1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
|
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
// Test Suite for tensor API
#include <gtest/gtest.h>
#include <miopen/miopen.h>
#include <iomanip>
#include <optional>
#include <sstream>
#include <string>
#include <vector>
// Compiler uses undefined behavior sanitizer
// -fsanitize=enum (or -fsanitize=undefined)
#if(defined(__clang__) || defined(__GNUG__)) && !defined(NDEBUG)
#define UBSAN_ENABLED 1
#else
#define UBSAN_ENABLED 0
#endif
// We use out-of-range values for miopenDataType_t and miopenTensorLayout_t
#define USE_OUT_OF_RANGE_ENUM (UBSAN_ENABLED == 0)
// miopenLastDataType must be changed if new data types are added
#define miopenFirstDataType miopenHalf
#define miopenLastDataType miopenInt64
// miopenLastTensorLayout must be changed if new layouts are added
#define miopenFirstTensorLayout miopenTensorNCHW
#define miopenLastTensorLayout miopenTensorNDHWC
namespace {
using testDataType_t = int;
using testTensorLayout_t = int;
enum class TestStatus
{
Failed,
Passed,
Skipped
};
struct TensorParams
{
testDataType_t dataType;
std::optional<testTensorLayout_t> tensorLayout;
int nbDims;
int* dimsA;
int* stridesA;
friend std::ostream& operator<<(std::ostream& os, const TensorParams& tp)
{
os << "(";
os << "type:" << static_cast<int>(tp.dataType) << ",";
os << "layout:";
if(tp.tensorLayout)
os << static_cast<int>(tp.tensorLayout.value());
else
os << "none";
os << ",";
os << "ndims:" << tp.nbDims;
if(tp.nbDims > 0)
{
os << ",";
if(tp.dimsA == nullptr)
{
os << "dimsA:none";
}
else
{
for(unsigned i = 0; i < tp.nbDims; i++)
{
if(i != 0)
os << "x";
os << tp.dimsA[i];
}
}
os << ",";
if(tp.stridesA == nullptr)
{
os << "stridesA:none";
}
else
{
for(unsigned i = 0; i < tp.nbDims; i++)
{
if(i != 0)
os << "x";
os << tp.stridesA[i];
}
}
}
os << ")";
return os;
}
};
struct TestConfig
{
bool null_tensor_descriptor;
TensorParams params;
bool valid;
bool skip;
friend std::ostream& operator<<(std::ostream& os, const TestConfig& tc)
{
os << "(";
os << "skip:" << tc.skip << ",";
os << "valid:" << tc.valid << ",";
os << "null_td:" << tc.null_tensor_descriptor << ",";
os << tc.params;
os << ")";
return os;
}
};
template <class L1, class L2>
bool CompareLengths(const L1 l1, const L2 l2, int size)
{
for(int i = 0; i < size; i++)
{
if(l1[i] != l2[i])
return false;
}
return true;
}
// Set tensor descriptor
TestStatus Set4dTensorDescriptor(miopenTensorDescriptor_t tensorDesc,
const TensorParams& params,
bool check_skip)
{
if(params.tensorLayout && (params.tensorLayout != miopenTensorNCHW))
return TestStatus::Skipped;
if(params.nbDims != 4 || params.dimsA == nullptr || params.stridesA != nullptr)
return TestStatus::Skipped;
if(check_skip)
return TestStatus::Passed;
miopenStatus_t status =
miopenSet4dTensorDescriptor(tensorDesc,
static_cast<miopenDataType_t>(params.dataType),
params.dimsA[0],
params.dimsA[1],
params.dimsA[2],
params.dimsA[3]);
if(status == miopenStatusSuccess)
return TestStatus::Passed;
return TestStatus::Failed;
}
TestStatus SetNdTensorDescriptorWithLayout(miopenTensorDescriptor_t tensorDesc,
const TensorParams& params,
bool check_skip)
{
if(!params.tensorLayout || params.stridesA != nullptr)
return TestStatus::Skipped;
if(check_skip)
return TestStatus::Passed;
miopenStatus_t status = miopenSetNdTensorDescriptorWithLayout(
tensorDesc,
static_cast<miopenDataType_t>(params.dataType),
static_cast<miopenTensorLayout_t>(params.tensorLayout.value()),
params.dimsA,
params.nbDims);
if(status == miopenStatusSuccess)
return TestStatus::Passed;
return TestStatus::Failed;
}
TestStatus Set4dTensorDescriptorEx(miopenTensorDescriptor_t tensorDesc,
const TensorParams& params,
bool check_skip)
{
if(params.tensorLayout || params.nbDims != 4 || params.dimsA == nullptr ||
params.stridesA == nullptr)
{
return TestStatus::Skipped;
}
if(check_skip)
return TestStatus::Passed;
miopenStatus_t status =
miopenSet4dTensorDescriptorEx(tensorDesc,
static_cast<miopenDataType_t>(params.dataType),
params.dimsA[0],
params.dimsA[1],
params.dimsA[2],
params.dimsA[3],
params.stridesA[0],
params.stridesA[1],
params.stridesA[2],
params.stridesA[3]);
if(status == miopenStatusSuccess)
return TestStatus::Passed;
return TestStatus::Failed;
}
TestStatus SetTensorDescriptor(miopenTensorDescriptor_t tensorDesc,
const TensorParams& params,
bool check_skip)
{
if(params.tensorLayout)
return TestStatus::Skipped;
if(check_skip)
return TestStatus::Passed;
miopenStatus_t status =
miopenSetTensorDescriptor(tensorDesc,
static_cast<miopenDataType_t>(params.dataType),
params.nbDims,
params.dimsA,
params.stridesA);
if(status == miopenStatusSuccess)
return TestStatus::Passed;
return TestStatus::Failed;
}
TestStatus SetTensorDescriptorV2(miopenTensorDescriptor_t tensorDesc,
const TensorParams& params,
bool check_skip)
{
if(params.tensorLayout)
return TestStatus::Skipped;
if(check_skip)
return TestStatus::Passed;
size_t* dimsA = nullptr;
size_t* stridesA = nullptr;
std::vector<std::size_t> dims;
std::vector<std::size_t> strides;
if(params.nbDims > 0)
{
if(params.dimsA != nullptr)
{
dims = std::vector<std::size_t>(params.dimsA, params.dimsA + params.nbDims);
dimsA = dims.data();
}
if(params.stridesA != nullptr)
{
strides = std::vector<std::size_t>(params.stridesA, params.stridesA + params.nbDims);
stridesA = strides.data();
}
}
miopenStatus_t status = miopenSetTensorDescriptorV2(
tensorDesc, static_cast<miopenDataType_t>(params.dataType), params.nbDims, dimsA, stridesA);
if(status == miopenStatusSuccess)
return TestStatus::Passed;
return TestStatus::Failed;
}
const auto set_tensor_descr_funcs = {Set4dTensorDescriptor,
SetNdTensorDescriptorWithLayout,
Set4dTensorDescriptorEx,
SetTensorDescriptor,
SetTensorDescriptorV2};
// Get tensor descriptor
TestStatus Get4dTensorDescriptor(miopenTensorDescriptor_t tensorDesc, const TensorParams& params)
{
if(params.tensorLayout || params.nbDims != 4)
return TestStatus::Skipped;
if(params.dimsA == nullptr)
return TestStatus::Failed; // internal error
miopenStatus_t status;
miopenDataType_t dataType;
int dims[4], strides[4];
status = miopenGet4dTensorDescriptor(tensorDesc,
&dataType,
dims,
dims + 1,
dims + 2,
dims + 3,
strides,
strides + 1,
strides + 2,
strides + 3);
if(status != miopenStatusSuccess)
return TestStatus::Failed;
if(params.dataType != dataType || !CompareLengths(params.dimsA, dims, 4) ||
(params.stridesA != nullptr && !CompareLengths(params.stridesA, strides, 4)))
{
return TestStatus::Failed;
}
return TestStatus::Passed;
}
TestStatus GetTensorDescriptor(miopenTensorDescriptor_t tensorDesc, const TensorParams& params)
{
if(params.tensorLayout)
{
if((params.tensorLayout != miopenTensorNCHW && params.tensorLayout != miopenTensorNCDHW) ||
params.stridesA != nullptr)
{
return TestStatus::Skipped;
}
}
if(params.dimsA == nullptr)
return TestStatus::Failed; // internal error
miopenStatus_t status;
int size;
status = miopenGetTensorDescriptorSize(tensorDesc, &size);
if(status != miopenStatusSuccess || size < 0 || size != params.nbDims)
return TestStatus::Failed;
miopenDataType_t dataType;
std::vector<int> dims(size);
std::vector<int> strides(size);
status = miopenGetTensorDescriptor(tensorDesc, &dataType, dims.data(), strides.data());
if(status != miopenStatusSuccess)
return TestStatus::Failed;
if(params.dataType != dataType || !CompareLengths(params.dimsA, dims, size) ||
(params.stridesA != nullptr && !CompareLengths(params.stridesA, strides, size)))
return TestStatus::Failed;
return TestStatus::Passed;
}
const auto get_tensor_descr_funcs = {Get4dTensorDescriptor, GetTensorDescriptor};
class TestSetTensor : public ::testing::TestWithParam<TestConfig>
{
protected:
static int GetNumDimsForLayout(testTensorLayout_t layout)
{
int ndims = 0;
// clang-format off
switch(layout)
{
case miopenTensorNCHW:
case miopenTensorNHWC:
case miopenTensorCHWN:
case miopenTensorNCHWc4:
case miopenTensorNCHWc8:
case miopenTensorCHWNc4:
case miopenTensorCHWNc8:
ndims = 4;
break;
case miopenTensorNCDHW:
case miopenTensorNDHWC:
ndims = 5;
break;
}
// clang-format on
return ndims;
}
static void GenerateValidConfigs(std::vector<TestConfig>& configs)
{
static int dims[] = {4, 4, 16, 9, 16};
static int strides[] = {9216, 2304, 144, 16, 1};
static_assert(sizeof(dims) == sizeof(strides));
const auto max_ndims = sizeof(dims) / sizeof(dims[0]);
// clang-format off
for(testDataType_t datatype = miopenFirstDataType; datatype <= miopenLastDataType; datatype++)
// clang-format on
{
if(datatype == 4)
continue; // miopenInt8x4
// clang-format off
for(testTensorLayout_t layout = miopenFirstTensorLayout; layout <= miopenLastTensorLayout; layout++)
// clang-format on
{
int ndims = GetNumDimsForLayout(layout);
const TestConfig config = {
false,
{datatype, layout, ndims, dims + (max_ndims - ndims), nullptr},
true,
false};
configs.push_back(config);
}
for(int i = 0; i < 2; i++)
{
const bool use_strides = (i == 1);
for(int ndims = 1; ndims <= max_ndims; ndims++)
{
const TestConfig config = {
false,
{datatype,
std::nullopt,
ndims,
dims + (max_ndims - ndims),
use_strides ? (strides + (max_ndims - ndims)) : nullptr},
true,
false};
configs.push_back(config);
}
}
}
}
static std::vector<TestConfig> GenerateValidConfigs()
{
std::vector<TestConfig> configs;
GenerateValidConfigs(configs);
return configs;
}
static std::vector<testDataType_t> GetWrongDataTypes()
{
std::vector<testDataType_t> wrong_datatypes = {
static_cast<testDataType_t>(miopenFirstDataType) - 1,
static_cast<testDataType_t>(miopenLastDataType) + 1,
/*miopenInt8x4*/ 4};
return wrong_datatypes;
}
static std::vector<testTensorLayout_t> GetWrongLayouts(int num_dims, bool use_strides)
{
std::vector<testTensorLayout_t> wrong_layouts = {
static_cast<testTensorLayout_t>(miopenFirstTensorLayout) - 1,
static_cast<testTensorLayout_t>(miopenLastTensorLayout) + 1};
std::vector<testTensorLayout_t> layouts_4d = {miopenTensorNCHW,
miopenTensorNHWC,
miopenTensorCHWN,
miopenTensorNCHWc4,
miopenTensorNCHWc8,
miopenTensorCHWNc4,
miopenTensorCHWNc8};
std::vector<testTensorLayout_t> layouts_5d = {miopenTensorNCDHW, miopenTensorNDHWC};
if(use_strides)
{
wrong_layouts.insert(wrong_layouts.end(), layouts_4d.cbegin(), layouts_4d.cend());
wrong_layouts.insert(wrong_layouts.end(), layouts_5d.cbegin(), layouts_5d.cend());
}
else
{
if(num_dims == 4)
wrong_layouts.insert(wrong_layouts.end(), layouts_5d.cbegin(), layouts_5d.cend());
else if(num_dims == 5)
wrong_layouts.insert(wrong_layouts.end(), layouts_4d.cbegin(), layouts_4d.cend());
}
return wrong_layouts;
}
static std::vector<int> GetWrongNumDims(std::optional<testTensorLayout_t> layout)
{
std::vector<int> wrong_ndims = {-1, 0};
if(!layout)
return wrong_ndims;
auto num_dims = GetNumDimsForLayout(layout.value());
wrong_ndims.push_back(num_dims - 1);
wrong_ndims.push_back(num_dims + 1);
return wrong_ndims;
}
static void GenerateWrongConfigs(const TestConfig& valid_config,
std::vector<TestConfig>& wrong_configs)
{
const auto wrong_datatypes = GetWrongDataTypes();
const auto wrong_layouts =
GetWrongLayouts(valid_config.params.nbDims, valid_config.params.stridesA != nullptr);
const auto wrong_ndims = GetWrongNumDims(valid_config.params.tensorLayout);
static int wrong_dims[][8] = {{0, 0, 0, 0, 0, 0, 0, 0}, {-1, -1, -1, -1, -1, -1, -1, -1}};
// tensorDesc = nullptr
{
auto config = valid_config;
config.null_tensor_descriptor = true;
config.valid = false;
wrong_configs.push_back(config);
}
// wrong data type
for(auto datatype : wrong_datatypes)
{
auto config = valid_config;
config.params.dataType = datatype;
config.valid = false;
#if !USE_OUT_OF_RANGE_ENUM
if(config.params.dataType < miopenFirstDataType ||
config.params.dataType > miopenLastDataType)
{
config.skip = true;
}
#endif
wrong_configs.push_back(config);
}
// wrong layout
for(auto layout : wrong_layouts)
{
auto config = valid_config;
config.params.tensorLayout = layout;
config.valid = false;
#if !USE_OUT_OF_RANGE_ENUM
if(config.params.tensorLayout < miopenFirstTensorLayout ||
config.params.tensorLayout > miopenLastTensorLayout)
{
config.skip = true;
}
#endif
wrong_configs.push_back(config);
}
// wrong number of dimensions
for(auto ndims : wrong_ndims)
{
auto config = valid_config;
config.params.nbDims = ndims;
config.valid = false;
wrong_configs.push_back(config);
}
// dimsA = nullptr
{
auto config = valid_config;
config.params.dimsA = nullptr;
config.valid = false;
wrong_configs.push_back(config);
}
// wrong dimensions
for(auto dims : wrong_dims)
{
auto config = valid_config;
config.params.dimsA = dims;
config.valid = false;
wrong_configs.push_back(config);
}
if(valid_config.params.stridesA != nullptr)
{
// wrong strides
for(auto strides : wrong_dims)
{
auto config = valid_config;
config.params.stridesA = strides;
config.valid = false;
wrong_configs.push_back(config);
}
}
}
static std::vector<TestConfig> GenerateWrongConfigs()
{
const auto& valid_configs = GetValidConfigs();
std::vector<TestConfig> wrong_configs;
for(const auto& valid_config : valid_configs)
GenerateWrongConfigs(valid_config, wrong_configs);
return wrong_configs;
}
static void RunTest(const TestConfig& config)
{
for(const auto set_tensor_descr_func : set_tensor_descr_funcs)
{
TestStatus test_status;
miopenStatus_t status;
miopenTensorDescriptor_t desc = nullptr;
test_status = set_tensor_descr_func(nullptr, config.params, true);
if(test_status == TestStatus::Skipped)
continue;
if(!config.null_tensor_descriptor)
{
status = miopenCreateTensorDescriptor(&desc);
ASSERT_EQ(status, miopenStatusSuccess);
}
test_status = set_tensor_descr_func(desc, config.params, false);
if(config.valid)
ASSERT_NE(test_status, TestStatus::Failed);
else
ASSERT_NE(test_status, TestStatus::Passed);
if(config.valid)
{
for(const auto get_tensor_descr_func : get_tensor_descr_funcs)
{
test_status = get_tensor_descr_func(desc, config.params);
ASSERT_NE(test_status, TestStatus::Failed);
}
}
if(!config.null_tensor_descriptor)
{
status = miopenDestroyTensorDescriptor(desc);
ASSERT_EQ(status, miopenStatusSuccess);
}
}
}
static void RunTest()
{
const auto& config = GetParam();
if(config.skip)
GTEST_SKIP();
RunTest(config);
}
public:
static const std::vector<TestConfig>& GetValidConfigs()
{
static const auto configs = GenerateValidConfigs();
return configs;
}
static const std::vector<TestConfig>& GetWrongConfigs()
{
static const auto configs = GenerateWrongConfigs();
return configs;
}
};
} // namespace
using CPU_ApiTestSetTensorDescriptor_NONE = TestSetTensor;
using CPU_ApiTestSetWrongTensorDescriptor_NONE = TestSetTensor;
TEST_P(CPU_ApiTestSetTensorDescriptor_NONE, TD) { RunTest(); }
TEST_P(CPU_ApiTestSetWrongTensorDescriptor_NONE, TD) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(Full,
CPU_ApiTestSetTensorDescriptor_NONE,
testing::ValuesIn(TestSetTensor::GetValidConfigs()));
INSTANTIATE_TEST_SUITE_P(Full,
CPU_ApiTestSetWrongTensorDescriptor_NONE,
testing::ValuesIn(TestSetTensor::GetWrongConfigs()));
|