1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2020-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include <miopen/handle.hpp>
#include <miopen/miopen.h>
#include <miopen/tensor_reorder_util.hpp>
#include <miopen/tensor.hpp>
#include <miopen/tensor_layout.hpp>
#include <miopen/general_tensor_reorder_sol.hpp>
#include <miopen/invoker.hpp>
#include <miopen/invoke_params.hpp>
#include <boost/optional.hpp>
#include <vector>
#include <cstdlib>
#include <ctime>
#include "test.hpp"
#include "driver.hpp"
#include "random.hpp"
#include "get_handle.hpp"
#include "workspace.hpp"
template <typename T>
void cpu_tensor_reorder(T* dst,
T* src,
uint64_t dim_0,
uint64_t dim_1,
uint64_t dim_2,
uint64_t dim_3,
uint64_t order_0,
uint64_t order_1,
uint64_t order_2,
uint64_t order_3)
{
const uint64_t src_dim[4] = {dim_0, dim_1, dim_2, dim_3};
const uint64_t dst_dim[4] = {
src_dim[order_0], src_dim[order_1], src_dim[order_2], src_dim[order_3]};
const uint64_t src_stride[4] = {
src_dim[1] * src_dim[2] * src_dim[3], src_dim[2] * src_dim[3], src_dim[3], 1};
const uint64_t dst_stride[4] = {
dst_dim[1] * dst_dim[2] * dst_dim[3], dst_dim[2] * dst_dim[3], dst_dim[3], 1};
uint64_t itr_src_dim[4] = {0, 0, 0, 0};
uint64_t itr_dst_dim[4] = {0, 0, 0, 0};
for(itr_src_dim[0] = 0; itr_src_dim[0] < src_dim[0]; itr_src_dim[0]++)
{
for(itr_src_dim[1] = 0; itr_src_dim[1] < src_dim[1]; itr_src_dim[1]++)
{
for(itr_src_dim[2] = 0; itr_src_dim[2] < src_dim[2]; itr_src_dim[2]++)
{
for(itr_src_dim[3] = 0; itr_src_dim[3] < src_dim[3]; itr_src_dim[3]++)
{
itr_dst_dim[0] = itr_src_dim[order_0];
itr_dst_dim[1] = itr_src_dim[order_1];
itr_dst_dim[2] = itr_src_dim[order_2];
itr_dst_dim[3] = itr_src_dim[order_3];
uint64_t idx_src =
itr_src_dim[0] * src_stride[0] + itr_src_dim[1] * src_stride[1] +
itr_src_dim[2] * src_stride[2] + itr_src_dim[3] * src_stride[3];
uint64_t idx_dst =
itr_dst_dim[0] * dst_stride[0] + itr_dst_dim[1] * dst_stride[1] +
itr_dst_dim[2] * dst_stride[2] + itr_dst_dim[3] * dst_stride[3];
dst[idx_dst] = src[idx_src];
}
}
}
}
}
template <typename T>
struct cpu_reorder
{
static void run(T* dst,
T* src,
uint64_t dim_0,
uint64_t dim_1,
uint64_t dim_2,
uint64_t dim_3,
uint64_t order_0,
uint64_t order_1,
uint64_t order_2,
uint64_t order_3)
{
cpu_tensor_reorder<T>(
dst, src, dim_0, dim_1, dim_2, dim_3, order_0, order_1, order_2, order_3);
}
};
struct reorder_str
{
static std::string get(uint32_t order_0, uint32_t order_1, uint32_t order_2, uint32_t order_3)
{
return ("r" + std::to_string(order_0) + std::to_string(order_1) + std::to_string(order_2) +
std::to_string(order_3));
}
};
std::string
supported_reorder_to_string(uint32_t order_0, uint32_t order_1, uint32_t order_2, uint32_t order_3)
{
std::string layout_string("N/A");
// NOLINTBEGIN(*-braces-around-statements)
if((order_0 == 0) && (order_1 == 1) && (order_2 == 3) && (order_3 == 2))
layout_string = "r0132";
else if((order_0 == 0) && (order_1 == 2) && (order_2 == 1) && (order_3 == 3))
layout_string = "r0213";
else if((order_0 == 0) && (order_1 == 2) && (order_2 == 3) && (order_3 == 1))
layout_string = "r0231";
else if((order_0 == 0) && (order_1 == 3) && (order_2 == 1) && (order_3 == 2))
layout_string = "r0312";
else if((order_0 == 0) && (order_1 == 3) && (order_2 == 2) && (order_3 == 1))
layout_string = "r0321";
else if((order_0 == 1) && (order_1 == 0) && (order_2 == 2) && (order_3 == 3))
layout_string = "r1023";
else if((order_0 == 1) && (order_1 == 0) && (order_2 == 3) && (order_3 == 2))
layout_string = "r1032";
else if((order_0 == 1) && (order_1 == 2) && (order_2 == 0) && (order_3 == 3))
layout_string = "r1203";
else if((order_0 == 1) && (order_1 == 2) && (order_2 == 3) && (order_3 == 0))
layout_string = "r1230";
else if((order_0 == 1) && (order_1 == 3) && (order_2 == 0) && (order_3 == 2))
layout_string = "r1302";
else if((order_0 == 1) && (order_1 == 3) && (order_2 == 2) && (order_3 == 0))
layout_string = "r1320";
else if((order_0 == 2) && (order_1 == 0) && (order_2 == 1) && (order_3 == 3))
layout_string = "r2013";
else if((order_0 == 2) && (order_1 == 0) && (order_2 == 3) && (order_3 == 1))
layout_string = "r2031";
else if((order_0 == 2) && (order_1 == 1) && (order_2 == 0) && (order_3 == 3))
layout_string = "r2103";
else if((order_0 == 2) && (order_1 == 1) && (order_2 == 3) && (order_3 == 0))
layout_string = "r2130";
else if((order_0 == 2) && (order_1 == 3) && (order_2 == 0) && (order_3 == 1))
layout_string = "r2301";
else if((order_0 == 2) && (order_1 == 3) && (order_2 == 1) && (order_3 == 0))
layout_string = "r2310";
else if((order_0 == 3) && (order_1 == 0) && (order_2 == 1) && (order_3 == 2))
layout_string = "r3012";
else if((order_0 == 3) && (order_1 == 0) && (order_2 == 2) && (order_3 == 1))
layout_string = "r3021";
else if((order_0 == 3) && (order_1 == 1) && (order_2 == 0) && (order_3 == 2))
layout_string = "r3102";
else if((order_0 == 3) && (order_1 == 1) && (order_2 == 2) && (order_3 == 0))
layout_string = "r3120";
else if((order_0 == 3) && (order_1 == 2) && (order_2 == 0) && (order_3 == 1))
layout_string = "r3201";
else if((order_0 == 3) && (order_1 == 2) && (order_2 == 1) && (order_3 == 0))
layout_string = "r3210";
else
MIOPEN_THROW("Unsupported reorder layout");
// NOLINTEND(*-braces-around-statements)
return layout_string;
}
template <typename T>
struct to_miopen_data_type
{
};
template <>
struct to_miopen_data_type<double>
{
static miopenDataType_t get() { return miopenDouble; }
};
template <>
struct to_miopen_data_type<float>
{
static miopenDataType_t get() { return miopenFloat; }
};
template <>
struct to_miopen_data_type<half_float::half>
{
static miopenDataType_t get() { return miopenHalf; } // we actually didn't calculate 16bit float
};
template <>
struct to_miopen_data_type<int8_t>
{
static miopenDataType_t get() { return miopenInt8; }
};
template <>
struct to_miopen_data_type<bfloat16>
{
static miopenDataType_t get() { return miopenBFloat16; }
};
static constexpr int RAND_INTEGER_MAX = 120;
static constexpr int RAND_INTEGER_MIN = -88;
template <typename T>
void rand_tensor_integer(tensor<T>& t, int max = RAND_INTEGER_MAX, int min = RAND_INTEGER_MIN)
{
// use integer to random.
for(size_t i = 0; i < t.data.size(); i++)
t[i] = static_cast<T>(prng::gen_A_to_B(min, max));
}
template <typename T>
bool compare_equal(T r1, T r2)
{
return r1 == r2;
}
template <>
bool compare_equal<double>(double r1, double r2)
{
return miopen::float_equal(r1, r2);
}
template <>
bool compare_equal<float>(float r1, float r2)
{
return miopen::float_equal(r1, r2);
}
template <typename T>
bool verify_tensor(tensor<T>& t_gpu, tensor<T>& t_cpu)
{
EXPECT(t_gpu.data.size() == t_cpu.data.size());
auto idx = miopen::mismatch_idx(t_gpu.data, t_cpu.data, compare_equal<T>);
bool valid_result = idx >= miopen::range_distance(t_cpu);
if(!valid_result)
{
std::cout << "diff at:" << idx << ", gpu:" << t_gpu[idx] << ", cpu:" << t_cpu[idx]
<< std::endl;
}
return valid_result;
}
struct tensor_reorder_base_driver : test_driver
{
static std::vector<uint32_t> get_dim_3_size() { return {1, 9}; }
static std::vector<uint32_t> get_dim_2_size() { return {1, 9}; }
static std::vector<uint32_t> get_dim_1_size() { return {3, 8}; }
static std::vector<uint32_t> get_dim_0_size() { return {1, 2}; }
template <typename F>
void iterate_reorder(F f)
{
std::vector<uint32_t> dim_3_list = get_dim_3_size();
std::vector<uint32_t> dim_2_list = get_dim_2_size();
std::vector<uint32_t> dim_1_list = get_dim_1_size();
std::vector<uint32_t> dim_0_list = get_dim_0_size();
dim_3_list.push_back(prng::gen_off_range(29, 13));
dim_2_list.push_back(prng::gen_off_range(29, 13));
dim_1_list.push_back(prng::gen_off_range(15, 13));
dim_0_list.push_back(prng::gen_off_range(3, 4));
constexpr int all_possible_order[23][4] = {
{0, 1, 3, 2}, {0, 2, 1, 3}, {0, 2, 3, 1}, {0, 3, 1, 2}, {0, 3, 2, 1}, {1, 0, 2, 3},
{1, 0, 3, 2}, {1, 2, 0, 3}, {1, 2, 3, 0}, {1, 3, 0, 2}, {1, 3, 2, 0}, {2, 0, 1, 3},
{2, 0, 3, 1}, {2, 1, 0, 3}, {2, 1, 3, 0}, {2, 3, 0, 1}, {2, 3, 1, 0}, {3, 0, 1, 2},
{3, 0, 2, 1}, {3, 1, 0, 2}, {3, 1, 2, 0}, {3, 2, 0, 1}, {3, 2, 1, 0}};
for(auto order : all_possible_order)
{
for(uint32_t dim_3 : dim_3_list)
{
for(uint32_t dim_2 : dim_2_list)
{
for(uint32_t dim_1 : dim_1_list)
{
for(uint32_t dim_0 : dim_0_list)
{
f(dim_0, dim_1, dim_2, dim_3, order[0], order[1], order[2], order[3]);
}
}
}
}
}
}
};
struct reorder_invoke_param : public miopen::InvokeParams
{
ConstData_t src = nullptr;
Data_t dst = nullptr;
reorder_invoke_param(ConstData_t src_, Data_t dst_) : src(src_), dst(dst_) {}
reorder_invoke_param(miopen::InvokeType type_, ConstData_t src_, Data_t dst_)
: InvokeParams{type_}, src(src_), dst(dst_)
{
}
Data_t GetWorkspace() const { return nullptr; }
std::size_t GetWorkspaceSize() const { return 0; }
};
template <typename T>
struct tensor_reorder_driver : tensor_reorder_base_driver
{
// NOLINTBEGIN(clang-analyzer-cplusplus.NewDeleteLeaks)
void run()
{
auto run_reorder = [](uint32_t dim_0,
uint32_t dim_1,
uint32_t dim_2,
uint32_t dim_3,
uint32_t order_0,
uint32_t order_1,
uint32_t order_2,
uint32_t order_3) {
int tensor_sz = dim_0 * dim_1 * dim_2 * dim_3;
std::vector<int> tensor_len({static_cast<int>(dim_0),
static_cast<int>(dim_1),
static_cast<int>(dim_2),
static_cast<int>(dim_3)});
std::vector<int> tensor_strides;
std::string layout_default = miopen::tensor_layout_get_default(4);
std::string layout_string = miopen::TensorDescriptor::LayoutEnumToStr(miopenTensorNCHW);
std::string reorder_string =
supported_reorder_to_string(order_0, order_1, order_2, order_3);
miopen::tensor_layout_to_strides(
tensor_len, layout_default, layout_string, tensor_strides);
tensor<T> t_src(tensor_len, tensor_strides);
tensor<T> t_dst(tensor_len, tensor_strides);
tensor<T> t_dst_gpu(tensor_len, tensor_strides);
rand_tensor_integer(t_src);
auto& handle = get_handle();
miopen::ExecutionContext ctx;
ctx.SetStream(&handle);
// ctx.SetupFloats();
auto reorder_sol = MakeTensorReorderAttributes(ctx,
to_miopen_data_type<T>::get(),
dim_0,
dim_1,
dim_2,
dim_3,
order_0,
order_1,
order_2,
order_3);
EXPECT(reorder_sol != nullptr);
size_t workspace_size = reorder_sol->IsSkippable() ? sizeof(T) * tensor_sz
: reorder_sol->GetOutputTensorSize();
Workspace wspace{workspace_size};
auto src_dev = handle.Write(t_src.data);
const auto invoke_param = reorder_invoke_param{src_dev.get(), wspace.ptr()};
std::vector<OpKernelArg> opArgs = reorder_sol->GetKernelArg();
boost::optional<miopen::InvokerFactory> invoker_factory(
[=](const std::vector<miopen::Kernel>& kernels) mutable {
return [=](const miopen::Handle& handle,
const miopen::AnyInvokeParams& primitive_param) mutable {
decltype(auto) invoke_params =
primitive_param.CastTo<reorder_invoke_param>();
const auto k = handle.Run(kernels[0]);
opArgs[0] = OpKernelArg(invoke_params.dst);
opArgs[1] = OpKernelArg(invoke_params.src);
k(opArgs);
};
});
std::vector<miopen::solver::KernelInfo> construction_params{
reorder_sol->GetKernelInfo()};
const auto invoker = handle.PrepareInvoker(*invoker_factory, construction_params);
// run gpu
invoker(handle, invoke_param);
// run cpu
cpu_reorder<T>::run(t_dst.data.data(),
t_src.data.data(),
dim_0,
dim_1,
dim_2,
dim_3,
order_0,
order_1,
order_2,
order_3);
invoker_factory = boost::none;
t_dst_gpu.data = wspace.Read<decltype(t_dst_gpu.data)>();
// we expect excact match, since use integer
bool valid_result = verify_tensor(t_dst_gpu, t_dst);
std::cout << "[" << reorder_str::get(order_0, order_1, order_2, order_3) << ", b"
<< (sizeof(T) * 8) << " ] "
<< "dim_0:" << dim_0 << ", dim_1:" << dim_1 << ", dim_2:" << dim_2
<< ", dim_3:" << dim_3 << ", valid:" << valid_result << std::endl;
EXPECT(valid_result == true);
};
iterate_reorder(run_reorder);
}
// NOLINTEND(clang-analyzer-cplusplus.NewDeleteLeaks)
};
template <template <class...> class Driver>
void test_tensor_reorder(int argc, const char* argv[])
{
std::vector<std::string> as(argv + 1, argv + argc);
as.emplace_back("--float");
for(auto&& arg : as)
{
if(arg == "--all")
{
test_drive_impl<Driver<double>>(argv[0], as);
test_drive_impl<Driver<float>>(argv[0], as);
test_drive_impl<Driver<half_float::half>>(argv[0], as);
test_drive_impl<Driver<int8_t>>(argv[0], std::move(as));
break;
}
if(arg == "--double")
{
test_drive_impl<Driver<double>>(argv[0], std::move(as));
break;
}
if(arg == "--float")
{
test_drive_impl<Driver<float>>(argv[0], std::move(as));
break;
}
if(arg == "--half")
{
test_drive_impl<Driver<half_float::half>>(argv[0], std::move(as));
break;
}
if(arg == "--int8")
{
test_drive_impl<Driver<int8_t>>(argv[0], std::move(as));
break;
}
}
}
int main(int argc, const char* argv[]) { test_tensor_reorder<tensor_reorder_driver>(argc, argv); }
|