1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
// Test Suite for convolution with strided tensor descriptors
#include <gtest/gtest.h>
#include <miopen/miopen.h>
#include "platform.hpp"
#include "../workspace.hpp"
#define MIOPEN_CHECK_RET(val) ASSERT_EQ(val, miopenStatusSuccess)
class GPU_ConvStridedTensors_FP32 : public ::testing::Test
{
protected:
void SetUp() override
{
// MIOpen handle
MIOPEN_CHECK_RET(miopenCreate(&handle));
// Tensor descriptors
MIOPEN_CHECK_RET(miopenCreateTensorDescriptor(&input_descr));
MIOPEN_CHECK_RET(miopenSetTensorDescriptor(
input_descr, miopenFloat, input_dims.size(), input_dims.data(), input_strides.data()));
MIOPEN_CHECK_RET(miopenCreateTensorDescriptor(&filter_descr));
MIOPEN_CHECK_RET(miopenSetTensorDescriptor(filter_descr,
miopenFloat,
filter_dims.size(),
filter_dims.data(),
filter_strides.data()));
MIOPEN_CHECK_RET(miopenCreateTensorDescriptor(&output_descr));
MIOPEN_CHECK_RET(miopenSetTensorDescriptor(output_descr,
miopenFloat,
output_dims.size(),
output_dims.data(),
output_strides.data()));
// Convolution descriptor
MIOPEN_CHECK_RET(miopenCreateConvolutionDescriptor(&conv_descr));
MIOPEN_CHECK_RET(miopenInitConvolutionNdDescriptor(
conv_descr, pad.size(), pad.data(), stride.data(), dilation.data(), miopenConvolution));
MIOPEN_CHECK_RET(miopenSetConvolutionGroupCount(conv_descr, 1));
// Workspace
size_t sz = 0;
MIOPEN_CHECK_RET(miopenConvolutionForwardGetWorkSpaceSize(
handle, filter_descr, input_descr, conv_descr, output_descr, &sz));
// Data
wspace.resize(sz);
h_input.resize(input_size);
h_filter.resize(filter_size);
h_output.resize(output_size);
}
void TearDown() override
{
// Convolution descriptor
if(conv_descr != nullptr)
{
MIOPEN_CHECK_RET(miopenDestroyConvolutionDescriptor(conv_descr));
}
// Tensor descriptors
if(output_descr != nullptr)
{
MIOPEN_CHECK_RET(miopenDestroyTensorDescriptor(output_descr));
}
if(filter_descr != nullptr)
{
MIOPEN_CHECK_RET(miopenDestroyTensorDescriptor(filter_descr));
}
if(input_descr != nullptr)
{
MIOPEN_CHECK_RET(miopenDestroyTensorDescriptor(input_descr));
}
// MIOpen handle
if(handle != nullptr)
{
MIOPEN_CHECK_RET(miopenDestroy(handle));
}
}
// MIOpen handle
miopenHandle_t handle = nullptr;
// Tensor descriptors
miopenTensorDescriptor_t input_descr = nullptr;
miopenTensorDescriptor_t filter_descr = nullptr;
miopenTensorDescriptor_t output_descr = nullptr;
std::vector<int> input_dims = {4, 4, 16, 9, 16};
std::vector<int> input_strides = {10240, 2560, 160, 16, 1};
std::vector<int> filter_dims = {8, 4, 3, 3, 3};
std::vector<int> filter_strides = {108, 27, 9, 3, 1};
std::vector<int> output_dims = {4, 8, 8, 4, 8};
std::vector<int> output_strides = {2048, 256, 32, 8, 1};
// Convolution descriptor
miopenConvolutionDescriptor_t conv_descr = nullptr;
std::vector<int> pad = {1, 0, 1};
std::vector<int> stride = {2, 2, 2};
std::vector<int> dilation = {1, 1, 1};
// Workspace
Workspace wspace{};
// Data
const size_t input_size = input_dims[0] * input_strides[0];
const size_t filter_size = filter_dims[0] * filter_strides[0];
const size_t output_size = output_dims[0] * output_strides[0];
const size_t input_bytes = input_size * sizeof(float);
const size_t filter_bytes = filter_size * sizeof(float);
const size_t output_bytes = output_size * sizeof(float);
std::vector<float> h_input;
std::vector<float> h_filter;
std::vector<float> h_output;
};
TEST_F(GPU_ConvStridedTensors_FP32, ConvStridedTensorsNotImplemented)
{
auto device = Device(handle);
auto d_input = device.Malloc(input_bytes);
auto d_filter = device.Malloc(filter_bytes);
auto d_output = device.Malloc(output_bytes);
std::fill_n(h_input.begin(), h_input.size(), 1.f);
ASSERT_TRUE(d_input.CopyToDevice(h_input.data(), input_bytes));
std::fill_n(h_filter.begin(), h_filter.size(), 1.f);
ASSERT_TRUE(d_filter.CopyToDevice(h_filter.data(), filter_bytes));
miopenConvAlgoPerf_t perf_results[10];
int perf_results_count;
ASSERT_EQ(miopenFindConvolutionForwardAlgorithm(handle,
input_descr,
d_input.Data(),
filter_descr,
d_filter.Data(),
conv_descr,
output_descr,
d_output.Data(),
sizeof(perf_results) / sizeof(perf_results[0]),
&perf_results_count,
perf_results,
wspace.ptr(),
wspace.size(),
true),
miopenStatusSuccess);
ASSERT_GT(perf_results_count, 0);
const float alpha = 1.f;
const float beta = 0.f;
ASSERT_TRUE(device.Synchronize());
ASSERT_EQ(miopenConvolutionForward(handle,
&alpha,
input_descr,
d_input.Data(),
filter_descr,
d_filter.Data(),
conv_descr,
perf_results[0].fwd_algo,
&beta,
output_descr,
d_output.Data(),
wspace.ptr(),
wspace.size()),
miopenStatusSuccess);
ASSERT_TRUE(device.Synchronize());
}
|