1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
#include <gtest/ai_heuristics.hpp>
#include <miopen/conv/heuristics/ai_heuristics.hpp>
#include "../tensor_holder.hpp"
#include "get_handle.hpp"
struct TunaNetTestCase : AIModelTestCase
{
std::size_t expected_solver;
std::string device_architecture;
};
std::vector<TunaNetTestCase> GetGfx908FloatTestCases()
{
return {{{{1, 5, 256, 64, {267, 300}, {1, 1}, {0, 0}, {1, 1}, {1, 1}},
miopen::conv::Direction::Forward,
miopenFloat,
miopenTensorNCHW},
4,
"gfx908"}};
}
std::vector<TunaNetTestCase> GetGfx908HalfTestCases()
{
return {{{{1, 16, 256, 512, {20, 84}, {5, 5}, {1, 1}, {1, 1}, {1, 1}},
miopen::conv::Direction::Forward,
miopenHalf,
miopenTensorNCHW},
3,
"gfx908"}};
}
std::vector<TunaNetTestCase> GetGfx908BF16TestCases()
{
return {{{{1, 32, 1024, 512, {15, 15}, {1, 1}, {0, 0}, {1, 1}, {1, 1}},
miopen::conv::Direction::Forward,
miopenBFloat16,
miopenTensorNCHW},
4,
"gfx908"}};
}
std::vector<TunaNetTestCase> GetGfx90aFloatTestCases()
{
return {{{{1, 5, 3, 64, {1301, 1333}, {7, 7}, {3, 3}, {2, 2}, {1, 1}},
miopen::conv::Direction::Forward,
miopenFloat,
miopenTensorNCHW},
6,
"gfx90a"}};
}
std::vector<TunaNetTestCase> GetGfx90aHalfTestCases()
{
return {{{{1, 24, 1024, 2048, {14, 14}, {1, 1}, {0, 0}, {2, 2}, {1, 1}},
miopen::conv::Direction::Forward,
miopenHalf,
miopenTensorNCHW},
4,
"gfx90a"}};
}
std::vector<TunaNetTestCase> GetGfx90aBF16TestCases()
{
return {{{{1, 2, 480, 192, {28, 28}, {1, 1}, {0, 0}, {1, 1}, {1, 1}},
miopen::conv::Direction::Forward,
miopenBFloat16,
miopenTensorNCHW},
6,
"gfx90a"}};
}
template <typename G>
struct TunaNetTest : public ::testing::TestWithParam<TunaNetTestCase>
{
protected:
void SetUp() override
{
#if MIOPEN_ENABLE_AI_IMMED_MODE_FALLBACK
auto test_case = GetParam();
tensor<G> input_tensor = tensor<G>(test_case.layout, test_case.conv.GetInput());
tensor<G> weights_tensor = tensor<G>(test_case.layout, test_case.conv.GetWeights());
auto conv_desc = test_case.conv.GetConv();
miopen::TensorDescriptor output_desc = conv_desc.GetForwardOutputTensor(
input_tensor.desc, weights_tensor.desc, test_case.data_type);
problem = (test_case.direction == miopen::conv::Direction::Forward)
? miopen::conv::ProblemDescription(input_tensor.desc,
weights_tensor.desc,
output_desc,
conv_desc,
test_case.direction)
: miopen::conv::ProblemDescription(output_desc,
weights_tensor.desc,
input_tensor.desc,
conv_desc,
test_case.direction);
expected_solver = test_case.expected_solver;
device_architecture = test_case.device_architecture;
#else
GTEST_SKIP();
#endif
}
miopen::conv::ProblemDescription problem;
std::size_t expected_solver;
std::string device_architecture;
};
struct GPU_TunaNetTest_FP32 : TunaNetTest<float>
{
};
struct GPU_TunaNetTest_FP16 : TunaNetTest<half_float::half>
{
};
struct GPU_TunaNetTest_BFP16 : TunaNetTest<bfloat16>
{
};
void TestSolverPredictionModel(miopen::conv::ProblemDescription& problem,
std::size_t expected_solver,
std::string device_architecture)
{
#if MIOPEN_ENABLE_AI_IMMED_MODE_FALLBACK
auto&& handle = get_handle();
std::string device = handle.GetDeviceName();
if(device != device_architecture)
GTEST_SKIP();
miopen::ExecutionContext ctx;
ctx.SetStream(&handle);
std::vector<std::size_t> solvers = miopen::ai::immed_mode::PredictSolver(problem, ctx, device);
std::size_t solver =
std::distance(solvers.begin(), std::max_element(solvers.begin(), solvers.end()));
ASSERT_EQ(solver, expected_solver)
<< "TunaNet predicted solver: " << solver
<< " when it should've predicted solver: " << expected_solver << std::endl;
#else
std::ignore = problem;
std::ignore = expected_solver;
std::ignore = device_architecture;
GTEST_SKIP();
#endif
}
TEST_P(GPU_TunaNetTest_FP32, TestSolverPredictionModelFloat)
{
TestSolverPredictionModel(problem, expected_solver, device_architecture);
}
TEST_P(GPU_TunaNetTest_FP16, TestSolverPredictionModelHalf)
{
TestSolverPredictionModel(problem, expected_solver, device_architecture);
}
TEST_P(GPU_TunaNetTest_BFP16, TestSolverPredictionModelBF16)
{
TestSolverPredictionModel(problem, expected_solver, device_architecture);
}
INSTANTIATE_TEST_SUITE_P(SmokeGfx908,
GPU_TunaNetTest_FP32,
testing::ValuesIn(GetGfx908FloatTestCases()));
INSTANTIATE_TEST_SUITE_P(SmokeGfx908,
GPU_TunaNetTest_FP16,
testing::ValuesIn(GetGfx908HalfTestCases()));
INSTANTIATE_TEST_SUITE_P(SmokeGfx908,
GPU_TunaNetTest_BFP16,
testing::ValuesIn(GetGfx908BF16TestCases()));
INSTANTIATE_TEST_SUITE_P(SmokeGfx90a,
GPU_TunaNetTest_FP32,
testing::ValuesIn(GetGfx90aFloatTestCases()));
INSTANTIATE_TEST_SUITE_P(SmokeGfx90a,
GPU_TunaNetTest_FP16,
testing::ValuesIn(GetGfx90aHalfTestCases()));
INSTANTIATE_TEST_SUITE_P(SmokeGfx90a,
GPU_TunaNetTest_BFP16,
testing::ValuesIn(GetGfx90aBF16TestCases()));
|