1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
|
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include <gtest/gtest.h>
#include <miopen/miopen.h>
#include "get_handle.hpp"
#include <miopen/readonlyramdb.hpp>
#include <miopen/execution_context.hpp>
#include <miopen/find_db.hpp>
#include <miopen/tensor.hpp>
#include <miopen/conv/problem_description.hpp>
#include <miopen/conv_algo_name.hpp>
#include <miopen/solver_id.hpp>
#include <miopen/any_solver.hpp>
#include <miopen/mt_queue.hpp>
#include <miopen/filesystem.hpp>
#include <cstdlib>
#include <regex>
#include <exception>
#include <unordered_set>
/// \todo HACK
/// This should be set to 1 if either WORKAROUND_ISSUE_2492_GRANULARITY_LOSS
/// or WORKAROUND_ISSUE_2492_TINY_TENSOR is defined as non-zero in
/// src/solver/conv_winoRxS.cpp
#define WORKAROUND_ISSUE_2492 1
#if WORKAROUND_ISSUE_2492 && defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#endif
#define WORKAROUND_ISSUE_1987 0 // Allows testing FDB on gfx1030 (legacy fdb).
#define SKIP_KDB_PDB_TESTING 0 // Allows testing FDB on gfx1030.
#define SKIP_CONVOCLDIRECTFWDFUSED 0 // Allows testing FDB on gfx1030 (legacy fdb).
namespace fs = miopen::fs;
namespace env = miopen::env;
MIOPEN_DECLARE_ENV_VAR_BOOL(MIOPEN_DBSYNC_CLEAN)
struct KDBKey
{
fs::path program_file;
std::string program_args;
bool operator==(const KDBKey& other) const
{
return (program_file == other.program_file) && (program_args == other.program_args);
}
};
template <>
struct std::hash<KDBKey>
{
std::size_t operator()(const KDBKey& k) const
{
return std::hash<std::string>()(k.program_file.string()) ^
(hash<string>()(k.program_args) << 1) >> 1;
}
};
#if WORKAROUND_ISSUE_2492 && !defined(_WIN32)
static void SetEnvironmentVariable(std::string_view name, std::string_view value)
{
const auto ret = setenv(name.data(), value.data(), 1);
ASSERT_TRUE(ret == 0);
}
#endif // WORKAROUND_ISSUE_2492
#if WORKAROUND_ISSUE_1987
/// \todo Copied from src/db_record.cpp
/// Transform find-db (v.1.0) ID:VALUES to the current format.
/// Implementation is intentionally straightforward.
/// Do not include the 1st value from VALUES (solver name) into transformed VALUES.
/// Ignore FdbKCache_Key pair (last two values).
/// Append id (algorithm) to VALUES.
/// Use solver name as ID.
static bool TransformFindDbItem10to20(std::string& id, std::string& values)
{
MIOPEN_LOG_T("Legacy find-db item: " << id << ':' << values);
std::size_t pos = values.find(',');
if(pos == std::string::npos)
return false;
const auto solver = values.substr(0, pos);
const auto time_workspace_pos = pos + 1;
pos = values.find(',', time_workspace_pos);
if(pos == std::string::npos)
return false;
pos = values.find(',', pos + 1);
if(pos == std::string::npos)
return false;
const auto time_workspace = values.substr(time_workspace_pos, pos - time_workspace_pos);
values = time_workspace + ',' + id;
id = solver;
MIOPEN_LOG_T("Transformed find-db item: " << id << ':' << values);
return true;
}
#endif
namespace miopen {
conv::Direction GetDirectionFromString(const std::string& direction)
{
if(direction == "F")
return conv::Direction::Forward;
else if(direction == "B")
return conv::Direction::BackwardData;
else if(direction == "W")
return conv::Direction::BackwardWeights;
throw std::runtime_error("Invalid Direction");
}
miopenTensorLayout_t GetLayoutFromString(const std::string& layout)
{
if(layout == "NCHW")
return miopenTensorNCHW;
else if(layout == "NHWC")
return miopenTensorNHWC;
else if(layout == "NCDHW")
return miopenTensorNCDHW;
else if(layout == "NDHWC")
return miopenTensorNDHWC;
throw std::runtime_error("Invalid Layout");
}
miopenDataType_t GetDataTypeFromString(const std::string& data_type)
{
if(data_type == "FP32")
return miopenFloat;
else if(data_type == "FP16")
return miopenHalf;
else if(data_type == "INT8")
return miopenInt8;
else if(data_type == "INT32")
return miopenInt32;
else if(data_type == "BF16")
return miopenBFloat16;
else if(data_type == "FP64")
return miopenDouble;
throw std::runtime_error("Invalid data type in find db key");
}
void ParseProblemKey(const std::string& key_, conv::ProblemDescription& prob_desc)
{
std::string key = key_;
const auto opt = SplitDelim(key, '_');
int group_cnt = 1;
conv::Direction dir;
miopenTensorLayout_t in_layout, wei_layout, out_layout;
size_t out_h, out_w, in_channels, out_channels, in_h, in_w, batchsize, fil_h, fil_w;
int pad_h, pad_w, conv_stride_h, conv_stride_w, dil_h, dil_w;
miopenDataType_t precision;
TensorDescriptor in{};
TensorDescriptor wei{};
TensorDescriptor out{};
ConvolutionDescriptor conv;
if(opt.size() >= 2)
{
key = opt[0];
ASSERT_TRUE(StartsWith(opt[1], "g"));
group_cnt = std::stoi(RemovePrefix(opt[1], "g"));
}
else
ASSERT_TRUE(opt.size() == 1); // either there is one optional args or there is none
// 2d or 3d ?
const auto is_3d = [&]() {
const auto pat_3d = std::regex{"[0-9]x[0-9]x[0-9]"};
return std::regex_search(key, pat_3d);
}();
const auto attrs = SplitDelim(key, '-');
const auto sz = attrs.size();
dir = GetDirectionFromString(attrs[sz - 1]);
precision = GetDataTypeFromString(attrs[sz - 2]);
if(!is_3d)
{
ASSERT_TRUE(sz == 15 || sz == 17);
std::tie(in_layout, wei_layout, out_layout) = [&]() {
if(sz == 15) // same layout for all tensors
return std::tuple{GetLayoutFromString(attrs[12]),
GetLayoutFromString(attrs[12]),
GetLayoutFromString(attrs[12])};
else if(sz == 17)
return std::tuple{GetLayoutFromString(attrs[12]),
GetLayoutFromString(attrs[13]),
GetLayoutFromString(attrs[14])};
throw std::runtime_error{"FDB key parsing error"};
}();
in_channels = std::stoi(attrs[0]);
in_h = std::stoi(attrs[1]);
in_w = std::stoi(attrs[2]);
out_channels = std::stoi(attrs[4]);
out_h = std::stoi(attrs[5]);
out_w = std::stoi(attrs[6]);
batchsize = std::stoi(attrs[7]);
const auto split_tensor = [](const std::string& s) {
const auto tmp = miopen::SplitDelim(s, 'x');
EXPECT_TRUE(tmp.size() == 2) << "Two Dimensional problems need to have two dimensional "
"filters, pads, strides and dilations"; // for 2d keys
return std::tuple(std::stoi(tmp[0]), std::stoi(tmp[1]));
};
std::tie(fil_h, fil_w) = split_tensor(attrs[3]);
std::tie(pad_h, pad_w) = split_tensor(attrs[8]);
std::tie(conv_stride_h, conv_stride_w) = split_tensor(attrs[9]);
std::tie(dil_h, dil_w) = split_tensor(attrs[10]);
// construct the problem, serialize it and verify the output
in = TensorDescriptor{precision, in_layout, {batchsize, in_channels, in_h, in_w}};
if(dir == conv::Direction::Forward)
wei = TensorDescriptor(
precision, wei_layout, {out_channels, in_channels / group_cnt, fil_h, fil_w});
else
wei = TensorDescriptor(
precision, wei_layout, {in_channels, out_channels / group_cnt, fil_h, fil_w});
out = TensorDescriptor{precision, out_layout, {batchsize, out_channels, out_h, out_w}};
conv =
ConvolutionDescriptor{{pad_h, pad_w}, {conv_stride_h, conv_stride_w}, {dil_h, dil_w}};
}
else
{
int pad_d, conv_stride_d, dil_d;
size_t in_d, out_d, fil_d;
// 3D case
ASSERT_TRUE(sz == 17 || sz == 19);
std::tie(in_layout, wei_layout, out_layout) = [&]() {
if(sz == 17) // same layout for all tensors
return std::tuple{GetLayoutFromString(attrs[14]),
GetLayoutFromString(attrs[14]),
GetLayoutFromString(attrs[14])};
else // if(sz == 19)
return std::tuple{GetLayoutFromString(attrs[14]),
GetLayoutFromString(attrs[15]),
GetLayoutFromString(attrs[16])};
}();
in_channels = std::stoi(attrs[0]);
in_d = std::stoi(attrs[1]);
in_h = std::stoi(attrs[2]);
in_w = std::stoi(attrs[3]);
out_channels = std::stoi(attrs[5]);
out_d = std::stoi(attrs[6]);
out_h = std::stoi(attrs[7]);
out_w = std::stoi(attrs[8]);
batchsize = std::stoi(attrs[9]);
const auto split_tensor = [](const std::string& s) {
const auto tmp = miopen::SplitDelim(s, 'x');
EXPECT_TRUE(tmp.size() == 3) << "For a 3D problem, filters, pads, strides and "
"dilations need to be 3D as well"; // for 3d keys
return std::tuple(std::stoi(tmp[0]), std::stoi(tmp[1]), std::stoi(tmp[2]));
};
std::tie(fil_d, fil_h, fil_w) = split_tensor(attrs[4]);
std::tie(pad_d, pad_h, pad_w) = split_tensor(attrs[10]);
std::tie(conv_stride_d, conv_stride_h, conv_stride_w) = split_tensor(attrs[11]);
std::tie(dil_d, dil_h, dil_w) = split_tensor(attrs[12]);
// construct the problem, serialize it and verify the output
in = TensorDescriptor{precision, in_layout, {batchsize, in_channels, in_d, in_h, in_w}};
if(dir == conv::Direction::Forward)
wei = TensorDescriptor(precision,
wei_layout,
{out_channels, in_channels / group_cnt, fil_d, fil_h, fil_w});
else
wei = TensorDescriptor(precision,
wei_layout,
{in_channels, out_channels / group_cnt, fil_d, fil_h, fil_w});
out =
TensorDescriptor{precision, out_layout, {batchsize, out_channels, out_d, out_h, out_w}};
conv = ConvolutionDescriptor{{pad_d, pad_h, pad_w},
{conv_stride_d, conv_stride_h, conv_stride_w},
{dil_d, dil_h, dil_w},
std::vector<int>(3, 0),
1,
1.0};
conv::ProblemDescription tmp{in, wei, out, conv, dir};
}
conv.group_count = group_cnt;
prob_desc = conv::ProblemDescription{in, wei, out, conv, dir};
}
struct FDBVal
{
std::string solver_id;
std::string vals;
};
void ParseFDBbVal(const std::string& val, std::vector<FDBVal>& fdb_vals)
{
std::string id_val;
std::stringstream ss{val};
while(std::getline(ss, id_val, ';'))
{
const auto id_size = id_val.find(':');
ASSERT_TRUE(id_size != std::string::npos) << "Ill formed value: " << id_val;
auto id = id_val.substr(0, id_size);
auto values = id_val.substr(id_size + 1);
#if WORKAROUND_ISSUE_1987
/// \todo Copied from src/db_record.cpp
/// Detect legacy find-db item (v.1.0 ID:VALUES) and transform it to the current format.
/// For now, *only* legacy find-db record use convolution algorithm as ID, so if ID is
/// a valid algorithm, then we can safely assume that the item is in legacy format.
if(IsValidConvolutionDirAlgo(id))
{
ASSERT_TRUE(TransformFindDbItem10to20(id, values))
<< "Ill-formed legacy find-db item: " << values;
}
#endif
const auto tmp = FDBVal{id, values};
fdb_vals.emplace_back(tmp);
}
}
void GetPerfDbVals(const fs::path& filename,
const conv::ProblemDescription& problem_config,
std::unordered_map<std::string, std::string>& vals,
std::string& select_query)
{
#if MIOPEN_ENABLE_SQLITE && MIOPEN_USE_SQLITE_PERFDB
std::string clause;
std::vector<std::string> values;
std::tie(clause, values) = problem_config.WhereClause();
auto sql = SQLite{filename.string(), true};
// clang-format off
select_query =
"SELECT solver, params "
"FROM perf_db "
"INNER JOIN " + problem_config.table_name() + " "
"ON perf_db.config = " + problem_config.table_name() +".id "
"WHERE "
"( " + clause + " );";
// clang-format on
auto stmt = SQLite::Statement{sql, select_query, values};
while(true)
{
auto rc = stmt.Step(sql);
if(rc == SQLITE_ROW)
vals.emplace(stmt.ColumnText(0), stmt.ColumnText(1));
else if(rc == SQLITE_DONE)
break;
else if(rc == SQLITE_ERROR || rc == SQLITE_MISUSE)
throw std::runtime_error(sql.ErrorMessage());
}
#else
const auto& perf_db =
miopen::ReadonlyRamDb::GetCached(miopen::DbKinds::PerfDb, filename.string(), true);
const auto& perf_db_map = perf_db.GetCacheMap();
std::ostringstream ss;
conv::ProblemDescription::VisitAll(problem_config, [&](auto&& value, auto&&) {
if(ss.tellp() != 0)
ss << "x";
ss << value;
});
const auto key = ss.str();
if(perf_db_map.find(key) != perf_db_map.end())
{
std::istringstream pdb_line{perf_db_map.at(key).content};
char fragment[1024];
while(pdb_line.getline(fragment, 1024, ';'))
{
std::string id_val{fragment};
const auto id_size = id_val.find(':');
ASSERT_TRUE(id_size != std::string::npos) << "Ill formed value: " << id_val;
auto id = id_val.substr(0, id_size);
auto cfg = id_val.substr(id_size + 1);
vals.emplace(id, cfg);
}
select_query = " Loading " + key + " from " + filename.string();
}
#endif
}
void RemovePerfDbEntry(const fs::path& filename,
const conv::ProblemDescription& problem_config,
const std::string& solver)
{
std::string select_query;
std::string clause;
std::vector<std::string> values;
std::tie(clause, values) = problem_config.WhereClause();
auto sql = SQLite{filename.string(), true};
// clang-format off
select_query =
"DELETE FROM perf_db "
"WHERE "
"config in (select id from " + problem_config.table_name() + " "
"WHERE ( " + clause + " )) AND "
"solver='" + solver + "';";
// clang-format on
auto stmt = SQLite::Statement{sql, select_query, values};
while(true)
{
auto rc = stmt.Step(sql);
if(rc == SQLITE_DONE)
break;
else if(rc == SQLITE_ERROR || rc == SQLITE_MISUSE)
throw std::runtime_error(sql.ErrorMessage());
}
}
auto LoadKDBObjects(const fs::path& filename)
{
std::unordered_set<KDBKey> kdb_cache;
auto select_query = "SELECT kernel_name, kernel_args from kern_db";
auto sql = SQLite{filename.string(), true};
auto stmt = SQLite::Statement{sql, select_query};
int count = 0;
std::cout << "Loading kdb entries into cache" << std::endl;
while(true)
{
auto rc = stmt.Step(sql);
if(rc == SQLITE_ROW)
{
++count;
const auto kernel_name = stmt.ColumnText(0);
const auto kernel_args = stmt.ColumnText(1);
kdb_cache.emplace(KDBKey{kernel_name, kernel_args});
}
else if(rc == SQLITE_DONE)
break;
else if(rc == SQLITE_ERROR || rc == SQLITE_MISUSE)
throw std::runtime_error(sql.ErrorMessage());
if(count % 2000 == 0)
std::cout << "Loaded " << count << " entries from KDB" << std::endl;
}
std::cout << "Done loading " << count << " entries from kdb file: " << filename << std::endl;
return kdb_cache;
}
bool CheckKDBObjects(const fs::path& filename,
const fs::path& kernel_name,
const std::string& kernel_args)
{
static const auto kdb_cache = LoadKDBObjects(filename);
return kdb_cache.find(KDBKey{kernel_name, kernel_args}) != kdb_cache.end();
}
bool CheckKDBForTargetID(const fs::path& filename)
{
// clang-format off
auto select_query = "SELECT count(*) FROM kern_db WHERE ( kernel_args like '-mcpu=%sram-ecc%') OR (kernel_args like '-mcpu=%xnack%')";
// clang-format on
auto sql = SQLite{filename.string(), true};
auto stmt = SQLite::Statement{sql, select_query};
int count = 0;
while(true)
{
auto rc = stmt.Step(sql);
if(rc == SQLITE_ROW)
count = stmt.ColumnInt64(0);
else if(rc == SQLITE_DONE)
break;
else if(rc == SQLITE_ERROR || rc == SQLITE_MISUSE)
throw std::runtime_error(sql.ErrorMessage());
}
return count != 0;
}
bool CheckKDBJournalMode(const fs::path& filename)
{
auto journal_query = "PRAGMA journal_mode";
auto sql = SQLite{filename.string(), true};
auto stmt = SQLite::Statement{sql, journal_query};
std::string journal_mode;
while(true)
{
auto rc = stmt.Step(sql);
if(rc == SQLITE_ROW)
journal_mode = stmt.ColumnText(0);
else if(rc == SQLITE_DONE)
break;
else if(rc == SQLITE_ERROR || rc == SQLITE_MISUSE)
throw std::runtime_error(sql.ErrorMessage());
}
return journal_mode.compare("off") == 0 || journal_mode.compare("delete") == 0;
}
} // namespace miopen
void SetupPaths(fs::path& fdb_file_path,
fs::path& pdb_file_path,
fs::path& kdb_file_path,
const miopen::Handle& handle)
{
const std::string ext = ".fdb.txt";
const auto root_path = miopen::GetSystemDbPath();
// The base name has to be the test name for each GPU arch we have
const std::string base_name = handle.GetDbBasename(); // "gfx90a68";
const std::string suffix = "HIP"; // miopen::GetSystemFindDbSuffix();
fdb_file_path = root_path / (base_name + "." + suffix + ext);
#if MIOPEN_ENABLE_SQLITE && MIOPEN_USE_SQLITE_PERFDB
pdb_file_path = root_path / (base_name + ".db");
#else
pdb_file_path = root_path / (base_name + ".db.txt");
#endif
kdb_file_path = root_path / (handle.GetDeviceName() + ".kdb");
ASSERT_TRUE(fs::exists(fdb_file_path)) << "Db file does not exist" << fdb_file_path;
ASSERT_TRUE(fs::exists(pdb_file_path)) << "Db file does not exist" << pdb_file_path;
ASSERT_TRUE(SKIP_KDB_PDB_TESTING || fs::exists(kdb_file_path))
<< "Db file does not exist" << kdb_file_path;
}
TEST(CPU_DBSync_NONE, KDBTargetID)
{
fs::path fdb_file_path, pdb_file_path, kdb_file_path;
#if WORKAROUND_ISSUE_2492
SetEnvironmentVariable("MIOPEN_DEBUG_WORKAROUND_ISSUE_2492", "0");
#endif
SetupPaths(fdb_file_path, pdb_file_path, kdb_file_path, get_handle());
std::ignore = fdb_file_path;
std::ignore = pdb_file_path;
EXPECT_TRUE(miopen::CheckKDBJournalMode(kdb_file_path));
EXPECT_FALSE(!SKIP_KDB_PDB_TESTING && miopen::CheckKDBForTargetID(kdb_file_path));
}
bool LogBuildMessage()
{
MIOPEN_LOG_W("Unable to produce missing binary due to COMGR being enabled");
return true;
}
void BuildKernel(const fs::path& program_file,
const std::string& program_args,
[[maybe_unused]] const miopen::Handle& handle)
{
// Build the code object entry
// This will write the code object in the user kdb which Jenkins can archive
// This has to be done with the offline clang compiler and not COMGR (or hipRTC) otherwise the
// code object would be target ID specific
#if MIOPEN_USE_COMGR
static const bool discard = LogBuildMessage();
std::ignore = discard;
std::ignore = program_file;
std::ignore = program_args;
#else
try
{
auto p = handle.LoadProgram(program_file, program_args, "");
}
catch(std::exception&)
{
MIOPEN_LOG_W("Exception thrown while building kernel");
}
#endif
}
using FDBLine = std::pair<std::string, miopen::ReadonlyRamDb::CacheItem>;
void CheckDynamicFDBEntry(size_t thread_index,
size_t total_threads,
const std::vector<FDBLine>& find_data,
const miopen::ExecutionContext& _ctx,
std::atomic<size_t>& counter)
{
fs::path fdb_file_path, pdb_file_path, kdb_file_path;
auto& handle = _ctx.GetStream();
SetupPaths(fdb_file_path, pdb_file_path, kdb_file_path, handle);
std::unordered_set<KDBKey> checked_kdbs;
// Get list of dynamic solvers
std::vector<miopen::solver::Id> dyn_solvers;
for(const auto id :
miopen::solver::GetSolversByPrimitive(miopen::solver::Primitive::Convolution))
{
const auto solv = id.GetSolver();
if(solv.IsDynamic())
{
std::cout << id.ToString() << "Is Dynamic" << std::endl;
dyn_solvers.push_back(id);
}
}
const auto data_size = find_data.size();
for(auto kidx = thread_index; kidx < data_size; kidx += total_threads)
{
auto ctx = _ctx;
const auto& kinder = find_data[kidx];
miopen::conv::ProblemDescription problem;
miopen::ParseProblemKey(kinder.first, problem);
problem.SetupFloats(ctx); // TODO: Check if this is necessary
std::stringstream ss;
problem.Serialize(ss);
ASSERT_TRUE(ss.str() == kinder.first)
<< "Failed to parse FDB key:" << kidx << ":Parsed Key: " << ss.str();
// Check the kernels for all dynamic solvers exist
for(const auto& id : dyn_solvers)
{
const auto solv = id.GetSolver();
if(solv.IsApplicable(_ctx, problem))
{
auto db = miopen::GetDb(_ctx);
miopen::solver::ConvSolution sol = solv.FindSolution(_ctx, problem, db, {});
EXPECT_TRUE(sol.Succeeded())
<< "Applicable solver generated invalid solution fdb-key:" << kinder.first
<< " Solver: " << id.ToString();
for(const auto& kern : sol.construction_params)
{
std::string compile_options = kern.comp_options;
auto program_file = miopen::make_object_file_name(kern.kernel_file);
ASSERT_TRUE(kern.kernel_file.extension() != ".mlir")
<< "MLIR detected in dynamic solvers";
compile_options += " -mcpu=" + handle.GetDeviceName();
auto search = checked_kdbs.find({program_file, compile_options});
if(search !=
checked_kdbs
.end()) // we have reported this object before, no need to check again
continue;
EXPECT_TRUE(
miopen::CheckKDBObjects(kdb_file_path, program_file, compile_options))
<< "KDB entry not found for fdb-key:" << kinder.first
<< " Solver: " << id.ToString() << " filename:" << program_file
<< " compile_args:" << compile_options;
checked_kdbs.emplace(KDBKey{program_file, compile_options});
BuildKernel(kern.kernel_file, kern.comp_options, handle);
}
}
}
if(kidx % 100 == 0)
std::cout << "Lines of find db completed:" << counter << std::endl;
counter.fetch_add(1, std::memory_order_relaxed);
}
}
TEST(CPU_DBSync_NONE, DISABLED_DynamicFDBSync)
{
fs::path fdb_file_path, pdb_file_path, kdb_file_path;
auto& handle = get_handle();
SetupPaths(fdb_file_path, pdb_file_path, kdb_file_path, handle);
miopen::CheckKDBObjects(kdb_file_path, "", "");
const auto& find_db =
miopen::ReadonlyRamDb::GetCached(miopen::DbKinds::FindDb, fdb_file_path.string(), true);
// assert that find_db.cache is not empty, since that indicates the file was not readable
ASSERT_TRUE(!find_db.GetCacheMap().empty()) << "Find DB does not have any entries";
auto _ctx = miopen::ExecutionContext{};
_ctx.SetStream(&handle);
// Convert the map to a vector
std::vector<std::pair<std::string, miopen::ReadonlyRamDb::CacheItem>> fdb_data;
const auto& find_db_map = find_db.GetCacheMap();
fdb_data.resize(find_db_map.size());
std::copy(find_db_map.begin(), find_db_map.end(), fdb_data.begin());
std::atomic<size_t> counter = 0;
const int total_threads = std::min(static_cast<int>(std::thread::hardware_concurrency()), 32);
std::vector<std::thread> agents;
agents.reserve(total_threads);
for(auto idx = 0; idx < total_threads; ++idx)
{
agents.emplace_back(CheckDynamicFDBEntry,
idx,
total_threads,
std::cref(fdb_data),
std::cref(_ctx),
std::ref(counter));
}
for(auto idx = 0; idx < total_threads; ++idx)
{
agents.at(idx).join();
}
ASSERT_TRUE(counter == fdb_data.size())
<< "Multi-threading error, work done is not equal to total work";
}
void CheckFDBEntry(size_t thread_index,
size_t total_threads,
std::vector<FDBLine>& data,
miopen::RamDb& find_db_rw,
const miopen::ExecutionContext& _ctx,
std::atomic<size_t>& counter)
{
fs::path fdb_file_path, pdb_file_path, kdb_file_path;
SetupPaths(fdb_file_path, pdb_file_path, kdb_file_path, _ctx.GetStream());
std::unordered_set<KDBKey> checked_kdbs;
const auto data_size = data.size();
auto failures = 0;
for(auto kidx = thread_index; kidx < data_size; kidx += total_threads)
{
const auto& kinder = data.at(kidx);
auto ctx = _ctx;
miopen::conv::ProblemDescription problem;
miopen::ParseProblemKey(kinder.first, problem);
problem.SetupFloats(ctx); // TODO: Check if this is necessary
std::stringstream ss;
problem.Serialize(ss);
// moment of truth
EXPECT_TRUE(ss.str() == kinder.first)
<< '[' << (++failures) << "] " //
<< "Failed to parse FDB key:" << kidx << ":Parsed Key: " << ss.str();
std::vector<miopen::FDBVal> fdb_vals;
miopen::ParseFDBbVal(kinder.second.content, fdb_vals);
std::unordered_map<std::string, std::string> pdb_vals;
std::string pdb_select_query;
miopen::GetPerfDbVals(pdb_file_path, problem, pdb_vals, pdb_select_query);
// This is an opportunity to link up fdb and pdb entries
auto fdb_idx = 0; // check kdb only for the fastest kernel
for(const auto& val : fdb_vals)
{
miopen::solver::Id id{val.solver_id};
EXPECT_TRUE(id.IsValid())
<< '[' << (++failures) << "] " //
<< "Solver " << id.Value() << "/" << id.ToString() << ", val.solver_id "
<< val.solver_id << ", val.vals " << val.vals;
#if SKIP_CONVOCLDIRECTFWDFUSED
/// \todo Workaround: solv.IsApplicable() asserts with ConvOclDirectFwdFused
/// on gfx1030. AnySolver instance is empty (nullptr) due to some unknown reason.
if(val.solver_id == "ConvOclDirectFwdFused")
{
MIOPEN_LOG_I("Skipping: val.solver_id " << val.solver_id << ", val.vals "
<< val.vals);
++fdb_idx;
continue;
}
#endif
const auto solv = id.GetSolver();
// Skip MLIR
if(miopen::StartsWith(id.ToString(), "ConvMlir"))
{
MIOPEN_LOG_I("Skipping MLIR solver");
++fdb_idx;
continue;
}
EXPECT_TRUE(solv.IsApplicable(ctx, problem)) //
<< '[' << (++failures) << "] " //
<< "Solver is not applicable fdb-key:" << kinder.first
<< " Solver: " << id.ToString();
miopen::solver::ConvSolution sol;
auto db = miopen::GetDb(ctx);
const auto pdb_entry_exists = pdb_vals.find(val.solver_id) != pdb_vals.end();
if(solv.IsTunable())
{
if(env::enabled(MIOPEN_DBSYNC_CLEAN) && not pdb_entry_exists)
{
MIOPEN_LOG_W("PDB entry does not exist for tunable fdb-key:"
<< kinder.first << ": solver" << val.solver_id
<< ", Removing entry from fdb");
find_db_rw.Remove(kinder.first, id.ToString());
MIOPEN_LOG_W("Removal Complete fdb-key:" << kinder.first << ": solver"
<< val.solver_id);
continue;
}
else
{
EXPECT_TRUE(SKIP_KDB_PDB_TESTING || pdb_entry_exists)
<< '[' << (++failures) << "] " //
<< "PDB entry does not exist for tunable fdb-key:" << kinder.first
<< ": solver" << val.solver_id << " pdb-select-query: " << pdb_select_query;
}
std::string perf_cfg = "";
if(!SKIP_KDB_PDB_TESTING && pdb_entry_exists)
{
perf_cfg = pdb_vals.at(val.solver_id);
bool res = solv.TestPerfCfgParams(ctx, problem, perf_cfg);
if(env::enabled(MIOPEN_DBSYNC_CLEAN) && not res)
{
MIOPEN_LOG_W("Invalid perf config found fdb-key:"
<< kinder.first << ", Solver" << val.solver_id << ":"
<< perf_cfg << ", Removing entry from fdb and pdb");
find_db_rw.Remove(kinder.first, id.ToString());
db.Remove(problem, id.ToString());
MIOPEN_LOG_W("Removal Complete fdb-key:" << kinder.first << ": solver"
<< val.solver_id);
continue;
}
else
{
EXPECT_TRUE(res) << '[' << (++failures) << "] " //
<< "Invalid perf config found fdb-key:" << kinder.first
<< ", Solver: " << val.solver_id << ":" << perf_cfg
<< " pdb-select-query: " << pdb_select_query;
}
// we can verify the pdb entry by passing in an empty string and then comparing
// the received solution with the one below or having the find_solution pass out
// the serialized string
sol = solv.FindSolution(ctx, problem, db, {}, perf_cfg);
}
else
{
sol = solv.FindSolution(ctx, problem, db, {}, "");
perf_cfg = " Not Found (Using Default)";
}
// TODO Generate the Select query for pdb
EXPECT_TRUE(sol.Succeeded())
<< '[' << (++failures) << "] " //
<< "Invalid solution fdb-key:" << kinder.first << " Solver: " << id.ToString()
<< " perf config:" << perf_cfg;
if(!SKIP_KDB_PDB_TESTING && fdb_idx == 0)
{
for(const auto& kern : sol.construction_params)
{
bool found = false;
std::string compile_options = kern.comp_options;
auto program_file = miopen::make_object_file_name(kern.kernel_file);
if(kern.kernel_file.extension() != ".mlir")
{
auto& handle = ctx.GetStream();
compile_options += " -mcpu=" + handle.GetDeviceName();
}
auto search = checked_kdbs.find({program_file, compile_options});
bool reported_already = search != checked_kdbs.end();
if(!reported_already) // we have reported this object before, no need to
// check again
{
found = miopen::CheckKDBObjects(
kdb_file_path, program_file, compile_options);
checked_kdbs.emplace(KDBKey{program_file, compile_options});
}
else
found = checked_kdbs.count(KDBKey{program_file, compile_options}) > 0;
if(!found)
EXPECT_TRUE(found)
<< '[' << (++failures) << "] " //
<< "KDB entry not found for fdb-key:" << kinder.first
<< ", Solver: " << id.ToString() << " perf config:" << perf_cfg
<< " filename: " << program_file << " compile args: "
<< compile_options; // for fdb key, solver id, solver pdb entry and
// kdb file and args
if(!reported_already)
BuildKernel(kern.kernel_file, kern.comp_options, ctx.GetStream());
}
}
}
else
EXPECT_TRUE(!pdb_entry_exists)
<< '[' << (++failures) << "] " //
<< "Non-Tunable solver found in PDB" << solv.GetSolverDbId();
++fdb_idx;
}
if(kidx % 100 == 0)
std::cout << "Lines of find db completed:" << kidx << std::endl;
counter.fetch_add(1, std::memory_order_relaxed);
}
}
namespace miopen {
struct TestHandle : Handle
{
TestHandle(size_t _num_cu) : Handle(), num_cu(_num_cu) {}
// Probably, according to the idea of the author of this test, the number of CUs should have been
// substituted with the value passed to the constructor (which in fact did not happen). After
// https://github.com/ROCm/MIOpen/pull/3175, the method became virtual, the substitution actually
// happened, and the test broke. I disabled that part (since it doesn't work as intended anyway) to
// keep its behavior the same.
#if 1
std::size_t GetMaxComputeUnits() const override
{
if(num_cu == 0)
return Handle::GetMaxComputeUnits();
return num_cu;
}
#endif
size_t num_cu = 0;
};
} // namespace miopen
static inline miopen::TestHandle& get_test_handle(size_t num_cu)
{
// NOLINTNEXTLINE (cppcoreguidelines-avoid-non-const-global-variables)
static miopen::TestHandle h{num_cu};
static const std::thread::id id = std::this_thread::get_id();
if(std::this_thread::get_id() != id)
{
std::cout << "Cannot use handle across multiple threads\n";
std::abort();
}
return h;
}
void StaticFDBSync(const std::string& arch, const size_t num_cu)
{
fs::path fdb_file_path, pdb_file_path, kdb_file_path;
auto& handle = get_test_handle(num_cu);
if(handle.GetDeviceName() != arch)
GTEST_SKIP();
handle.num_cu = num_cu;
SetupPaths(fdb_file_path, pdb_file_path, kdb_file_path, handle);
std::cout << "Handle CU count: " << handle.GetMaxComputeUnits()
<< " Parameter Value: " << num_cu << std::endl;
std::cout << "FDB: " << fdb_file_path << ", PDB: " << pdb_file_path
<< ", KDB: " << kdb_file_path << std::endl;
#if !SKIP_KDB_PDB_TESTING
// Warmup the kdb cache
miopen::CheckKDBObjects(kdb_file_path, "", "");
#endif
const auto& find_db =
miopen::ReadonlyRamDb::GetCached(miopen::DbKinds::FindDb, fdb_file_path.string(), true);
auto& find_db_rw =
miopen::RamDb::GetCached(miopen::DbKinds::FindDb, fdb_file_path.string(), false);
// assert that find_db.cache is not empty, since that indicates the file was not readable
ASSERT_TRUE(!find_db.GetCacheMap().empty()) << "Find DB does not have any entries";
// Convert the map to a vector
std::vector<FDBLine> fdb_data;
const auto& find_db_map = find_db.GetCacheMap();
fdb_data.resize(find_db_map.size());
std::copy(find_db_map.begin(), find_db_map.end(), fdb_data.begin());
auto _ctx = miopen::ExecutionContext{};
_ctx.SetStream(&handle);
std::atomic<size_t> counter = 0;
const int total_threads =
std::min(std::thread::hardware_concurrency(), static_cast<unsigned int>(32));
std::vector<std::thread> agents;
agents.reserve(total_threads);
for(auto idx = 0; idx < total_threads; ++idx)
agents.emplace_back(CheckFDBEntry,
idx,
total_threads,
std::ref(fdb_data),
std::ref(find_db_rw),
std::ref(_ctx),
std::ref(counter));
for(auto idx = 0; idx < total_threads; ++idx)
agents.at(idx).join();
EXPECT_TRUE(counter == fdb_data.size())
<< "Multi-threading error, work done is not equal to total work" << counter << " : "
<< fdb_data.size();
}
struct CPU_DBSync_NONE : testing::TestWithParam<std::pair<std::string, size_t>>
{
};
TEST_P(CPU_DBSync_NONE, StaticFDBSync)
{
std::string arch;
size_t num_cu;
std::tie(arch, num_cu) = GetParam();
StaticFDBSync(arch, num_cu);
}
INSTANTIATE_TEST_SUITE_P(Smoke,
CPU_DBSync_NONE,
testing::Values(std::make_pair("gfx908", 120),
std::make_pair("gfx90a", 104),
std::make_pair("gfx90a", 110),
std::make_pair("gfx942", 304),
std::make_pair("gfx1030", 36)));
|