<< std::endl;
#endif
return std::make_tuple(dx_out, dscale, dshift);
}
std::tuple<tensor<T>, tensor<U>, tensor<U>> gpu() const
{
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_start = std::chrono::high_resolution_clock::now();
#endif
auto&& handle = get_handle();
double epsilon = MIO_BN_TEST_EPSILON;
std::size_t n_batch, channels, height, width;
std::tie(n_batch, channels, height, width) = miopen::tien<4>(x_input.desc.GetLengths());
auto dx_out = tensor<T>{n_batch, channels, height, width};
std::fill(dx_out.begin(), dx_out.end(), 0);
auto dscale = tensor<U>{1, channels, height, width};
std::fill(dscale.begin(), dscale.end(), 0);
auto dshift = tensor<U>{1, channels, height, width};
std::fill(dshift.begin(), dshift.end(), 0);
auto xin_dev = handle.Write(x_input.data);
auto dyin_dev = handle.Write(dy_input.data);
auto scale_dev = handle.Write(scale.data);
auto dscale_dev = handle.Write(dscale.data);
auto dshift_dev = handle.Write(dshift.data);
auto dx_out_dev = handle.Write(dx_out.data);
auto savedMean_dev = handle.Write(savedMean.data);
auto savedInvVar_dev = handle.Write(savedInvVar.data);
float alpha = 1.;
float beta = 0.;
miopen::BatchNormBackward(handle,
miopenBNPerActivation,
&alpha,
&beta,
&alpha,
&beta,
x_input.desc,
xin_dev.get(),
dy_input.desc,
dyin_dev.get(),
dx_out.desc,
dx_out_dev.get(),
scale.desc,
dshift.desc,
dshift.desc,
dshift.desc,
scale_dev.get(),
dscale_dev.get(),
dshift_dev.get(),
epsilon,
savedMean_dev.get(),
savedInvVar_dev.get());
dx_out.data = handle.Read<T>(dx_out_dev, dx_out.data.size());
dscale.data = handle.Read<U>(dscale_dev, dscale.data.size());
dshift.data = handle.Read<U>(dshift_dev, dshift.data.size());
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_end = std::chrono::high_resolution_clock::now();
std::cout << "Wall clock: GPU backward_bn_per_activation_use_saved pass time: "
<< std::chrono::duration<double>(t_end - t_start).count() << " seconds."
<< std::endl;
#endif
return std::make_tuple(dx_out, dscale, dshift);
}
void fail(int badtensor) const
{
std::cout << "Backward Batch Per Activation Normalization Using Saved Mean and Variance: "
<< std::endl;
std::cout << "X Input tensor: " << x_input.desc.ToString() << std::endl;
std::cout << "Delta Y Input tensor: " << dy_input.desc.ToString() << std::endl;
switch(badtensor)
{
case(0):
std::cout << "Delta X output tensor output failed verification." << std::endl;
break;
case(1): std::cout << "Delta scale output tensor failed verification." << std::endl; break;
case(2): std::cout << "Delta shift output tensor failed verification." << std::endl; break;
default: break;
}
}
};
template <class T, class U>
struct verify_backward_bn_per_activation_recalc
{
const tensor<T> x_input;
const tensor<T> dy_input;
const tensor<U> scale;
std::tuple<tensor<T>, tensor<U>, tensor<U>> cpu() const
{
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_start = std::chrono::high_resolution_clock::now();
#endif
double epsilon = MIO_BN_TEST_EPSILON;
std::size_t n_batch, channels, height, width;
std::tie(n_batch, channels, height, width) = miopen::tien<4>(x_input.desc.GetLengths());
auto dx_out = tensor<T>{n_batch, channels, height, width};
std::fill(dx_out.begin(), dx_out.end(), 0);
auto dscale = tensor<U>{1, channels, height, width};
std::fill(dscale.begin(), dscale.end(), 0);
auto dshift = tensor<U>{1, channels, height, width};
std::fill(dshift.begin(), dshift.end(), 0);
const unsigned int in_cstride = height * width;
const auto n = double(n_batch);
par_for(channels, 1, [&](int cidx) {
double elemStd = 0.;
unsigned int xhat_index;
double mean = 0.;
double elemInvVar = 0.;
double dyelem = 0.;
double variance = 0.;
double dxhat = 0.;
double dxhathat = 0.;
double tmp1 = 0.;
std::vector<double> xhat(n_batch * in_cstride);
// process the batch per channel
for(std::size_t row = 0; row < height; row++)
{ // via rows
for(std::size_t column = 0; column < width; column++)
{ // via columns
mean = 0.;
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
// #1 calculate the mean
mean += x_input(bidx, cidx, row, column);
}
mean /= n;
elemStd = 0.;
variance = 0.;
// #2 calculate the variances
// sigma^2 = (1/batch_mean) * sum( (x_i - batch_mean)^2 )
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
// per (x-dims) channel load a block of data into LDS
elemStd = x_input(bidx, cidx, row, column) - mean; // (x_i - mean)
variance += elemStd * elemStd; // sum{ (x_i - mean)^2 }
} // end for(n)
variance /= n; // (1/N)*sum{ (x_i - mean)^2 }
// #3 add epsilon for numeric stability, sqr_root, and invert
elemInvVar = 1.0 / double(sqrt(variance + epsilon));
dxhat = 0.;
dxhathat = 0.;
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
xhat_index = in_cstride * bidx + (width * row + column);
// per (x-dims) channel load a block of data into LDS
elemStd = x_input(bidx, cidx, row, column) - mean; // (x_i - mean)
xhat[xhat_index] = elemStd * elemInvVar;
dyelem = dy_input(bidx, cidx, row, column);
dshift(0, cidx, row, column) += dyelem;
dscale(0, cidx, row, column) += xhat[xhat_index] * dyelem;
tmp1 = scale(0, cidx, row, column) * dyelem;
dxhat += tmp1;
dxhathat += tmp1 * xhat[xhat_index];
} // end for(n_batchs)
for(std::size_t bidx = 0; bidx < n_batch; bidx++)
{ // via mini_batch
xhat_index = in_cstride * bidx + (width * row + column);
tmp1 = xhat[xhat_index] * dxhathat + dxhat;
double tmp2 = n_batch * (scale(0, cidx, row, column) *
dy_input(bidx, cidx, row, column)) -
tmp1;
double tmp3 = elemInvVar / double(n);
dx_out(bidx, cidx, row, column) = tmp3 * tmp2;
} // end for(n_batchs)
} // for (column)
} // for (row)
});
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_end = std::chrono::high_resolution_clock::now();
std::cout << "Wall clock: CPU backward_bn_per_activation_recalc pass time: "
<< std::chrono::duration<double>(t_end - t_start).count() << " seconds."
<< std::endl;
#endif
return std::make_tuple(dx_out, dscale, dshift);
}
std::tuple<tensor<T>, tensor<U>, tensor<U>> gpu() const
{
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_start = std::chrono::high_resolution_clock::now();
#endif
auto&& handle = get_handle();
std::size_t n_batch, channels, height, width;
std::tie(n_batch, channels, height, width) = miopen::tien<4>(x_input.desc.GetLengths());
auto dx_out = tensor<T>{n_batch, channels, height, width};
// std::fill(dx_out.begin(), dx_out.end(), 0);
auto dscale = tensor<U>{1, channels, height, width};
std::fill(dscale.begin(), dscale.end(), 0);
auto dshift = tensor<U>{1, channels, height, width};
std::fill(dshift.begin(), dshift.end(), 0);
auto xin_dev = handle.Write(x_input.data);
auto dyin_dev = handle.Write(dy_input.data);
auto scale_dev = handle.Write(scale.data);
auto dscale_dev = handle.Write(dscale.data);
auto dshift_dev = handle.Write(dshift.data);
auto dx_out_dev = handle.Write(dx_out.data);
double epsilon = MIO_BN_TEST_EPSILON;
float alpha = 1.;
float beta = 0.;
miopen::BatchNormBackward(handle,
miopenBNPerActivation,
&alpha,
&beta,
&alpha,
&beta,
x_input.desc,
xin_dev.get(),
dy_input.desc,
dyin_dev.get(),
dx_out.desc,
dx_out_dev.get(),
scale.desc,
dshift.desc,
dshift.desc,
dshift.desc,
scale_dev.get(),
dscale_dev.get(),
dshift_dev.get(),
epsilon,
nullptr,
nullptr);
dx_out.data = handle.Read<T>(dx_out_dev, dx_out.data.size());
dscale.data = handle.Read<U>(dscale_dev, dscale.data.size());
dshift.data = handle.Read<U>(dshift_dev, dshift.data.size());
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_end = std::chrono::high_resolution_clock::now();
std::cout << "Wall clock: GPU backward_bn_per_activation_recalc pass time: "
<< std::chrono::duration<double>(t_end - t_start).count() << " seconds."
<< std::endl;
#endif
return std::make_tuple(dx_out, dscale, dshift);
}
void fail(int badtensor) const
{
std::cout << "Backward Batch Per Activation Normalization Recalc Mean and Variance: "
<< std::endl;
std::cout << "X Input tensor: " << x_input.desc.ToString() << std::endl;
std::cout << "Delta Y Input tensor: " << dy_input.desc.ToString() << std::endl;
switch(badtensor)
{
case(0):
std::cout << "Delta X output tensor output failed verification." << std::endl;
break;
case(1): std::cout << "Delta scale output tensor failed verification." << std::endl; break;
case(2): std::cout << "Delta shift output tensor failed verification." << std::endl; break;
default: break;
}
}
};
//====== DRIVERS ===========================================
template <class T>
struct batch_norm_per_activation_driver : test_driver
{
tensor<T> input;
tensor<PREC_TYPE> scale;
tensor<PREC_TYPE> shift;
batch_norm_per_activation_driver()
{
this->batch_factor = 4;
add(input,
"input",
get_bn_peract_input_tensor(
tensor_elem_gen_integer{miopen_type<T>{} == miopenHalf ? 5 : 17}));
}
void run()
{
std::size_t n, c, h, w;
std::tie(n, c, h, w) = miopen::tien<4>(input.desc.GetLengths());
this->tolerance = 80 * input.desc.GetElementSize();
if(n == 1)
{
std::cout << "Invalid batch size for batch norm tests.\nExiting...\n" << std::endl;
return;
}
std::size_t ssn, ssc, ssh, ssw;
auto derivedBnDesc = miopen::TensorDescriptor{};
miopen::DeriveBNTensorDescriptor(derivedBnDesc, input.desc, miopenBNPerActivation);
std::tie(ssn, ssc, ssh, ssw) = miopen::tien<4>(derivedBnDesc.GetLengths());
if(input.desc.GetType() == miopenFloat)
{
scale = tensor<PREC_TYPE>{ssn, ssc, ssh, ssw}.generate(tensor_elem_gen_integer{17});
shift = tensor<PREC_TYPE>{ssn, ssc, ssh, ssw}.generate(tensor_elem_gen_integer{17});
}
else
{
scale = tensor<PREC_TYPE>{ssn, ssc, ssh, ssw};
shift = tensor<PREC_TYPE>{ssn, ssc, ssh, ssw};
const double Data_scale = 0.001;
for(std::size_t i = 0; i < scale.desc.GetElementSize(); i++)
{
scale[i] = prng::gen_descreet_uniform_sign<PREC_TYPE>(Data_scale, 100);
shift[i] = prng::gen_descreet_uniform_sign<PREC_TYPE>(Data_scale, 100);
}
for(std::size_t i = 0; i < input.desc.GetElementSize(); i++)
{
input[i] = prng::gen_descreet_uniform_sign<T>(1e-4, 100);
}
}
// train
auto outpair =
verify(verify_forward_train_bn_per_activation<T, PREC_TYPE>{input, scale, shift});
// returns: std::make_tuple(out,runMean,runVar,saveMean,saveInvVar);
// inference recalc
verify(verify_forward_infer_bn_per_activation_recalc<T, PREC_TYPE>{input, scale, shift});
// inference use estimated running values
auto estMean = std::get<1>(outpair.second);
auto estVar = std::get<2>(outpair.second);
verify(verify_forward_infer_bn_per_activation_use_est<T, PREC_TYPE>{
input, scale, shift, estMean, estVar});
// backprop recalc
uint64_t max_value = miopen_type<T>{} == miopenHalf ? 5 : 17;
this->tolerance = 8000 * input.desc.GetElementSize();
auto dy_input = tensor<T>{n, c, h, w}.generate(
tensor_elem_gen_integer{max_value}); //= std::get<0>(outpair.first);//
verify(verify_backward_bn_per_activation_recalc<T, PREC_TYPE>{input, dy_input, scale});
// backprop use saved values
auto savedMean = std::get<3>(outpair.second);
auto savedInvVar = std::get<4>(outpair.second);
verify(verify_backward_bn_per_activation_use_saved<T, PREC_TYPE>{
input, dy_input, scale, savedMean, savedInvVar});
}
};
int main(int argc, const char* argv[])
{
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_start = std::chrono::high_resolution_clock::now();
#endif
test_drive<batch_norm_per_activation_driver>(argc, argv);
#if(MIO_BN_TIME_EVERYTHING == 1)
auto t_end = std::chrono::high_resolution_clock::now();
std::cout << "Wall clock: full PER_ACTIVATION test pass time: "
<< std::chrono::duration<double>(t_end - t_start).count() << " seconds." << std::endl;
#endif
}
|