1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
#include <iostream>
#include <limits>
#include "../driver.hpp"
#include "miopen/check_numerics.hpp"
#include "miopen/handle.hpp"
#include "../tensor_holder.hpp"
#include <miopen/convolution.hpp>
#include <gtest/gtest.h>
namespace fs = miopen::fs;
const std::string test_file_name_prefix = "dumptensortest_";
const size_t tensor_size = 20;
const size_t nan_index = 5;
template <class T>
void prettyPrintTensor(const tensor<T>& host_tensor)
{
for(std::size_t i = 0; i < host_tensor.desc.GetElementSize(); i++)
{
std::cerr << host_tensor[i] << ",";
if((i + 1) % tensor_size == 0)
std::cerr << "\n";
}
std::cerr << "\n";
}
template <class T>
void populateTensor(tensor<T>& host_tensor)
{
// batch (n) = 1, channels(c) = 1, height(h) = tensor_size, width(w) = tensor_size
host_tensor = tensor<T>{1, 1, tensor_size, tensor_size}.generate(tensor_elem_gen_integer{
100}); // populate tensor with randomly generated element from [0-100]
}
template <class T>
void populateWithNAN(std::vector<T>& data)
{
std::fill(data.begin(), data.end(), std::numeric_limits<T>::quiet_NaN());
}
template <class T>
void compare(const tensor<T>& host_tensor,
const tensor<T>& tensor_from_file,
bool compare_nan = false)
{
ASSERT_EQ(host_tensor.data.size(), tensor_from_file.data.size());
for(int i = 0; i < host_tensor.data.size(); ++i)
{
// if(compare_nan && i == nan_index)
if(compare_nan)
{
EXPECT_TRUE(std::isnan(host_tensor[i])) << "Was expecting nan at index " << i;
EXPECT_TRUE(std::isnan(tensor_from_file[i])) << "Was expecting nan at index " << i;
}
else
{
T tolerance = static_cast<T>(10);
T threshold = std::numeric_limits<T>::epsilon() * tolerance;
EXPECT_NEAR(host_tensor[i], tensor_from_file[i], threshold)
<< "Vectors host_tensor and tensor_from_file differ at index " << i;
}
}
}
template <typename T>
void readBufferFromFile(T* data, size_t dataNumItems, const std::string& fileName)
{
std::ifstream infile(fileName, std::ios::binary);
if(infile)
{
infile.read(reinterpret_cast<char*>(data), dataNumItems * sizeof(T));
infile.close();
}
else
{
EXPECT_TRUE(false) << "Could not open file : " << fileName;
}
}
template <class T>
void testDump(const std::string& test_file_name)
{
tensor<T> host_tensor;
populateTensor(host_tensor);
miopen::Handle handle{};
// copy tensor from host to gpu
auto gpu_tensor_addr = handle.Write(host_tensor.data);
miopen::DumpTensorToFileFromDevice(
handle, host_tensor.desc, gpu_tensor_addr.get(), test_file_name);
// read back tensor
tensor<T> tensor_from_file = tensor<T>{1, 1, tensor_size, tensor_size};
readBufferFromFile<T>(
tensor_from_file.data.data(), host_tensor.desc.GetElementSpace(), test_file_name);
compare(host_tensor, tensor_from_file);
// clean up
fs::remove(test_file_name);
}
template <class T>
void testDumpWithNan(const std::string& test_file_name)
{
tensor<T> host_tensor;
populateTensor(host_tensor);
miopen::Handle handle{};
// before writing to gpu we set one of the element
// in the vector to nan.
// host_tensor.data[nan_index] = std::numeric_limits<T>::quiet_NaN();
populateWithNAN(host_tensor.data);
// write the tensor to GPU
auto gpu_tensor_addr = handle.Write(host_tensor.data);
miopen::DumpTensorToFileFromDevice(
handle, host_tensor.desc, gpu_tensor_addr.get(), test_file_name);
if(miopen::checkNumericsInput(handle, host_tensor.desc, gpu_tensor_addr.get()))
{
// read back tensor
tensor<T> tensor_from_file = tensor<T>{1, 1, tensor_size, tensor_size};
readBufferFromFile<T>(
tensor_from_file.data.data(), host_tensor.desc.GetElementSpace(), test_file_name);
compare(host_tensor, tensor_from_file, true);
}
else
{
EXPECT_TRUE(false)
<< "Was expecting NAN value in tensor. Current value at host_tensor.data[" << nan_index
<< "] = " << host_tensor.data[nan_index];
}
// clean up
fs::remove(test_file_name);
}
namespace {
std::string GetFullFileName(const std::string& filename)
{
return fs::temp_directory_path().append(test_file_name_prefix + filename).string();
}
} // namespace
TEST(CPU_Dump_FP32, testDump) { testDump<float>(GetFullFileName("float.bin")); }
TEST(CPU_Dump_NAN_FP32, testDump) { testDumpWithNan<float>(GetFullFileName("nan_float.bin")); }
TEST(CPU_Dump_FP16, testDump) { testDump<half_float::half>(GetFullFileName("half_float.bin")); }
TEST(CPU_Dump_NAN_FP16, testDump)
{
testDumpWithNan<half_float::half>(GetFullFileName("nan_half_float.bin"));
}
TEST(CPU_Dump_BFP16, testDump) { testDump<bfloat16>(GetFullFileName("bfloat16.bin")); }
TEST(CPU_Dump_NAN_BFP16, testDump)
{
testDumpWithNan<bfloat16>(GetFullFileName("nan_bfloat16.bin"));
}
|