File: bitop.d

package info (click to toggle)
mir-core 1.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 560 kB
  • sloc: makefile: 9; sh: 7
file content (425 lines) | stat: -rw-r--r-- 11,052 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/++
This module contains a collection of bit-level operations.

Authors: Ilia Ki, Phobos & LDC Authors (original Phobos unittests, docs, conventions).
+/
module mir.bitop;

version(LDC)
    import ldc.intrinsics;
version(GNU)
    import gcc.builtins;

import mir.math.common: fastmath;

/// Right shift vallue for bit index to get element's index (5 for `uint`).
enum uint bitElemShift(T : ubyte) = 3;
/// ditto
enum uint bitElemShift(T : byte) = 3;
/// ditto
enum uint bitElemShift(T : ushort) = 4;
/// ditto
enum uint bitElemShift(T : short) = 4;
/// ditto
enum uint bitElemShift(T : uint) = 5;
/// ditto
enum uint bitElemShift(T : int) = 5;
/// ditto
enum uint bitElemShift(T : ulong) = 6;
/// ditto
enum uint bitElemShift(T : long) = 6;
static if (is(ucent))
/// ditto
enum uint bitElemShift(T : ucent) = 7;
/// ditto
static if (is(cent))
enum uint bitElemShift(T : cent) = 7;

/// Bit mask for bit index to get element's bit shift (31 for uint).
enum uint bitShiftMask(T : ubyte) = 7;
/// ditto
enum uint bitShiftMask(T : byte) = 7;
/// ditto
enum uint bitShiftMask(T : ushort) = 15;
/// ditto
enum uint bitShiftMask(T : short) = 15;
/// ditto
enum uint bitShiftMask(T : uint) = 31;
/// ditto
enum uint bitShiftMask(T : int) = 31;
/// ditto
enum uint bitShiftMask(T : ulong) = 63;
/// ditto
enum uint bitShiftMask(T : long) = 63;
static if (is(ucent))
/// ditto
enum uint bitShiftMask(T : ucent) = 127;
static if (is(cent))
/// ditto
enum uint bitShiftMask(T : cent) = 127;

// no effect on this function, but better for optimization of other @fastmath code that uses this
@fastmath:


/++
+/
T nTrailingBitsToCount(T)(in T value, in T popcnt)
    if (__traits(isUnsigned, T))
{
    import std.traits;
    import mir.internal.utility: Iota;
    alias S = Signed!(CommonType!(int, T));
    S mask = S(-1) << T.sizeof * 4;
    foreach_reverse (s; Iota!(bitElemShift!T - 1))
    {{
        enum shift = 1 << s;
        if (S(popcnt) > S(ctpop(cast(T)(value & ~mask))))
            mask <<= shift;
        else
            mask >>= shift;
    }}
    return cttz(cast(T)mask) + (S(popcnt) != ctpop(cast(T)(value & ~mask)));
}

///
version(mir_core_test) unittest
{
    assert(nTrailingBitsToCount(0xF0u, 3u) == 7);
    assert(nTrailingBitsToCount(0xE00u, 3u) == 12);

    foreach(uint i; 1 .. 32)
        assert(nTrailingBitsToCount(uint.max, i) == i);
}

/++
+/
T nLeadingBitsToCount(T)(in T value, in T popcnt)
    if (__traits(isUnsigned, T))
{
    import std.traits;
    import mir.internal.utility: Iota;
    alias S = Signed!(CommonType!(int, T));
    S mask = S(-1) << T.sizeof * 4;
    foreach_reverse (s; Iota!(bitElemShift!T - 1))
    {{
        enum shift = 1 << s;
        if (S(popcnt) > S(ctpop(cast(T)(value & mask))))
            mask >>= shift;
        else
            mask <<= shift;
    }}
    return ctlz(cast(T)~mask) + (S(popcnt) != ctpop(cast(T)(value & mask)));
}

///
version(mir_core_test) unittest
{
    assert(nLeadingBitsToCount(0xF0u, 3u) == 32 - 5);
    assert(nLeadingBitsToCount(0x700u, 3u) == 32 - 8);

    foreach(uint i; 1 .. 32)
        assert(nLeadingBitsToCount(uint.max, i) == i);
}

/++
Tests the bit.
Returns:
     A non-zero value if the bit was set, and a zero
     if it was clear.
+/
auto bt(Field, T = typeof(Field.init[size_t.init]))(auto ref Field p, size_t bitnum)
    if (__traits(isUnsigned, T))
{
    auto index = bitnum >> bitElemShift!T;
    auto mask = T(1) << (bitnum & bitShiftMask!T);
    return p[index] & mask;
}

///
@system pure version(mir_core_test) unittest
{
    size_t[2] array;

    array[0] = 2;
    array[1] = 0x100;

    assert(bt(array.ptr, 1));
    assert(array[0] == 2);
    assert(array[1] == 0x100);
}

/++
Tests and assign the bit.
Returns:
     A non-zero value if the bit was set, and a zero if it was clear.
+/
auto bta(Field, T = typeof(Field.init[size_t.init]))(auto ref Field p, size_t bitnum, bool value)
    if (__traits(isUnsigned, T))
{
    auto index = bitnum >> bitElemShift!T;
    auto shift = bitnum & bitShiftMask!T;
    auto mask = T(1) << shift;
    static if (__traits(compiles, &p[size_t.init]))
    {
        auto qp = &p[index];
        auto q = *qp;
        auto ret = q & mask;
        *qp = cast(T)((q & ~mask) ^ (T(value) << shift));
    }
    else
    {
        auto q = p[index];
        auto ret = q & mask;
        p[index] = cast(T)((q & ~mask) ^ (T(value) << shift));
    }
    return ret;    
}

/++
Tests and complements the bit.
Returns:
     A non-zero value if the bit was set, and a zero if it was clear.
+/
auto btc(Field, T = typeof(Field.init[size_t.init]))(auto ref Field p, size_t bitnum)
    if (__traits(isUnsigned, T))
{
    auto index = bitnum >> bitElemShift!T;
    auto mask = T(1) << (bitnum & bitShiftMask!T);
    static if (__traits(compiles, &p[size_t.init]))
    {
        auto qp = &p[index];
        auto q = *qp;
        auto ret = q & mask;
        *qp = cast(T)(q ^ mask);
    }
    else
    {
        auto q = p[index];
        auto ret = q & mask;
        p[index] = cast(T)(q ^ mask);
    }
    return ret;
}

/++
Tests and resets (sets to 0) the bit.
Returns:
     A non-zero value if the bit was set, and a zero if it was clear.
+/
auto btr(Field, T = typeof(Field.init[size_t.init]))(auto ref Field p, size_t bitnum)
    if (__traits(isUnsigned, T))
{
    auto index = bitnum >> bitElemShift!T;
    auto mask = T(1) << (bitnum & bitShiftMask!T);
    static if (__traits(compiles, &p[size_t.init]))
    {
        auto qp = &p[index];
        auto q = *qp;
        auto ret = q & mask;
        *qp = cast(T)(q & ~mask);
    }
    else
    {
        auto q = p[index];
        auto ret = q & mask;
        p[index] = cast(T)(q & ~mask);
    }
    return ret;
}

/++
Tests and sets the bit.
Params:
p = a non-NULL field / pointer to an array of unsigned integers.
bitnum = a bit number, starting with bit 0 of p[0],
and progressing. It addresses bits like the expression:
---
p[index / (T.sizeof*8)] & (1 << (index & ((T.sizeof*8) - 1)))
---
Returns:
     A non-zero value if the bit was set, and a zero if it was clear.
+/
auto bts(Field, T = typeof(Field.init[size_t.init]))(auto ref Field p, size_t bitnum)
    if (__traits(isUnsigned, T))
{
    auto index = bitnum >> bitElemShift!T;
    auto mask = T(1) << (bitnum & bitShiftMask!T);
    static if (__traits(compiles, &p[size_t.init]))
    {
        auto qp = &p[index];
        auto q = *qp;
        auto ret = q & mask;
        *qp = cast(T)(q | mask);
    }
    else
    {
        auto q = p[index];
        auto ret = q & mask;
        p[index] = cast(T)(q | mask);
    }
    return ret;
}

///
@system pure version(mir_core_test) unittest
{
    size_t[2] array;

    array[0] = 2;
    array[1] = 0x100;

    assert(btc(array.ptr, 35) == 0);
    if (size_t.sizeof == 8)
    {
        assert(array[0] == 0x8_0000_0002);
        assert(array[1] == 0x100);
    }
    else
    {
        assert(array[0] == 2);
        assert(array[1] == 0x108);
    }

    assert(btc(array.ptr, 35));
    assert(array[0] == 2);
    assert(array[1] == 0x100);

    assert(bts(array.ptr, 35) == 0);
    if (size_t.sizeof == 8)
    {
        assert(array[0] == 0x8_0000_0002);
        assert(array[1] == 0x100);
    }
    else
    {
        assert(array[0] == 2);
        assert(array[1] == 0x108);
    }

    assert(btr(array.ptr, 35));
    assert(array[0] == 2);
    assert(array[1] == 0x100);
}

/// The 'ctpop' family of intrinsics counts the number of bits set in a value.
T ctpop(T)(in T src)
    if (__traits(isUnsigned, T))
{
    version(LDC) if (!__ctfe)
        return llvm_ctpop(src);
    version(GNU) if (!__ctfe)
    {
        static if (T.sizeof < __builtin_clong.sizeof)
            return cast(T) __builtin_popcount(src);
        else static if (T.sizeof <= __builtin_clong.sizeof)
            return cast(T) __builtin_popcountl(src);
        else
            return cast(T) __builtin_popcountll(src);
    }
    import core.bitop: popcnt;
    return cast(T) popcnt(src);
}

/++
The 'ctlz' family of intrinsic functions counts the number of leading zeros in a variable.
Result is undefined if the argument is zero.
+/
T ctlz(T)(in T src)
    if (__traits(isUnsigned, T))
{
    version(LDC) if (!__ctfe)
        return llvm_ctlz(src, true);
    version(GNU) if (!__ctfe)
    {
        // Do not zero-extend when counting leading zeroes.
        static if (T.sizeof < __builtin_clong.sizeof && T.sizeof >= uint.sizeof)
            return cast(T) __builtin_clz(src);
        else static if (T.sizeof == __builtin_clong.sizeof)
            return cast(T) __builtin_clzl(src);
        else static if (T.sizeof > __builtin_clong.sizeof)
            return cast(T) __builtin_clzll(src);
    }
    import core.bitop: bsr;
    return cast(T)(T.sizeof * 8  - 1 - bsr(src));
}

///
version (mir_core_test) @nogc nothrow pure @safe version(mir_core_test) unittest
{
    assert(ctlz(cast(ubyte) 0b0011_1111) == 2);
    assert(ctlz(cast(ushort) 0b0000_0001_1111_1111) == 7);
}

/++
The 'ctlzp' family of intrinsic functions counts the number of leading zeros in a variable.
Result is properly defined if the argument is zero.
+/
T ctlzp(T)(in T src)
    if (__traits(isUnsigned, T))
{
    version(LDC) if (!__ctfe)
        return llvm_ctlz(src, false);
    return src ? ctlz(src) : T.sizeof * 8;
}

///
version (mir_core_test) @nogc nothrow pure @safe version(mir_core_test) unittest
{
    assert(ctlzp(cast(ubyte) 0b0000_0000) == 8);
    assert(ctlzp(cast(ubyte) 0b0011_1111) == 2);
    assert(ctlzp(cast(ushort) 0b0000_0001_1111_1111) == 7);
    assert(ctlzp(cast(ushort) 0) == 16);
    assert(ctlzp(cast(ulong) 0) == 64);
}

/++
The 'cttz' family of intrinsic functions counts the number of trailing zeros.
Result is undefined if the argument is zero.
+/
T cttz(T)(in T src)
    if (__traits(isUnsigned, T))
{
    version(LDC) if (!__ctfe)
        return llvm_cttz(src, true);
    version(GNU) if (!__ctfe)
    {
        static if (T.sizeof <__builtin_clong.sizeof)
            return cast(T) __builtin_ctz(src);
        else static if (T.sizeof <=__builtin_clong.sizeof)
            return cast(T) __builtin_ctzl(src);
        else
            return cast(T) __builtin_ctzll(src);
    }
    import core.bitop: bsf;
    return cast(T) bsf(src);
}

///
version (mir_core_test) @nogc nothrow pure @safe version(mir_core_test) unittest
{
    assert(cttzp(cast(ubyte) 0b11111100) == 2);
    assert(cttzp(cast(ushort) 0b1111111110000000) == 7);
}

/++
The 'cttz' family of intrinsic functions counts the number of trailing zeros.
Result is properly defined if the argument is zero.
+/
T cttzp(T)(in T src)
    if (__traits(isUnsigned, T))
{
    version(LDC) if (!__ctfe)
        return llvm_cttz(src, false);
    return src ? cttz(src) : T.sizeof * 8;
}

///
version (mir_core_test) @nogc nothrow pure @safe version(mir_core_test) unittest
{
    assert(cttzp(cast(ubyte) 0b0000_0000) == 8);
    assert(cttzp(cast(ubyte) 0b11111100) == 2);
    assert(cttzp(cast(ushort) 0b1111111110000000) == 7);
    assert(cttzp(cast(ushort) 0) == 16);
    assert(cttzp(cast(ulong) 0) == 64);
}