1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include <miopen/miopen.h>
#define WORKAROUND_ISSUE_2212 1
#if MIOPEN_BACKEND_HIP
#include <gtest/gtest.h>
#include <miopen/miopen.h>
#include <miopen/solver_id.hpp>
#include <serialize.hpp>
#include <fusionHost.hpp>
#include "tensor_util.hpp"
#include "get_handle.hpp"
#include "gtest_common.hpp"
struct CBATestCase
{
size_t N;
size_t C;
size_t H;
size_t W;
size_t k;
size_t y;
size_t x;
size_t pad_x;
size_t pad_y;
size_t stride_x;
size_t stride_y;
size_t dialtion_x;
size_t dilation_y;
miopenActivationMode_t activ_mode;
miopenConvolutionMode_t conv_mode;
friend std::ostream& operator<<(std::ostream& os, const CBATestCase& tc)
{
return os << "N: " << tc.N << " C:" << tc.C << " H:" << tc.H << " W:" << tc.W
<< " k: " << tc.k << " y:" << tc.y << " x:" << tc.x << " pad_y:" << tc.pad_y
<< " pad_x:" << tc.pad_x << " stride_y:" << tc.stride_y
<< " dilation_y:" << tc.dilation_y << " activ_mode:" << tc.activ_mode
<< " conv_mode:" << tc.conv_mode;
}
};
bool IsTestSupportedForDevice()
{
#if WORKAROUND_ISSUE_2212
using namespace miopen::debug;
using e_mask = enabled<Gpu::gfx900, Gpu::gfx906, Gpu::gfx908, Gpu::gfx90A, Gpu::gfx103X>;
using d_mask = disabled<Gpu::gfx110X, Gpu::gfx94X>;
return ::IsTestSupportedForDevMask<d_mask, e_mask>();
#else
return true;
#endif
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(GPU_ConvBiasActivFwd_FP32);
struct GPU_ConvBiasActivFwd_FP32
: public ::testing::TestWithParam<std::tuple<miopenConvFwdAlgorithm_t, CBATestCase>>
{
protected:
void SetUp() override
{
if(!IsTestSupportedForDevice())
{
GTEST_SKIP();
}
std::tie(algo, cba_config) = GetParam();
const double double_zero = 0.0f;
input = tensor<float>{cba_config.N, cba_config.C, cba_config.H, cba_config.W};
weights = tensor<float>{cba_config.k, cba_config.C, cba_config.x, cba_config.y};
input.generate(tensor_elem_gen_integer{17});
weights.generate(tensor_elem_gen_integer{17});
miopenCreateConvolutionDescriptor(&conv_desc);
miopenCreateActivationDescriptor(&activ_desc);
miopenSetActivationDescriptor(
activ_desc, cba_config.activ_mode, double_zero, double_zero, double_zero);
miopenInitConvolutionDescriptor(conv_desc,
cba_config.conv_mode,
cba_config.pad_y,
cba_config.pad_x,
cba_config.stride_y,
cba_config.stride_x,
cba_config.dilation_y,
cba_config.dialtion_x);
int n, c, h, w;
miopenGetConvolutionForwardOutputDim(conv_desc, &input.desc, &weights.desc, &n, &c, &h, &w);
output = tensor<float>{static_cast<size_t>(n),
static_cast<size_t>(c),
static_cast<size_t>(h),
static_cast<size_t>(w)};
ref_out = tensor<float>{static_cast<size_t>(n),
static_cast<size_t>(c),
static_cast<size_t>(h),
static_cast<size_t>(w)};
bias = tensor<float>{1, static_cast<size_t>(c), 1, 1};
bias.generate(tensor_elem_gen_integer{17});
std::fill(output.begin(), output.end(), 0.0f);
std::fill(ref_out.begin(), ref_out.end(), 0.0f);
std::fill(bias.begin(), bias.end(), 0.0f);
auto&& handle = get_handle();
in_dev = handle.Write(input.data);
wei_dev = handle.Write(weights.data);
out_dev = handle.Write(output.data);
bias_dev = handle.Write(bias.data);
}
void TearDown() override
{
const double double_zero = 0.0f;
int bias_mode = 1; // zero disables bias
convHostForward(input, ref_out, weights, bias_mode, bias, conv_desc);
activationHostInfer(cba_config.activ_mode,
double_zero,
double_zero,
double_zero,
ref_out.data,
ref_out.data);
auto&& handle = get_handle();
output.data = handle.Read<float>(out_dev, output.data.size());
EXPECT_FALSE(miopen::range_zero(ref_out)) << "Cpu data is all zeros";
EXPECT_FALSE(miopen::range_zero(output)) << "Gpu data is all zeros";
const auto mxdiff = miopen::max_diff(output, ref_out);
std::ignore = mxdiff;
auto idx = miopen::mismatch_idx(ref_out, output, miopen::float_equal);
EXPECT_FALSE(miopen::find_idx(ref_out, miopen::not_finite) >= 0)
<< "Non finite number found in the CPU data";
EXPECT_FALSE(idx < miopen::range_distance(ref_out));
miopenDestroyConvolutionDescriptor(conv_desc);
miopenDestroyActivationDescriptor(activ_desc);
}
CBATestCase cba_config;
miopenConvolutionDescriptor_t conv_desc;
miopenActivationDescriptor_t activ_desc;
tensor<float> input;
tensor<float> weights;
tensor<float> output;
tensor<float> bias;
tensor<float> ref_out;
miopen::Allocator::ManageDataPtr in_dev;
miopen::Allocator::ManageDataPtr wei_dev;
miopen::Allocator::ManageDataPtr out_dev;
miopen::Allocator::ManageDataPtr bias_dev;
miopenConvFwdAlgorithm_t algo = miopenConvolutionFwdAlgoDirect;
};
TEST_P(GPU_ConvBiasActivFwd_FP32, DISABLED_DriveAPI)
{
tensor<float> z{};
const float alpha = 1.0f;
const auto status = miopenConvolutionBiasActivationForward(&get_handle(),
&alpha,
&input.desc,
in_dev.get(),
&weights.desc,
wei_dev.get(),
conv_desc,
algo,
nullptr,
0,
&alpha,
&z.desc,
nullptr,
&bias.desc,
bias_dev.get(),
activ_desc,
&output.desc,
out_dev.get());
EXPECT_EQ(status, miopenStatusSuccess);
}
// Extra layer of indirection introduced since GTEST_SKIP() cannot be called from non-void function.
std::vector<CBATestCase> GetTestValues()
{
return {
{16, 128, 16, 16, 128, 3, 3, 0, 0, 1, 1, 1, 1, miopenActivationRELU, miopenConvolution}};
}
INSTANTIATE_TEST_SUITE_P(Full,
GPU_ConvBiasActivFwd_FP32,
testing::Combine(testing::Values(miopenConvolutionFwdAlgoDirect,
miopenConvolutionFwdAlgoWinograd),
testing::ValuesIn(GetTestValues())));
#endif
|