File: graphapi_mha_bwd.cpp

package info (click to toggle)
miopen 6.4.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 66,788 kB
  • sloc: cpp: 300,511; lisp: 29,731; ansic: 2,683; sh: 471; python: 323; makefile: 155
file content (384 lines) | stat: -rw-r--r-- 14,791 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
/*******************************************************************************
 *
 * MIT License
 *
 * Copyright (c) 2024 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 *******************************************************************************/

#include "graphapi_mha_cpp_common.hpp"

namespace mha_graph_test {

class GPU_MhaBwdGraphTest_FP32 : public MhaGraphTestBase
{

    tensor<float> mSoftMax;

public:
    void createMhaGraph(size_t n, size_t h, size_t s, size_t d) override
    {
        mGraphBuilder = std::make_unique<gr::OpGraphBuilder>();

        std::vector<size_t> nhsd  = {n, h, s, d};
        std::vector<size_t> nhds  = {n, h, d, s};
        std::vector<size_t> nhss  = {n, h, s, s};
        std::vector<size_t> nhs1  = {n, h, s, 1};
        std::vector<size_t> all1s = {1, 1, 1, 1};

        MAKE_TENSOR_F(Q, nhsd, false);
        MAKE_TENSOR_F(K, nhsd, false);
        MAKE_TENSOR_F(V, nhsd, false);
        MAKE_TENSOR_F(dO, nhsd, false);
        MAKE_TENSOR_F(O, nhsd, false);

        MAKE_TENSOR_F(K_T, nhds, true);
        MAKE_TENSOR_F(T_MM_0, nhss, true);

        addNode("OP_RESHAPE", {K}, {K_T});
        addNode("OP_MATMUL", {Q, K_T}, {T_MM_0});

        MAKE_TENSOR_F(T_SCL_0, nhss, true);
        // MAKE_TENSOR_F(ATN_SCL, all1s, false);
        // addNode("OP_POINTWISE:MUL", {T_MM_0, ATN_SCL}, {T_SCL_0});
        // NOTE(Amber): Replacing the code above with a hacky solution to pass
        // attention scale as a scalar param instead of a tensor. This is because
        // Find 2.0 for MHA expects it as a scalar param set on MHA Problem
        // Descriptor.
        auto* pw_id = makePointWiseDesc(MIOPEN_POINTWISE_IDENTITY);
        addUnaryPointwiseNode(pw_id, {T_MM_0}, {T_SCL_0}, mAttentionScale);

        MAKE_TENSOR_F(T_SCL_1, nhss, true);
        MAKE_TENSOR_F(DSCL_Q, all1s, false);

        addNode("OP_POINTWISE:MUL", {T_SCL_0, DSCL_Q}, {T_SCL_1});

        MAKE_TENSOR_F(T_SCL_2, nhss, true);
        MAKE_TENSOR_F(DSCL_K, all1s, false);

        addNode("OP_POINTWISE:MUL", {T_SCL_1, DSCL_K}, {T_SCL_2});

        MAKE_TENSOR_F(M, nhs1, false);
        MAKE_TENSOR_F(T_SUB_0, nhss, true);
        addNode("OP_POINTWISE:SUB", {T_SCL_2, M}, {T_SUB_0});

        MAKE_TENSOR_F(T_EXP, nhss, true);
        addNode("OP_POINTWISE:EXP", {T_SUB_0}, {T_EXP});

        MAKE_TENSOR_F(Z_INV, nhs1, false);
        MAKE_TENSOR_F(T_MUL_0, nhss, true);
        addNode("OP_POINTWISE:MUL", {T_EXP, Z_INV}, {T_MUL_0});

        MAKE_TENSOR_I(RND_SD, all1s, false);
        MAKE_TENSOR_I(RND_OFF, all1s, false);

        MAKE_TENSOR_F(T_RND, nhss, true);
        addNode("OP_RNG", {RND_SD, RND_OFF}, {T_RND});

        MAKE_TENSOR_F(T_MUL_1, nhss, true);
        addNode("OP_POINTWISE:MUL", {T_MUL_0, T_RND}, {T_MUL_1});

        MAKE_TENSOR_F(RND_PRB, all1s, false); // TODO(Amber): revisit
        MAKE_TENSOR_F(T_SCL_3, nhss, true);
        // T_SCL_3 feeds into the middle column of the graph
        addNode("OP_POINTWISE:MUL", {T_MUL_1, RND_PRB}, {T_SCL_3});

        MAKE_TENSOR_F(T_SCL_4, nhss, true);
        MAKE_TENSOR_F(SCL_S, all1s, false);
        addNode("OP_POINTWISE:MUL", {T_SCL_3, SCL_S}, {T_SCL_4});

        MAKE_TENSOR_F(SCL_4T, nhss, true);
        addNode("OP_RESHAPE", {T_SCL_4}, {SCL_4T});

        MAKE_TENSOR_F(T_MM_1, nhsd, true);
        addNode("OP_MATMUL", {SCL_4T, dO}, {T_MM_1});

        MAKE_TENSOR_F(T_SCL_5, nhsd, true);
        MAKE_TENSOR_F(DSCL_S, all1s, false);
        addNode("OP_POINTWISE:MUL", {T_MM_1, DSCL_S}, {T_SCL_5});

        MAKE_TENSOR_F(T_SCL_6, nhsd, true);
        MAKE_TENSOR_F(DSCL_dO, all1s, false);
        addNode("OP_POINTWISE:MUL", {T_SCL_5, DSCL_dO}, {T_SCL_6});

        MAKE_TENSOR_F(dV, nhsd, false);
        MAKE_TENSOR_F(SCL_dV, all1s, false);
        addNode("OP_POINTWISE:MUL", {T_SCL_6, SCL_dV}, {dV});

        MAKE_TENSOR_F(AMax_dV, all1s, false);
        addNode("OP_REDUCTION:MAX", {T_SCL_6}, {AMax_dV});

        ////////////////// Center-top //////////////////////////////////

        MAKE_TENSOR_F(V_T, nhds, true);
        addNode("OP_RESHAPE", {V}, {V_T});

        MAKE_TENSOR_F(T_MM_2, nhss, true);
        addNode("OP_MATMUL", {dO, V_T}, {T_MM_2});

        MAKE_TENSOR_F(T_SCL_7, nhss, true);
        addNode("OP_POINTWISE:MUL", {T_MM_2, DSCL_dO}, {T_SCL_7});

        MAKE_TENSOR_F(T_SCL_8, nhss, true);
        MAKE_TENSOR_F(DSCL_V, all1s, false);
        addNode("OP_POINTWISE:MUL", {T_SCL_7, DSCL_V}, {T_SCL_8});

        MAKE_TENSOR_F(T_SCL_9, nhss, true);
        addNode("OP_POINTWISE:MUL", {T_SCL_8, T_RND}, {T_SCL_9});

        MAKE_TENSOR_F(T_SCL_10, nhss, true);
        addNode("OP_POINTWISE:MUL", {T_SCL_9, RND_PRB}, {T_SCL_10});

        ////////////////// Right-top //////////////////////////////////
        MAKE_TENSOR_F(T_SCL_11, nhsd, true);
        addNode("OP_POINTWISE:MUL", {dO, DSCL_dO}, {T_SCL_11});

        MAKE_TENSOR_F(DSCL_O, all1s, false);
        MAKE_TENSOR_F(T_SCL_12, nhsd, true);
        addNode("OP_POINTWISE:MUL", {O, DSCL_O}, {T_SCL_12});

        MAKE_TENSOR_F(T_MUL_2, nhsd, true);
        addNode("OP_POINTWISE:MUL", {T_SCL_11, T_SCL_12}, {T_MUL_2});

        MAKE_TENSOR_F(T_SCL_13, nhsd, true);
        addNode("OP_POINTWISE:MUL", {T_MUL_2, RND_PRB}, {T_SCL_13});

        MAKE_TENSOR_F(T_SUM_0, nhs1, true);
        addNode("OP_REDUCTION:ADD", {T_SCL_13}, {T_SUM_0});

        ////////////////// Center Part //////////////////////////////////
        MAKE_TENSOR_F(T_SUB_1, nhss, true);
        addNode("OP_POINTWISE:SUB", {T_SCL_10, T_SUM_0}, {T_SUB_1});

        MAKE_TENSOR_F(T_SCL_14, nhss, true);
        addUnaryPointwiseNode(pw_id, {T_SUB_1}, {T_SCL_14}, mAttentionScale);

        MAKE_TENSOR_F(T_MUL_3, nhss, true);
        addNode("OP_POINTWISE:MUL", {T_SCL_14, T_SCL_3}, {T_MUL_3});

        MAKE_TENSOR_F(T_SCL_15, nhss, true);
        MAKE_TENSOR_F(SCL_dS, all1s, false);
        addNode("OP_POINTWISE:MUL", {T_MUL_3, SCL_dS}, {T_SCL_15});

        MAKE_TENSOR_F(AMax_dS, all1s, false);
        addNode("OP_REDUCTION:MAX", {T_MUL_3}, {AMax_dS});

        ////////////////// Center Bottom //////////////////////////////////

        MAKE_TENSOR_F(T_MM_3, nhsd, true);
        addNode("OP_MATMUL", {T_SCL_15, K}, {T_MM_3});

        MAKE_TENSOR_F(T_SCL_16, nhsd, true);
        MAKE_TENSOR_F(DSCL_dS, all1s, false);
        addNode("OP_POINTWISE:MUL", {T_MM_3, DSCL_dS}, {T_SCL_16});

        MAKE_TENSOR_F(T_SCL_17, nhsd, true);
        addNode("OP_POINTWISE:MUL", {T_SCL_16, DSCL_K}, {T_SCL_17});

        MAKE_TENSOR_F(dQ, nhsd, false);
        MAKE_TENSOR_F(SCL_dQ, all1s, false);
        addNode("OP_POINTWISE:MUL", {T_SCL_17, SCL_dQ}, {dQ});

        MAKE_TENSOR_F(AMax_dQ, all1s, false);
        addNode("OP_REDUCTION:MAX", {T_SCL_17}, {AMax_dQ});
        ////////////////// Right Bottom //////////////////////////////////

        MAKE_TENSOR_F(SCL_15T, nhss, true);
        addNode("OP_RESHAPE", {T_SCL_15}, {SCL_15T});

        MAKE_TENSOR_F(T_MM_4, nhsd, true);
        addNode("OP_MATMUL", {SCL_15T, Q}, {T_MM_4});

        MAKE_TENSOR_F(T_SCL_18, nhsd, true);
        addNode("OP_POINTWISE:MUL", {T_MM_4, DSCL_dS}, {T_SCL_18});

        MAKE_TENSOR_F(T_SCL_19, nhsd, true);
        addNode("OP_POINTWISE:MUL", {T_SCL_18, DSCL_Q}, {T_SCL_19});

        MAKE_TENSOR_F(dK, nhsd, false);
        MAKE_TENSOR_F(SCL_dK, all1s, false);
        addNode("OP_POINTWISE:MUL", {T_SCL_19, SCL_dK}, {dK});

        MAKE_TENSOR_F(AMax_dK, all1s, false);
        addNode("OP_REDUCTION:MAX", {T_SCL_19}, {AMax_dK});

        // create tensor SCL_O for running cpu fwd mha
        MAKE_TENSOR_F(SCL_O, all1s, false);
        std::ignore = SCL_O;
    }

    void initInputs(size_t n, size_t h, size_t s, size_t d) override
    {
        using namespace test::cpu;

        auto Q  = GenScaledTensorBackward<float>(n, h, s, d);
        auto K  = GenScaledTensorBackward<float>(n, h, s, d);
        auto V  = GenScaledTensorBackward<float>(n, h, s, d);
        auto dO = GenScaledTensorBackward<float>(n, h, s, d);

        for(auto& [k, v] : mFilledTensors)
        {
            if(k == "Q")
            {
                v.init(std::move(Q.mTensor));
            }
            else if(k == "DSCL_Q")
            {
                v.init(Q.mDescale);
            }
            else if(k == "K")
            {
                v.init(std::move(K.mTensor));
            }
            else if(k == "DSCL_K")
            {
                v.init(K.mDescale);
            }
            else if(k == "V")
            {
                v.init(std::move(V.mTensor));
            }
            else if(k == "DSCL_V")
            {
                v.init(V.mDescale);
            }
            else if(k == "dO")
            {
                v.init(std::move(dO.mTensor));
            }
            else if(k == "DSCL_dO")
            {
                v.init(dO.mDescale);
            }
            else if(k == "SCL_O" || k == "SCL_S" || k == "DSCL_O" || k == "DSCL_S" ||
                    k == "ATN_SCL" || k == "SCL_dS" || k == "DSCL_dS" || k == "SCL_dV" ||
                    k == "SCL_dQ" || k == "SCL_dK")
            {
                v.init(1.0f);
            }
            else if(k == "RND_PRB")
            {
                v.init(mProbDropout);
            }
            else if(k == "RND_SD" || k == "RND_OFF")
            {
                v.init(0ll);
            }
            else if(k == "dV" || k == "dQ" || k == "dK" || k == "AMax_dV" || k == "AMax_dQ" ||
                    k == "AMax_dK" || k == "AMax_dS")
            {
                // these are outputs
                v.init(0.0f);
            }
            else if(k == "M" || k == "Z_INV" || k == "O")
            {
                // init later below
            }
            else
            {
                FAIL() << "Uninitialized input or output: " << k;
            }
        }

        CpuMhaFwdOut out = runCpuMhaFWd(n, h, s, d);

        lookup("M").init(std::move(out.mM));
        lookup("Z_INV").init(std::move(out.mZinv));
        lookup("O").init(std::move(out.mO));

        // softmax needed for calling cpu backward mha
        mSoftMax = std::move(out.mSoftMax);

        // Remove "SCL_O" here so that it doesn't pollute the variant pack used for
        // execution
        size_t cnt = mFilledTensors.erase("SCL_O");
        ASSERT_EQ(cnt, 1);
    }

    void runCpuVerify(size_t n, size_t h, size_t s, size_t d) override
    {
        /// \todo remove virtual once backward mha is ready to execute
        static constexpr bool disable_verification = true; // TODO

        auto dQ_ref = tensor<float>{n, h, s, d};
        auto dK_ref = tensor<float>{n, h, s, d};
        auto dV_ref = tensor<float>{n, h, s, d};

        float amax_dS_ref = 0;
        float amax_dQ_ref = 0;
        float amax_dK_ref = 0;
        float amax_dV_ref = 0;

        test::cpu::MultiHeadAttentionBackwardDataf8(lookup_f("Q"),
                                                    lookup_f("K"),
                                                    lookup_f("V"),
                                                    lookup_f("O"),
                                                    lookup_f("dO"),
                                                    mSoftMax,
                                                    lookup_f("DSCL_Q")[0],
                                                    lookup_f("DSCL_K")[0],
                                                    lookup_f("DSCL_V")[0],
                                                    lookup_f("SCL_dQ")[0],
                                                    lookup_f("SCL_dK")[0],
                                                    lookup_f("SCL_dV")[0],
                                                    lookup_f("SCL_S")[0],
                                                    lookup_f("DSCL_S")[0],
                                                    lookup_f("SCL_dS")[0],
                                                    lookup_f("DSCL_dS")[0],
                                                    lookup_f("DSCL_O")[0],
                                                    lookup_f("DSCL_dO")[0],
                                                    amax_dS_ref,
                                                    amax_dQ_ref,
                                                    amax_dK_ref,
                                                    amax_dV_ref,
                                                    dQ_ref,
                                                    dK_ref,
                                                    dV_ref);

        /// \todo remove once backward mha is ready to execute
        if(disable_verification)
            return;

        checkAmax("AMax_dS", amax_dS_ref);
        checkAmax("AMax_dQ", amax_dQ_ref);
        checkAmax("AMax_dK", amax_dK_ref);
        checkAmax("AMax_dV", amax_dV_ref);

        checkTensor("dQ", dQ_ref);
        checkTensor("dK", dK_ref);
        checkTensor("dV", dV_ref);
    }
};

} // end namespace mha_graph_test
  //
using namespace mha_graph_test;

TEST_P(GPU_MhaBwdGraphTest_FP32, MhaBwdGraph) { Run(MhaDir::Bwd); }

INSTANTIATE_TEST_SUITE_P(Smoke,
                         GPU_MhaBwdGraphTest_FP32,
                         testing::Combine(testing::ValuesIn(std::vector<std::size_t>{2}),     // n
                                          testing::ValuesIn(std::vector<std::size_t>{8}),     // h
                                          testing::ValuesIn(std::vector<std::size_t>{4, 64}), // s
                                          testing::ValuesIn(std::vector<std::size_t>{16}),    // d
                                          testing::ValuesIn({0.0f, 0.5f}) // mProbDropout
                                          ));