1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include <gtest/gtest.h>
#include <miopen/fusion/solvers.hpp>
#include <miopen/fusion/fusion_invoke_params.hpp>
#include <miopen/env.hpp>
#include "tensor_holder.hpp"
#include "get_handle.hpp"
#include "conv_test_base.hpp"
#if MIOPEN_BACKEND_HIP
namespace bad_fusion_plan {
struct ConvTestCaseFusion
{
size_t N;
size_t C;
size_t H;
size_t W;
size_t k;
size_t y;
size_t x;
size_t pad_x;
size_t pad_y;
size_t stride_x;
size_t stride_y;
size_t dilation_x;
size_t dilation_y;
friend std::ostream& operator<<(std::ostream& os, const ConvTestCaseFusion& tc)
{
return os << "(N: " << tc.N << " C:" << tc.C << " H:" << tc.H << " W:" << tc.W
<< " k: " << tc.k << " y:" << tc.y << " x:" << tc.x << " pad_y:" << tc.pad_y
<< " pad_x:" << tc.pad_x << " stride_y:" << tc.stride_y
<< " stride_x:" << tc.stride_x << " dilation_y:" << tc.dilation_y
<< " dilation_x:" << tc.dilation_x << " )";
}
std::vector<size_t> GetInput() const { return {N, C, H, W}; }
std::vector<size_t> GetWeights() const { return {k, C, y, x}; }
miopen::ConvolutionDescriptor GetConv() const
{
return miopen::ConvolutionDescriptor{
{static_cast<int>(pad_y), static_cast<int>(pad_x)},
{static_cast<int>(stride_y), static_cast<int>(stride_x)},
{static_cast<int>(dilation_y), static_cast<int>(dilation_x)}};
}
};
const static ConvTestCaseFusion conv_config = {64, 64, 56, 56, 64, 3, 3, 1, 1, 1, 1, 1, 1};
template <typename Solver, typename T>
class GPU_FusionPlan_FP16
{
public:
GPU_FusionPlan_FP16(const miopenTensorLayout_t& tensor_layout,
const miopenActivationMode_t& activ_mode)
: handle(get_handle())
{
input_des = {miopen_type<T>{}, tensor_layout, conv_config.GetInput()};
weights_des = {miopen_type<T>{}, tensor_layout, conv_config.GetWeights()};
bias_des = {miopen_type<T>{}, tensor_layout, {1, static_cast<size_t>(conv_config.k), 1, 1}};
conv_desc = conv_config.GetConv();
activ_desc = {activ_mode, activ_alpha, activ_beta, activ_gamma};
// Setup the Fusionplan
fusePlanDesc = miopen::FusionPlanDescriptor(miopenVerticalFusion, input_des);
const std::string arch = handle.GetDeviceName();
skip_test = (arch != "gfx908" && arch != "gfx90a");
SkipWithMsg();
}
void AddConv()
{
auto convOp = std::make_shared<miopen::ConvForwardOpDescriptor>(conv_desc, weights_des);
EXPECT_EQ(fusePlanDesc.AddOp(convOp), miopenStatusSuccess);
}
void AddBias()
{
auto biasOp = std::make_shared<miopen::BiasFusionOpDescriptor>(bias_des);
EXPECT_EQ(fusePlanDesc.AddOp(biasOp), miopenStatusSuccess);
}
void AddActiv()
{
auto activOp = std::make_shared<miopen::ActivFwdFusionOpDescriptor>(activ_desc.GetMode());
EXPECT_EQ(fusePlanDesc.AddOp(activOp), miopenStatusSuccess);
}
bool Skip() const { return skip_test; }
void SkipWithMsg()
{
if(skip_test)
GTEST_SKIP() << "Skipping fusion plan test on unsupported arch";
}
bool Applicability()
{
Solver solv{};
const auto fusion_problem = miopen::FusionDescription{&fusePlanDesc};
auto fusion_ctx = miopen::FusionContext{handle};
return solv.IsApplicable(fusion_ctx, fusion_problem);
}
void CanCompile()
{
miopenStatus_t status = fusePlanDesc.Compile(handle);
EXPECT_EQ(status, miopenStatusUnsupportedOp);
}
private:
miopen::TensorDescriptor input_des;
miopen::TensorDescriptor bias_des;
miopen::TensorDescriptor weights_des;
const miopen::Handle& handle;
miopen::ConvolutionDescriptor conv_desc;
miopen::ActivationDescriptor activ_desc;
miopen::OperatorArgs params;
miopen::FusionPlanDescriptor fusePlanDesc;
const float activ_alpha = static_cast<double>(0.5f);
const float activ_beta = static_cast<double>(0.5f);
const float activ_gamma = static_cast<double>(0.5f);
bool skip_test;
};
} // namespace bad_fusion_plan
using namespace bad_fusion_plan;
TEST(GPU_FusionPlan_FP16, GoodFusionPlan)
{
GPU_FusionPlan_FP16<miopen::solver::fusion::ConvCKIgemmFwdBiasActivFused, half_float::half> obj(
miopenTensorNHWC, miopenActivationRELU);
if(obj.Skip())
GTEST_SKIP();
obj.AddConv();
obj.AddBias();
obj.AddActiv();
ASSERT_TRUE(obj.Applicability());
}
TEST(GPU_FusionPlan_FP16, BadOrderFusionPlan)
{
GPU_FusionPlan_FP16<miopen::solver::fusion::ConvCKIgemmFwdBiasActivFused, half_float::half> obj(
miopenTensorNHWC, miopenActivationRELU);
if(obj.Skip())
GTEST_SKIP();
obj.AddBias();
obj.AddConv();
obj.AddActiv();
ASSERT_FALSE(obj.Applicability());
}
TEST(GPU_FusionPlan_FP16, BadLayoutFusionPlan)
{
GPU_FusionPlan_FP16<miopen::solver::fusion::ConvCKIgemmFwdBiasActivFused, half_float::half> obj(
miopenTensorNCHW, miopenActivationRELU);
if(obj.Skip())
GTEST_SKIP();
obj.AddConv();
obj.AddBias();
obj.AddActiv();
ASSERT_FALSE(obj.Applicability());
}
TEST(GPU_FusionPlan_FP16, BadActivationFusionPlan)
{
GPU_FusionPlan_FP16<miopen::solver::fusion::ConvCKIgemmFwdBiasActivFused, half_float::half> obj(
miopenTensorNHWC, miopenActivationELU);
if(obj.Skip())
GTEST_SKIP();
obj.AddConv();
obj.AddBias();
obj.AddActiv();
ASSERT_FALSE(obj.Applicability());
}
TEST(GPU_FusionPlan_FP16, BadMissingBiasFusionPlan)
{
GPU_FusionPlan_FP16<miopen::solver::fusion::ConvCKIgemmFwdBiasActivFused, half_float::half> obj(
miopenTensorNHWC, miopenActivationRELU);
if(obj.Skip())
GTEST_SKIP();
obj.AddConv();
obj.AddActiv();
ASSERT_FALSE(obj.Applicability());
}
TEST(GPU_FusionPlan_FP16, BadMissingActivBiasFusionPlan)
{
GPU_FusionPlan_FP16<miopen::solver::fusion::ConvCKIgemmFwdBiasActivFused, half_float::half> obj(
miopenTensorNHWC, miopenActivationRELU);
if(obj.Skip())
GTEST_SKIP();
obj.AddConv();
ASSERT_FALSE(obj.Applicability());
}
TEST(GPU_FusionPlan_FP16, BadEmptyFusionPlan)
{
GPU_FusionPlan_FP16<miopen::solver::fusion::ConvCKIgemmFwdBiasActivFused, half_float::half> obj(
miopenTensorNHWC, miopenActivationRELU);
if(obj.Skip())
GTEST_SKIP();
EXPECT_ANY_THROW(obj.Applicability());
}
TEST(GPU_FusionPlan_FP16, UnSupportedFusionPlanDuringSearchMode)
{
env::setEnvironmentVariable("MIOPEN_FIND_ENFORCE", "3");
GPU_FusionPlan_FP16<miopen::solver::fusion::ConvCKIgemmFwdBiasActivFused, half_float::half> obj(
miopenTensorNHWC, miopenActivationRELU);
if(obj.Skip())
GTEST_SKIP();
obj.AddBias();
obj.AddConv();
obj.CanCompile();
}
#endif
|