1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2024 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include <gtest/gtest.h>
#include <cstdlib>
#include <ctime>
#include <vector>
#include <boost/optional.hpp>
#include "../../driver/conv_common.hpp"
#include <miopen/batched_transpose_sol.hpp>
#include <miopen/handle.hpp>
#include <miopen/invoke_params.hpp>
#include <miopen/invoker.hpp>
#include <miopen/miopen.h>
#include <miopen/tensor.hpp>
#include "../tensor_holder.hpp"
#include <miopen/tensor_layout.hpp>
#include "driver.hpp"
#include "random.hpp"
namespace {
template <typename T>
void cpu_ncdhw2ndhwc(T* dst, T* src, uint64_t N, uint64_t C, uint64_t D, uint64_t H, uint64_t W)
{
for(uint64_t i_n = 0; i_n < N; i_n++)
{
for(uint64_t i_d = 0; i_d < D; i_d++)
{
for(uint64_t i_h = 0; i_h < H; i_h++)
{
for(uint64_t i_w = 0; i_w < W; i_w++)
{
for(uint64_t i_c = 0; i_c < C; i_c++)
{
uint64_t idx_ndhwc =
i_n * D * H * W * C + i_d * H * W * C + i_h * W * C + i_w * C + i_c;
uint64_t idx_ncdhw =
i_n * C * D * H * W + i_c * D * H * W + i_d * H * W + i_h * W + i_w;
dst[idx_ndhwc] = src[idx_ncdhw];
}
}
}
}
}
}
template <typename T>
void cpu_nchw2nhwc(T* dst, T* src, uint64_t N, uint64_t C, uint64_t H, uint64_t W)
{
cpu_ncdhw2ndhwc<T>(dst, src, N, C, 1, H, W);
}
template <typename T>
void cpu_ndhwc2ncdhw(T* dst, T* src, uint64_t N, uint64_t C, uint64_t D, uint64_t H, uint64_t W)
{
for(uint64_t i_n = 0; i_n < N; i_n++)
{
for(uint64_t i_c = 0; i_c < C; i_c++)
{
for(uint64_t i_d = 0; i_d < D; i_d++)
{
for(uint64_t i_h = 0; i_h < H; i_h++)
{
for(uint64_t i_w = 0; i_w < W; i_w++)
{
uint64_t idx_ndhwc =
i_n * D * H * W * C + i_d * H * W * C + i_h * W * C + i_w * C + i_c;
uint64_t idx_ncdhw =
i_n * C * D * H * W + i_c * D * H * W + i_d * H * W + i_h * W + i_w;
dst[idx_ncdhw] = src[idx_ndhwc];
}
}
}
}
}
}
template <typename T>
void cpu_nhwc2nchw(T* dst, T* src, uint64_t N, uint64_t C, uint64_t H, uint64_t W)
{
cpu_ndhwc2ncdhw<T>(dst, src, N, C, 1, H, W);
}
template <typename T, typename TRANSPOSE_SOL>
struct cpu_transpose
{
};
template <typename T>
struct cpu_transpose<T, miopen::TransposeSolutionDefault2Nhwc>
{
static void run(T* dst, T* src, uint64_t N, uint64_t C, uint64_t H, uint64_t W)
{
cpu_nchw2nhwc<T>(dst, src, N, C, H, W);
}
static void run(T* dst, T* src, uint64_t N, uint64_t C, uint64_t D, uint64_t H, uint64_t W)
{
cpu_ncdhw2ndhwc<T>(dst, src, N, C, D, H, W);
}
};
template <typename T>
struct cpu_transpose<T, miopen::TransposeSolutionDefault2Ndhwc>
{
static void run(T* dst, T* src, uint64_t N, uint64_t C, uint64_t D, uint64_t H, uint64_t W)
{
cpu_ncdhw2ndhwc<T>(dst, src, N, C, D, H, W);
}
};
template <typename T>
struct cpu_transpose<T, miopen::TransposeSolutionNhwc2Default>
{
static void run(T* dst, T* src, uint64_t N, uint64_t C, uint64_t H, uint64_t W)
{
cpu_nhwc2nchw<T>(dst, src, N, C, H, W);
}
static void run(T* dst, T* src, uint64_t N, uint64_t C, uint64_t D, uint64_t H, uint64_t W)
{
cpu_ndhwc2ncdhw<T>(dst, src, N, C, D, H, W);
}
};
template <typename T>
struct cpu_transpose<T, miopen::TransposeSolutionNdhwc2Default>
{
static void run(T* dst, T* src, uint64_t N, uint64_t C, uint64_t D, uint64_t H, uint64_t W)
{
cpu_ndhwc2ncdhw<T>(dst, src, N, C, D, H, W);
}
};
constexpr int RAND_INTEGER_MAX = 120;
constexpr int RAND_INTEGER_MIN = -88;
template <typename T>
bool compare_equal(T r1, T r2)
{
return r1 == r2;
}
template <>
bool compare_equal<float>(float r1, float r2)
{
return miopen::float_equal(r1, r2);
}
template <typename T>
void verify_tensor(tensor<T>& t_tst, const char* _tst, tensor<T>& t_ref, const char* _ref)
{
ASSERT_EQ(t_tst.data.size(), t_ref.data.size()) << " tensor sizes not equal, should not happen";
if(t_tst.data.size() != t_ref.data.size())
return;
auto idx = miopen::mismatch_idx(t_tst.data, t_ref.data, compare_equal<T>);
EXPECT_GE(idx, miopen::range_distance(t_ref))
<< "diff at:" << idx << ", " << _tst << ":" << t_tst[idx] << ", " << _ref << ":"
<< t_ref[idx];
}
struct transpose_dims
{
static constexpr uint32_t image_size_rand_offset{29};
static constexpr uint32_t image_size_rand_range{13};
static uint32_t get_max_image_size()
{
return image_size_rand_offset + image_size_rand_range - 1;
}
static std::vector<uint32_t> get_image_size()
{
std::vector<uint32_t> v = {1, 9, 14};
v.push_back(prng::gen_off_range(image_size_rand_offset, image_size_rand_range));
return v;
}
static std::vector<uint32_t> get_channel_size()
{
std::vector<uint32_t> v = {3, 11};
v.push_back(prng::gen_off_range(19, 7));
return v;
}
static std::vector<uint32_t> get_batch_size()
{
std::vector<uint32_t> v = {1, 2, 4};
v.push_back(prng::gen_off_range(3, 4));
return v;
}
};
template <typename T>
auto gen_value =
[](auto... is) { return static_cast<T>(prng::gen_A_to_B(RAND_INTEGER_MIN, RAND_INTEGER_MAX)); };
} // namespace
template <typename T, class TRANSPOSE_SOL>
struct LayoutTransposeTest_2D : public ::testing::TestWithParam<std::tuple<uint32_t, uint32_t>>
{
protected:
miopen::ExecutionContext ctx;
uint32_t n;
uint32_t c;
miopen::Invoker PrepareLayoutTransposeInvoker(const miopen::ExecutionContext& ctx_,
miopenDataType_t data_type_,
uint32_t n_,
uint32_t c_,
uint32_t h_,
uint32_t w_)
{
TRANSPOSE_SOL transpose_sol(ctx_, data_type_, n_, c_, h_, w_);
auto invoker_factory = transpose_sol.MakeBatchedTransposeInvokerFactory();
std::vector<miopen::solver::KernelInfo> construction_params{transpose_sol.GetKernelInfo()};
return ctx_.GetStream().PrepareInvoker(invoker_factory, construction_params);
}
virtual void SetUp() override { std::tie(n, c) = GetParam(); }
void RunTest()
{
auto&& handle = get_handle();
auto wh = transpose_dims::get_max_image_size();
auto max_tensor_sz = n * c * wh * wh;
auto dst_dev = handle.Create(sizeof(T) * max_tensor_sz);
auto H = transpose_dims::get_image_size();
auto W = transpose_dims::get_image_size();
for(auto h : H)
{
for(auto w : W)
{
std::vector<int> tensor_len = {static_cast<int>(n),
static_cast<int>(c),
static_cast<int>(h),
static_cast<int>(w)};
std::vector<int> tensor_strides;
std::string layout_default = miopen::tensor_layout_get_default(tensor_len.size());
std::string layout_string =
miopen::TensorDescriptor::LayoutEnumToStr(miopenTensorNCHW);
miopen::tensor_layout_to_strides(
tensor_len, layout_default, layout_string, tensor_strides);
auto t_src = tensor<T>{tensor_len, tensor_strides}.generate(gen_value<T>);
auto t_dst = tensor<T>{tensor_len, tensor_strides};
auto t_dst_gpu = tensor<T>{tensor_len, tensor_strides};
auto src_dev = handle.Write(t_src.data);
ctx.SetStream(&handle);
// prep gpu invoker
auto invoker = PrepareLayoutTransposeInvoker(ctx, miopen_type<T>{}, n, c, h, w);
const auto invoke_param = transpose_invoke_param{src_dev.get(), dst_dev.get()};
// run gpu
invoker(handle, invoke_param);
t_dst_gpu.data = handle.Read<T>(dst_dev, t_dst_gpu.data.size());
// run cpu
cpu_transpose<T, TRANSPOSE_SOL>::run(
t_dst.data.data(), t_src.data.data(), n, c, h, w);
// we expect exact match, since use integer
verify_tensor(t_dst_gpu, "gpu", t_dst, "cpu");
}
}
}
virtual void TearDown() override {}
};
template <typename T, class TRANSPOSE_SOL>
struct LayoutTransposeTest_3D : public ::testing::TestWithParam<std::tuple<uint32_t, uint32_t>>
{
protected:
miopen::ExecutionContext ctx;
uint32_t n;
uint32_t c;
miopen::Invoker PrepareLayoutTransposeInvoker(const miopen::ExecutionContext& ctx_,
miopenDataType_t data_type_,
uint32_t n_,
uint32_t c_,
uint32_t d_,
uint32_t h_,
uint32_t w_)
{
TRANSPOSE_SOL transpose_sol(ctx_, data_type_, n_, c_, d_, h_, w_);
auto invoker_factory = transpose_sol.MakeBatchedTransposeInvokerFactory();
std::vector<miopen::solver::KernelInfo> construction_params{transpose_sol.GetKernelInfo()};
return ctx_.GetStream().PrepareInvoker(invoker_factory, construction_params);
}
virtual void SetUp() override { std::tie(n, c) = GetParam(); }
void RunTest()
{
auto&& handle = get_handle();
ctx.SetStream(&handle);
auto dwh = transpose_dims::get_max_image_size();
auto max_tensor_sz = n * c * dwh * dwh * dwh;
auto dst_3d_dev = handle.Create(sizeof(T) * max_tensor_sz);
auto dst_2d_dev = handle.Create(sizeof(T) * max_tensor_sz);
auto W = transpose_dims::get_image_size();
auto H = transpose_dims::get_image_size();
auto D = transpose_dims::get_image_size();
for(auto w : W)
{
for(auto h : H)
{
for(auto d : D)
{
std::vector<int> tensor_len = {static_cast<int>(n),
static_cast<int>(c),
static_cast<int>(d),
static_cast<int>(h),
static_cast<int>(w)};
std::vector<int> tensor_strides;
std::string layout_default =
miopen::tensor_layout_get_default(tensor_len.size());
std::string layout_string =
miopen::TensorDescriptor::LayoutEnumToStr(miopenTensorNCDHW);
miopen::tensor_layout_to_strides(
tensor_len, layout_default, layout_string, tensor_strides);
auto t_src = tensor<T>{tensor_len, tensor_strides}.generate(gen_value<T>);
auto t_gpu_2d = tensor<T>{tensor_len, tensor_strides};
auto t_gpu_3d = tensor<T>{tensor_len, tensor_strides};
auto t_dst_ref = tensor<T>{tensor_len, tensor_strides};
auto src_dev = handle.Write(t_src.data);
// prep gpu 3D
auto invoker_3d =
PrepareLayoutTransposeInvoker(ctx, miopen_type<T>{}, n, c, d, h, w);
const auto invoke_param_3d =
transpose_invoke_param{src_dev.get(), dst_3d_dev.get()};
// run gpu 3D
invoker_3d(handle, invoke_param_3d);
t_gpu_3d.data = handle.Read<T>(dst_3d_dev, t_gpu_3d.data.size());
// prep gpu 2D
auto invoker_2d =
PrepareLayoutTransposeInvoker(ctx, miopen_type<T>{}, n, c, 1, d * h, w);
const auto invoke_param_2d =
transpose_invoke_param{src_dev.get(), dst_2d_dev.get()};
// run gpu 2D
invoker_2d(handle, invoke_param_2d);
t_gpu_2d.data = handle.Read<T>(dst_2d_dev, t_gpu_2d.data.size());
// run cpu
cpu_transpose<T, TRANSPOSE_SOL>::run(
t_dst_ref.data.data(), t_src.data.data(), n, c, d, h, w);
// we expect exact match, since use integer
verify_tensor(t_gpu_3d, "gpu3d", t_dst_ref, "cpu");
verify_tensor(t_gpu_2d, "gpu2d", t_dst_ref, "cpu");
}
}
}
}
virtual void TearDown() override {}
};
#define DEFINE_LayoutTransposeTest_2D(type, naming_type, sol) \
struct GPU_LayoutTransposeTest_2D_##sol##_##naming_type \
: public LayoutTransposeTest_2D<type, miopen::sol> \
{ \
}; \
TEST_P(GPU_LayoutTransposeTest_2D_##sol##_##naming_type, \
LayoutTransposeTest_2D_##sol##_##type##_P) \
{ \
RunTest(); \
} \
INSTANTIATE_TEST_SUITE_P( \
Full, \
GPU_LayoutTransposeTest_2D_##sol##_##naming_type, \
testing::Combine(testing::ValuesIn(transpose_dims::get_batch_size()), \
testing::ValuesIn(transpose_dims::get_channel_size())));
#define DEFINE_2D_TYPED_TESTS(sol) \
DEFINE_LayoutTransposeTest_2D(float, FP32, sol); \
DEFINE_LayoutTransposeTest_2D(float16, FP16, sol); \
DEFINE_LayoutTransposeTest_2D(bfloat16, BFP16, sol); \
DEFINE_LayoutTransposeTest_2D(uint16_t, I16, sol); \
DEFINE_LayoutTransposeTest_2D(uint8_t, I8, sol);
DEFINE_2D_TYPED_TESTS(TransposeSolutionDefault2Nhwc);
DEFINE_2D_TYPED_TESTS(TransposeSolutionNhwc2Default);
#define DEFINE_LayoutTransposeTest_3D(type, naming_type, sol) \
struct GPU_LayoutTransposeTest_3D_##sol##_##naming_type \
: public LayoutTransposeTest_3D<type, miopen::sol> \
{ \
}; \
TEST_P(GPU_LayoutTransposeTest_3D_##sol##_##naming_type, \
LayoutTransposeTest_3D_##sol##_##type##_P) \
{ \
RunTest(); \
} \
INSTANTIATE_TEST_SUITE_P( \
Full, \
GPU_LayoutTransposeTest_3D_##sol##_##naming_type, \
testing::Combine(testing::ValuesIn(transpose_dims::get_batch_size()), \
testing::ValuesIn(transpose_dims::get_channel_size())));
#define DEFINE_3D_TYPED_TESTS(sol) \
DEFINE_LayoutTransposeTest_3D(float, FP32, sol); \
DEFINE_LayoutTransposeTest_3D(float16, FP16, sol); \
DEFINE_LayoutTransposeTest_3D(bfloat16, BFP16, sol); \
DEFINE_LayoutTransposeTest_3D(uint16_t, I16, sol); \
DEFINE_LayoutTransposeTest_3D(uint8_t, I8, sol);
DEFINE_3D_TYPED_TESTS(TransposeSolutionDefault2Ndhwc);
DEFINE_3D_TYPED_TESTS(TransposeSolutionNdhwc2Default);
|