1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
/++
Templates used to check primitives and
range primitives for arrays with multi-dimensional like API support.
Note:
UTF strings behaves like common arrays in Mir.
`std.uni.byCodePoint` can be used to create a range of characters.
License: $(HTTP www.apache.org/licenses/LICENSE-2.0, Apache-2.0)
Authors: Ilia Ki, $(HTTP erdani.com, Andrei Alexandrescu), David Simcha, and
$(HTTP jmdavisprog.com, Jonathan M Davis). Credit for some of the ideas
in building this module goes to
$(HTTP fantascienza.net/leonardo/so/, Leonardo Maffi)
+/
module mir.primitives;
import mir.internal.utility;
import mir.math.common: optmath;
import std.traits;
@optmath:
/++
Returns: `true` if `R` has a `length` member that returns an
integral type implicitly convertible to `size_t`.
`R` does not have to be a range.
+/
enum bool hasLength(R) = is(typeof(
(const R r, inout int = 0)
{
size_t l = r.length;
}));
///
@safe version(mir_core_test) unittest
{
static assert(hasLength!(char[]));
static assert(hasLength!(int[]));
static assert(hasLength!(inout(int)[]));
struct B { size_t length() const { return 0; } }
struct C { @property size_t length() const { return 0; } }
static assert(hasLength!(B));
static assert(hasLength!(C));
}
/++
Returns: `true` if `R` has a `shape` member that returns an static array type of size_t[N].
+/
enum bool hasShape(R) = is(typeof(
(const R r, inout int = 0)
{
auto l = r.shape;
alias F = typeof(l);
import std.traits;
static assert(isStaticArray!F);
static assert(is(ForeachType!F == size_t));
}));
///
@safe version(mir_core_test) unittest
{
static assert(hasShape!(char[]));
static assert(hasShape!(int[]));
static assert(hasShape!(inout(int)[]));
struct B { size_t length() const { return 0; } }
struct C { @property size_t length() const { return 0; } }
static assert(hasShape!(B));
static assert(hasShape!(C));
}
///
auto shape(Range)(scope const auto ref Range range) @property
if (hasLength!Range || hasShape!Range)
{
static if (__traits(hasMember, Range, "shape"))
{
return range.shape;
}
else
{
size_t[1] ret;
ret[0] = range.length;
return ret;
}
}
///
version(mir_core_test) unittest
{
static assert([2, 2, 2].shape == [3]);
}
///
template DimensionCount(T)
{
import mir.ndslice.slice: Slice, SliceKind;
/// Extracts dimension count from a $(LREF Slice). Alias for $(LREF isSlice).
static if(is(T : Slice!(Iterator, N, kind), Iterator, size_t N, SliceKind kind))
enum size_t DimensionCount = N;
else
static if (hasShape!T)
enum size_t DimensionCount = typeof(T.init.shape).length;
else
enum size_t DimensionCount = 1;
}
package(mir) bool anyEmptyShape(size_t N)(scope const auto ref size_t[N] shape) @property
{
foreach (i; Iota!N)
if (shape[i] == 0)
return true;
return false;
}
///
bool anyEmpty(Range)(scope auto ref Range range) @property
if (hasShape!Range || __traits(hasMember, Range, "anyEmpty") || is(ReturnType!((Range r) => r.empty) == bool))
{
static if (__traits(hasMember, Range, "anyEmpty"))
{
return range.anyEmpty;
}
else
static if (__traits(hasMember, Range, "shape"))
{
return anyEmptyShape(range.shape);
}
else
{
return range.empty;
}
}
///
size_t elementCount(Range)(scope const auto ref Range range) @property
if (hasShape!Range || __traits(hasMember, Range, "elementCount"))
{
static if (__traits(hasMember, Range, "elementCount"))
{
return range.elementCount;
}
else
{
auto sh = range.shape;
size_t ret = sh[0];
foreach(i; Iota!(1, sh.length))
{
ret *= sh[i];
}
return ret;
}
}
deprecated("use elementCount instead")
alias elementsCount = elementCount;
/++
Returns the element type of a struct with `.DeepElement` inner alias or a type of common array.
Returns `ForeachType` if struct does not have `.DeepElement` member.
+/
template DeepElementType(S)
if (is(S == struct) || is(S == class) || is(S == interface))
{
static if (__traits(hasMember, S, "DeepElement"))
alias DeepElementType = S.DeepElement;
else
alias DeepElementType = ForeachType!S;
}
/// ditto
alias DeepElementType(S : T[], T) = T;
/+ ARRAY PRIMITIVES +/
pragma(inline, true):
///
bool empty(size_t dim = 0, T)(scope const T[] ar)
if (!dim)
{
return !ar.length;
}
///
version(mir_core_test) unittest
{
assert((int[]).init.empty);
assert(![1].empty!0); // Slice-like API
}
///
ref inout(T) front(size_t dim = 0, T)(scope return inout(T)[] ar)
if (!dim && !is(Unqual!T[] == void[]))
{
assert(ar.length, "Accessing front of an empty array.");
return ar[0];
}
///
version(mir_core_test) unittest
{
assert(*&[3, 4].front == 3); // access be ref
assert([3, 4].front!0 == 3); // Slice-like API
}
///
ref inout(T) back(size_t dim = 0, T)(scope return inout(T)[] ar)
if (!dim && !is(Unqual!T[] == void[]))
{
assert(ar.length, "Accessing back of an empty array.");
return ar[$ - 1];
}
///
version(mir_core_test) unittest
{
assert(*&[3, 4].back == 4); // access be ref
assert([3, 4].back!0 == 4); // Slice-like API
}
///
void popFront(size_t dim = 0, T)(scope ref inout(T)[] ar)
if (!dim && !is(Unqual!T[] == void[]))
{
assert(ar.length, "Evaluating popFront() on an empty array.");
ar = ar[1 .. $];
}
///
version(mir_core_test) unittest
{
auto ar = [3, 4];
ar.popFront;
assert(ar == [4]);
ar.popFront!0; // Slice-like API
assert(ar == []);
}
///
void popBack(size_t dim = 0, T)(scope ref inout(T)[] ar)
if (!dim && !is(Unqual!T[] == void[]))
{
assert(ar.length, "Evaluating popBack() on an empty array.");
ar = ar[0 .. $ - 1];
}
///
version(mir_core_test) unittest
{
auto ar = [3, 4];
ar.popBack;
assert(ar == [3]);
ar.popBack!0; // Slice-like API
assert(ar == []);
}
///
size_t popFrontN(size_t dim = 0, T)(scope ref inout(T)[] ar, size_t n)
if (!dim && !is(Unqual!T[] == void[]))
{
n = ar.length < n ? ar.length : n;
ar = ar[n .. $];
return n;
}
///
version(mir_core_test) unittest
{
auto ar = [3, 4];
ar.popFrontN(1);
assert(ar == [4]);
ar.popFrontN!0(10); // Slice-like API
assert(ar == []);
}
///
size_t popBackN(size_t dim = 0, T)(scope ref inout(T)[] ar, size_t n)
if (!dim && !is(Unqual!T[] == void[]))
{
n = ar.length < n ? ar.length : n;
ar = ar[0 .. $ - n];
return n;
}
///
version(mir_core_test) unittest
{
auto ar = [3, 4];
ar.popBackN(1);
assert(ar == [3]);
ar.popBackN!0(10); // Slice-like API
assert(ar == []);
}
///
void popFrontExactly(size_t dim = 0, T)(scope ref inout(T)[] ar, size_t n)
if (!dim && !is(Unqual!T[] == void[]))
{
assert(ar.length >= n, "Evaluating *.popFrontExactly(n) on an array with length less then n.");
ar = ar[n .. $];
}
///
version(mir_core_test) unittest
{
auto ar = [3, 4, 5];
ar.popFrontExactly(2);
assert(ar == [5]);
ar.popFrontExactly!0(1); // Slice-like API
assert(ar == []);
}
///
void popBackExactly(size_t dim = 0, T)(scope ref inout(T)[] ar, size_t n)
if (!dim && !is(Unqual!T[] == void[]))
{
assert(ar.length >= n, "Evaluating *.popBackExactly(n) on an array with length less then n.");
ar = ar[0 .. $ - n];
}
///
version(mir_core_test) unittest
{
auto ar = [3, 4, 5];
ar.popBackExactly(2);
assert(ar == [3]);
ar.popBackExactly!0(1); // Slice-like API
assert(ar == []);
}
///
size_t length(size_t d : 0, T)(in T[] array)
if (d == 0)
{
return array.length;
}
///
version(mir_core_test) unittest
{
assert([1, 2].length!0 == 2);
assert([1, 2].elementCount == 2);
}
///
inout(T)[] save(T)(scope return inout(T)[] array)
{
return array;
}
///
version(mir_core_test) unittest
{
auto a = [1, 2];
assert(a is a.save);
}
/**
Returns `true` if `R` is an input range. An input range must
define the primitives `empty`, `popFront`, and `front`. The
following code should compile for any input range.
----
R r; // can define a range object
if (r.empty) {} // can test for empty
r.popFront(); // can invoke popFront()
auto h = r.front; // can get the front of the range of non-void type
----
The following are rules of input ranges are assumed to hold true in all
Phobos code. These rules are not checkable at compile-time, so not conforming
to these rules when writing ranges or range based code will result in
undefined behavior.
$(UL
$(LI `r.empty` returns `false` if and only if there is more data
available in the range.)
$(LI `r.empty` evaluated multiple times, without calling
`r.popFront`, or otherwise mutating the range object or the
underlying data, yields the same result for every evaluation.)
$(LI `r.front` returns the current element in the range.
It may return by value or by reference.)
$(LI `r.front` can be legally evaluated if and only if evaluating
`r.empty` has, or would have, equaled `false`.)
$(LI `r.front` evaluated multiple times, without calling
`r.popFront`, or otherwise mutating the range object or the
underlying data, yields the same result for every evaluation.)
$(LI `r.popFront` advances to the next element in the range.)
$(LI `r.popFront` can be called if and only if evaluating `r.empty`
has, or would have, equaled `false`.)
)
Also, note that Phobos code assumes that the primitives `r.front` and
`r.empty` are $(BIGOH 1) time complexity wise or "cheap" in terms of
running time. $(BIGOH) statements in the documentation of range functions
are made with this assumption.
Params:
R = type to be tested
Returns:
`true` if R is an input range, `false` if not
*/
enum bool isInputRange(R) =
is(typeof(R.init) == R)
&& is(ReturnType!((R r) => r.empty) == bool)
&& is(typeof((return ref R r) => r.front))
&& !is(ReturnType!((R r) => r.front) == void)
&& is(typeof((R r) => r.popFront));
/**
Returns `true` if `R` is an infinite input range. An
infinite input range is an input range that has a statically-defined
enumerated member called `empty` that is always `false`,
for example:
----
struct MyInfiniteRange
{
enum bool empty = false;
...
}
----
*/
template isInfinite(R)
{
static if (isInputRange!R && __traits(compiles, { enum e = R.empty; }))
enum bool isInfinite = !R.empty;
else
enum bool isInfinite = false;
}
/**
The element type of `R`. `R` does not have to be a range. The
element type is determined as the type yielded by `r.front` for an
object `r` of type `R`. For example, `ElementType!(T[])` is
`T` if `T[]` isn't a narrow string; if it is, the element type is
`dchar`. If `R` doesn't have `front`, `ElementType!R` is
`void`.
*/
template ElementType(R)
{
static if (is(typeof(R.init.front.init) T))
alias ElementType = T;
else
alias ElementType = void;
}
/++
This is a best-effort implementation of `length` for any kind of
range.
If `hasLength!Range`, simply returns `range.length` without
checking `upTo` (when specified).
Otherwise, walks the range through its length and returns the number
of elements seen. Performes $(BIGOH n) evaluations of `range.empty`
and `range.popFront()`, where `n` is the effective length of $(D
range).
+/
auto walkLength(Range)(Range range)
if (isIterable!Range && !isInfinite!Range)
{
static if (hasLength!Range)
return range.length;
else
static if (__traits(hasMember, Range, "walkLength"))
return range.walkLength;
static if (isInputRange!Range)
{
size_t result;
for ( ; !range.empty ; range.popFront() )
++result;
return result;
}
else
{
size_t result;
foreach (ref e; range)
++result;
return result;
}
}
/++
Returns `true` if `R` is an output range for elements of type
`E`. An output range is defined functionally as a range that
supports the operation $(D r.put(e)).
+/
enum bool isOutputRange(R, E) =
is(typeof(R.init.put(E.init)));
|