File: dropout.cpp

package info (click to toggle)
miopen 6.4.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 66,788 kB
  • sloc: cpp: 300,511; lisp: 29,731; ansic: 2,683; sh: 471; python: 323; makefile: 155
file content (359 lines) | stat: -rw-r--r-- 13,186 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
/*******************************************************************************
 *
 * MIT License
 *
 * Copyright (c) 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 *******************************************************************************/

#include "driver.hpp"
#include "dropout_util.hpp"
#include "get_handle.hpp"
#include "tensor_holder.hpp"
#include "test.hpp"
#include "verify.hpp"
#include "random.hpp"

#define DROPOUT_DEBUG_CTEST 0
// Workaround for issue #1128
#define DROPOUT_SINGLE_CTEST 1

template <class T>
struct verify_forward_dropout
{
    tensor<T> input;
    tensor<T> output;
    std::vector<unsigned char> rsvsp;
    miopen::DropoutDescriptor DropoutDesc;
    miopen::TensorDescriptor noise_shape;
    size_t in_offset;
    size_t out_offset;
    size_t rsvsp_offset;
    bool use_rsvsp;
    typename std::vector<unsigned char>::iterator rsvsp_ptr;

    verify_forward_dropout(const miopen::DropoutDescriptor& pDropoutDesc,
                           const miopen::TensorDescriptor& pNoiseShape,
                           const tensor<T>& pinput,
                           const tensor<T>& poutput,
                           std::vector<unsigned char>& prsvsp,
                           size_t pin_offset,
                           size_t pout_offset,
                           size_t prsvsp_offset,
                           bool puse_rsvsp = true)
    {
        DropoutDesc  = pDropoutDesc;
        noise_shape  = pNoiseShape;
        input        = pinput;
        output       = poutput;
        rsvsp        = prsvsp;
        in_offset    = pin_offset;
        out_offset   = pout_offset;
        rsvsp_offset = prsvsp_offset;
        use_rsvsp    = puse_rsvsp;
        rsvsp_ptr    = prsvsp.begin();
    }

    tensor<T> cpu() const
    {
        size_t states_size = DropoutDesc.stateSizeInBytes / sizeof(rocrand_state_xorwow);
        auto states_cpu    = std::vector<rocrand_state_xorwow>(states_size);
        InitKernelStateEmulator(states_cpu, DropoutDesc);

        auto out_cpu   = output;
        auto rsvsp_cpu = rsvsp;

        DropoutForwardVerify<T>(get_handle(),
                                DropoutDesc,
                                input.desc,
                                input.data,
                                out_cpu.desc,
                                out_cpu.data,
                                rsvsp_cpu,
                                states_cpu,
                                in_offset,
                                out_offset,
                                rsvsp_offset);

        return out_cpu;
    }

    tensor<T> gpu() const
    {
        auto&& handle  = get_handle();
        auto out_gpu   = output;
        auto rsvsp_dev = handle.Write(rsvsp);
        auto in_dev    = handle.Write(input.data);
        auto out_dev   = handle.Write(output.data);

        DropoutDesc.Dropout(handle,
                            input.desc,
                            input.desc,
                            in_dev.get(),
                            output.desc,
                            out_dev.get(),
                            use_rsvsp ? rsvsp_dev.get() : nullptr,
                            rsvsp.size(),
                            in_offset,
                            out_offset,
                            rsvsp_offset,
                            false /* is_backward */);

        out_gpu.data   = handle.Read<T>(out_dev, output.data.size());
        auto rsvsp_gpu = handle.Read<unsigned char>(rsvsp_dev, rsvsp.size());

        std::copy(rsvsp_gpu.begin(), rsvsp_gpu.end(), rsvsp_ptr);
        return out_gpu;
    }

    void fail(int badtensor) const
    {
        std::cout << "Forward Dropout: " << std::endl;
        std::cout << "Input tensor: " << input.desc.ToString() << std::endl;
        switch(badtensor)
        {
        case(0): std::cout << "Output tensor failed verification." << std::endl; break;
        case(1): std::cout << "Reservespace failed verification." << std::endl; break;
        default: break;
        }
    }
};

template <class T>
struct verify_backward_dropout
{
    tensor<T> din;
    tensor<T> dout;
    std::vector<unsigned char> rsvsp;
    miopen::DropoutDescriptor DropoutDesc;

    size_t in_offset;
    size_t out_offset;
    size_t rsvsp_offset;
    bool use_rsvsp;

    verify_backward_dropout(const miopen::DropoutDescriptor& pDropoutDesc,
                            const tensor<T>& pdin,
                            const tensor<T>& pdout,
                            const std::vector<unsigned char>& prsvsp,
                            size_t pin_offset,
                            size_t pout_offset,
                            size_t prsvsp_offset,
                            bool puse_rsvsp = true)
    {
        DropoutDesc  = pDropoutDesc;
        din          = pdin;
        dout         = pdout;
        rsvsp        = prsvsp;
        in_offset    = pin_offset;
        out_offset   = pout_offset;
        rsvsp_offset = prsvsp_offset;
        use_rsvsp    = puse_rsvsp;
    }

    tensor<T> cpu() const
    {
        auto din_cpu   = din;
        auto rsvsp_cpu = rsvsp;

        DropoutBackwardVerify<T>(DropoutDesc,
                                 dout.desc,
                                 dout.data,
                                 din_cpu.desc,
                                 din_cpu.data,
                                 rsvsp_cpu,
                                 in_offset,
                                 out_offset,
                                 rsvsp_offset);

        return din_cpu;
    }

    tensor<T> gpu() const
    {
        auto&& handle = get_handle();
        auto din_gpu  = din;

        auto din_dev   = handle.Write(din.data);
        auto dout_dev  = handle.Write(dout.data);
        auto rsvsp_dev = handle.Write(rsvsp);

        DropoutDesc.Dropout(handle,
                            din.desc,
                            dout.desc,
                            dout_dev.get(),
                            din.desc,
                            din_dev.get(),
                            use_rsvsp ? rsvsp_dev.get() : nullptr,
                            rsvsp.size(),
                            in_offset,
                            out_offset,
                            rsvsp_offset,
                            true /* is_backward*/);

        din_gpu.data = handle.Read<T>(din_dev, din.data.size());
        return din_gpu;
    }

    void fail(int = 0) const
    {
        std::cout << "Backward Dropout: " << std::endl;
        std::cout << "Doutput tensor: " << dout.desc.ToString() << std::endl;
    }
};

template <class T>
struct dropout_driver : test_driver
{
    std::vector<std::vector<int>> input_dims;
    float dropout_rate{};
    unsigned long long seed{};
    bool mask{};
    std::vector<int> in_dim{};
    int rng_mode_cmd = 0;

    dropout_driver()
    {
        input_dims                                              = get_sub_tensor();
        std::set<std::vector<int>> get_inputs_set               = get_inputs(1);
        std::set<std::vector<int>> get_3d_conv_input_shapes_set = get_3d_conv_input_shapes(1);

// Workaround for issue #1128
#if DROPOUT_SINGLE_CTEST
        input_dims.resize(1);
        add(in_dim, "input-dim", generate_data(input_dims));
        add(dropout_rate, "dropout", generate_data({float(0.5)}));
        add(seed, "seed", generate_data({0x0ULL}));
        add(mask, "use-mask", generate_data({false}));
        add(rng_mode_cmd, "rng-mode", generate_data({0}));
#else
#define DROPOUT_LARGE_CTEST 0
#if DROPOUT_LARGE_CTEST
        input_dims.insert(input_dims.end(), get_inputs_set.begin(), get_inputs_set.end());
        input_dims.insert(input_dims.end(),
                          get_3d_conv_input_shapes_set.begin(),
                          get_3d_conv_input_shapes_set.end());
#else
        auto itr = get_inputs_set.begin();
        for(std::size_t i = 0; i < get_inputs_set.size(); itr++, i++)
            if(i % 6 == 0)
                input_dims.push_back(*itr);

        itr = get_3d_conv_input_shapes_set.begin();
        for(std::size_t i = 0; i < get_3d_conv_input_shapes_set.size(); itr++, i++)
            if(i % 3 == 0)
                input_dims.push_back(*itr);
#endif

        add(in_dim, "input-dim", generate_data(input_dims));
        add(dropout_rate, "dropout", generate_data({float(0.0), float(0.5), float(1.0)}));
        add(seed, "seed", generate_data({0x0ULL, 0xFFFFFFFFFFFFFFFFULL}));
        add(mask, "use-mask", generate_data({false, true}));
        add(rng_mode_cmd, "rng-mode", generate_data({0}));
#endif
    }

    void run()
    {
        miopen::DropoutDescriptor DropoutDesc;
        uint64_t max_value       = miopen_type<T>{} == miopenHalf ? 5 : 17;
        auto&& handle            = get_handle();
        auto in                  = tensor<T>{in_dim}.generate(tensor_elem_gen_integer{max_value});
        miopenRNGType_t rng_mode = miopenRNGType_t(rng_mode_cmd);

        size_t stateSizeInBytes = std::min(size_t(MAX_PRNG_STATE), handle.GetImage3dMaxWidth()) *
                                  sizeof(rocrand_state_xorwow);
        size_t reserveSpaceSizeInBytes = in.desc.GetElementSize() * sizeof(bool);
        size_t total_mem =
            2 * (2 * in.desc.GetNumBytes() + reserveSpaceSizeInBytes) + stateSizeInBytes;
        size_t device_mem = handle.GetGlobalMemorySize();
#if !DROPOUT_DEBUG_CTEST
        if(total_mem >= device_mem)
        {
#endif
            show_command();
            std::cout << "Config requires " << total_mem
                      << " Bytes to write all necessary tensors to GPU. GPU has " << device_mem
                      << " Bytes of memory." << std::endl;
#if !DROPOUT_DEBUG_CTEST
        }
#else
        std::cout << "Input tensor requires " << in.desc.GetElementSize() << " Bytes of memory."
                  << std::endl;
        std::cout << "Output tensor requires " << in.desc.GetElementSize() << " Bytes of memory."
                  << std::endl;
        std::cout << "reserveSpace requires " << reserveSpaceSizeInBytes << " Bytes of memory."
                  << std::endl;
        std::cout << "PRNG state space requires " << stateSizeInBytes << " Bytes of memory."
                  << std::endl;
#endif
        if(total_mem >= device_mem)
        {
            return;
        }

        auto reserveSpace = std::vector<unsigned char>(in.desc.GetElementSize());
        if(mask)
        {
            for(size_t i = 0; i < in.desc.GetElementSize(); i++)
            {
                reserveSpace[i] =
                    static_cast<unsigned char>(prng::gen_canonical<float>() > dropout_rate);
            }
        }

        DropoutDesc.dropout          = dropout_rate;
        DropoutDesc.stateSizeInBytes = stateSizeInBytes;
        DropoutDesc.seed             = seed;
        DropoutDesc.use_mask         = mask;
        DropoutDesc.rng_mode         = rng_mode;

        auto state_buf      = handle.Create<unsigned char>(stateSizeInBytes);
        DropoutDesc.pstates = state_buf.get();
        DropoutDesc.InitPRNGState(
            handle, DropoutDesc.pstates, DropoutDesc.stateSizeInBytes, DropoutDesc.seed);
#if DROPOUT_DEBUG_CTEST
        std::cout <<
#if MIOPEN_BACKEND_OPENCL
            "Use OpenCL backend."
#elif MIOPEN_BACKEND_HIP
            "Use HIP backend."
#endif
                  << std::endl;
#endif

        auto out = tensor<T>{in_dim};
        verify(verify_forward_dropout<T>{DropoutDesc, in.desc, in, out, reserveSpace, 0, 0, 0});

        auto dout = tensor<T>{in_dim}.generate(tensor_elem_gen_integer{max_value});
        auto din  = tensor<T>{in_dim};
        verify(verify_backward_dropout<T>{DropoutDesc, din, dout, reserveSpace, 0, 0, 0});
        if(!mask)
        {
            verify(verify_forward_dropout<T>{
                DropoutDesc, in.desc, in, out, reserveSpace, 0, 0, 0, false});
            verify(
                verify_backward_dropout<T>{DropoutDesc, din, dout, reserveSpace, 0, 0, 0, false});
        }
    }
};

int main(int argc, const char* argv[]) { test_drive<dropout_driver>(argc, argv); }