1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
"""
Pattern discovery involves the identification of musical patterns (i.e. short
fragments or melodic ideas that repeat at least twice) both from audio and
symbolic representations. The metrics used to evaluate pattern discovery
systems attempt to quantify the ability of the algorithm to not only determine
the present patterns in a piece, but also to find all of their occurrences.
Based on the methods described here:
T. Collins. MIREX task: Discovery of repeated themes & sections.
http://www.music-ir.org/mirex/wiki/2013:Discovery_of_Repeated_Themes_&_Sections,
2013.
Conventions
-----------
The input format can be automatically generated by calling
:func:`mir_eval.io.load_patterns`. This format is a list of a list of
tuples. The first list collections patterns, each of which is a list of
occurrences, and each occurrence is a list of MIDI onset tuples of
``(onset_time, mid_note)``
A pattern is a list of occurrences. The first occurrence must be the prototype
of that pattern (i.e. the most representative of all the occurrences). An
occurrence is a list of tuples containing the onset time and the midi note
number.
Metrics
-------
* :func:`mir_eval.pattern.standard_FPR`: Strict metric in order to find the
possibly transposed patterns of exact length. This is the only metric that
considers transposed patterns.
* :func:`mir_eval.pattern.establishment_FPR`: Evaluates the amount of patterns
that were successfully identified by the estimated results, no matter how
many occurrences they found. In other words, this metric captures how the
algorithm successfully *established* that a pattern repeated at least twice,
and this pattern is also found in the reference annotation.
* :func:`mir_eval.pattern.occurrence_FPR`: Evaluation of how well an estimation
can effectively identify all the occurrences of the found patterns,
independently of how many patterns have been discovered. This metric has a
threshold parameter that indicates how similar two occurrences must be in
order to be considered equal. In MIREX, this evaluation is run twice, with
thresholds .75 and .5.
* :func:`mir_eval.pattern.three_layer_FPR`: Aims to evaluate the general
similarity between the reference and the estimations, combining both the
establishment of patterns and the retrieval of its occurrences in a single F1
score.
* :func:`mir_eval.pattern.first_n_three_layer_P`: Computes the three-layer
precision for the first N patterns only in order to measure the ability of
the algorithm to sort the identified patterns based on their relevance.
* :func:`mir_eval.pattern.first_n_target_proportion_R`: Computes the target
proportion recall for the first N patterns only in order to measure the
ability of the algorithm to sort the identified patterns based on their
relevance.
"""
import numpy as np
from . import util
import warnings
import collections
def _n_onset_midi(patterns):
"""Compute the number of onset_midi objects in a pattern
Parameters
----------
patterns
A list of patterns using the format returned by
:func:`mir_eval.io.load_patterns()`
Returns
-------
n_onsets : int
Number of onsets within the pattern.
"""
return len([o_m for pat in patterns for occ in pat for o_m in occ])
def validate(reference_patterns, estimated_patterns):
"""Check that the input annotations to a metric look like valid pattern
lists, and throws helpful errors if not.
Parameters
----------
reference_patterns : list
The reference patterns using the format returned by
:func:`mir_eval.io.load_patterns()`
estimated_patterns : list
The estimated patterns in the same format
"""
# Warn if pattern lists are empty
if _n_onset_midi(reference_patterns) == 0:
warnings.warn("Reference patterns are empty.")
if _n_onset_midi(estimated_patterns) == 0:
warnings.warn("Estimated patterns are empty.")
for patterns in [reference_patterns, estimated_patterns]:
for pattern in patterns:
if len(pattern) <= 0:
raise ValueError(
"Each pattern must contain at least one " "occurrence."
)
for occurrence in pattern:
for onset_midi in occurrence:
if len(onset_midi) != 2:
raise ValueError(
"The (onset, midi) tuple must "
"contain exactly 2 elements."
)
def _occurrence_intersection(occ_P, occ_Q):
"""Compute the intersection between two occurrences.
Parameters
----------
occ_P : list of tuples
(onset, midi) pairs representing the reference occurrence.
occ_Q : list
second list of (onset, midi) tuples
Returns
-------
S : set
Set of the intersection between occ_P and occ_Q.
"""
set_P = {tuple(onset_midi) for onset_midi in occ_P}
set_Q = {tuple(onset_midi) for onset_midi in occ_Q}
return set_P & set_Q # Return the intersection
def _compute_score_matrix(P, Q, similarity_metric="cardinality_score"):
"""Compute the score matrix between the patterns P and Q.
Parameters
----------
P : list
Pattern containing a list of occurrences.
Q : list
Pattern containing a list of occurrences.
similarity_metric : str
A string representing the metric to be used
when computing the similarity matrix. Accepted values:
- "cardinality_score":
Count of the intersection between occurrences.
(Default value = "cardinality_score")
Returns
-------
sm : np.array
The score matrix between P and Q using the similarity_metric.
"""
sm = np.zeros((len(P), len(Q))) # The score matrix
for iP, occ_P in enumerate(P):
for iQ, occ_Q in enumerate(Q):
if similarity_metric == "cardinality_score":
denom = float(np.max([len(occ_P), len(occ_Q)]))
# Compute the score
sm[iP, iQ] = len(_occurrence_intersection(occ_P, occ_Q)) / denom
# TODO: More scores: 'normalised matching socre'
else:
raise ValueError(
"The similarity metric (%s) can only be: " "'cardinality_score'."
)
return sm
def standard_FPR(reference_patterns, estimated_patterns, tol=1e-5):
"""Compute the standard F1 Score, Precision and Recall.
This metric checks if the prototype patterns of the reference match
possible translated patterns in the prototype patterns of the estimations.
Since the sizes of these prototypes must be equal, this metric is quite
restrictive and it tends to be 0 in most of 2013 MIREX results.
Examples
--------
>>> ref_patterns = mir_eval.io.load_patterns("ref_pattern.txt")
>>> est_patterns = mir_eval.io.load_patterns("est_pattern.txt")
>>> F, P, R = mir_eval.pattern.standard_FPR(ref_patterns, est_patterns)
Parameters
----------
reference_patterns : list
The reference patterns using the format returned by
:func:`mir_eval.io.load_patterns()`
estimated_patterns : list
The estimated patterns in the same format
tol : float
Tolerance level when comparing reference against estimation.
Default parameter is the one found in the original matlab code by
Tom Collins used for MIREX 2013.
(Default value = 1e-5)
Returns
-------
f_measure : float
The standard F1 Score
precision : float
The standard Precision
recall : float
The standard Recall
"""
validate(reference_patterns, estimated_patterns)
nP = len(reference_patterns) # Number of patterns in the reference
nQ = len(estimated_patterns) # Number of patterns in the estimation
k = 0 # Number of patterns that match
# If no patterns were provided, metric is zero
if _n_onset_midi(reference_patterns) == 0 or _n_onset_midi(estimated_patterns) == 0:
return 0.0, 0.0, 0.0
# Find matches of the prototype patterns
for ref_pattern in reference_patterns:
P = np.asarray(ref_pattern[0]) # Get reference prototype
for est_pattern in estimated_patterns:
Q = np.asarray(est_pattern[0]) # Get estimation prototype
if len(P) != len(Q):
continue
# Check transposition given a certain tolerance
if len(P) == len(Q) == 1 or np.max(np.abs(np.diff(P - Q, axis=0))) < tol:
k += 1
break
# Compute the standard measures
precision = k / float(nQ)
recall = k / float(nP)
f_measure = util.f_measure(precision, recall)
return f_measure, precision, recall
def establishment_FPR(
reference_patterns, estimated_patterns, similarity_metric="cardinality_score"
):
"""Compute the establishment F1 Score, Precision and Recall.
Examples
--------
>>> ref_patterns = mir_eval.io.load_patterns("ref_pattern.txt")
>>> est_patterns = mir_eval.io.load_patterns("est_pattern.txt")
>>> F, P, R = mir_eval.pattern.establishment_FPR(ref_patterns,
... est_patterns)
Parameters
----------
reference_patterns : list
The reference patterns in the format returned by
:func:`mir_eval.io.load_patterns()`
estimated_patterns : list
The estimated patterns in the same format
similarity_metric : str
A string representing the metric to be used when computing the
similarity matrix. Accepted values:
- "cardinality_score": Count of the intersection
between occurrences.
(Default value = "cardinality_score")
Returns
-------
f_measure : float
The establishment F1 Score
precision : float
The establishment Precision
recall : float
The establishment Recall
"""
validate(reference_patterns, estimated_patterns)
nP = len(reference_patterns) # Number of elements in reference
nQ = len(estimated_patterns) # Number of elements in estimation
S = np.zeros((nP, nQ)) # Establishment matrix
# If no patterns were provided, metric is zero
if _n_onset_midi(reference_patterns) == 0 or _n_onset_midi(estimated_patterns) == 0:
return 0.0, 0.0, 0.0
for iP, ref_pattern in enumerate(reference_patterns):
for iQ, est_pattern in enumerate(estimated_patterns):
s = _compute_score_matrix(ref_pattern, est_pattern, similarity_metric)
S[iP, iQ] = np.max(s)
# Compute scores
precision = np.mean(np.max(S, axis=0))
recall = np.mean(np.max(S, axis=1))
f_measure = util.f_measure(precision, recall)
return f_measure, precision, recall
def occurrence_FPR(
reference_patterns,
estimated_patterns,
thres=0.75,
similarity_metric="cardinality_score",
):
"""Compute the occurrence F1 Score, Precision and Recall.
Examples
--------
>>> ref_patterns = mir_eval.io.load_patterns("ref_pattern.txt")
>>> est_patterns = mir_eval.io.load_patterns("est_pattern.txt")
>>> F, P, R = mir_eval.pattern.occurrence_FPR(ref_patterns,
... est_patterns)
Parameters
----------
reference_patterns : list
The reference patterns in the format returned by
:func:`mir_eval.io.load_patterns()`
estimated_patterns : list
The estimated patterns in the same format
thres : float
How similar two occurrences must be in order to be considered
equal
(Default value = .75)
similarity_metric : str
A string representing the metric to be used
when computing the similarity matrix. Accepted values:
- "cardinality_score": Count of the intersection
between occurrences.
(Default value = "cardinality_score")
Returns
-------
f_measure : float
The occurrence F1 Score
precision : float
The occurrence Precision
recall : float
The occurrence Recall
"""
validate(reference_patterns, estimated_patterns)
# Number of elements in reference
nP = len(reference_patterns)
# Number of elements in estimation
nQ = len(estimated_patterns)
# Occurrence matrix with Precision and recall in its last dimension
O_PR = np.zeros((nP, nQ, 2))
# Index of the values that are greater than the specified threshold
rel_idx = np.empty((0, 2), dtype=int)
# If no patterns were provided, metric is zero
if _n_onset_midi(reference_patterns) == 0 or _n_onset_midi(estimated_patterns) == 0:
return 0.0, 0.0, 0.0
for iP, ref_pattern in enumerate(reference_patterns):
for iQ, est_pattern in enumerate(estimated_patterns):
s = _compute_score_matrix(ref_pattern, est_pattern, similarity_metric)
if np.max(s) >= thres:
O_PR[iP, iQ, 0] = np.mean(np.max(s, axis=0))
O_PR[iP, iQ, 1] = np.mean(np.max(s, axis=1))
rel_idx = np.vstack((rel_idx, [iP, iQ]))
# Compute the scores
if len(rel_idx) == 0:
precision = 0
recall = 0
else:
P = O_PR[:, :, 0]
precision = np.mean(np.max(P[np.ix_(rel_idx[:, 0], rel_idx[:, 1])], axis=0))
R = O_PR[:, :, 1]
recall = np.mean(np.max(R[np.ix_(rel_idx[:, 0], rel_idx[:, 1])], axis=1))
f_measure = util.f_measure(precision, recall)
return f_measure, precision, recall
def three_layer_FPR(reference_patterns, estimated_patterns):
"""Three Layer F1 Score, Precision and Recall. As described by Meridith.
Examples
--------
>>> ref_patterns = mir_eval.io.load_patterns("ref_pattern.txt")
>>> est_patterns = mir_eval.io.load_patterns("est_pattern.txt")
>>> F, P, R = mir_eval.pattern.three_layer_FPR(ref_patterns,
... est_patterns)
Parameters
----------
reference_patterns : list
The reference patterns in the format returned by
:func:`mir_eval.io.load_patterns()`
estimated_patterns : list
The estimated patterns in the same format
Returns
-------
f_measure : float
The three-layer F1 Score
precision : float
The three-layer Precision
recall : float
The three-layer Recall
"""
validate(reference_patterns, estimated_patterns)
def compute_first_layer_PR(ref_occs, est_occs):
"""Compute the first layer Precision and Recall values given the
set of occurrences in the reference and the set of occurrences in the
estimation.
Parameters
----------
ref_occs
est_occs
Returns
-------
precision
recall
"""
# Find the length of the intersection between reference and estimation
s = len(_occurrence_intersection(ref_occs, est_occs))
# Compute the first layer scores
precision = s / float(len(ref_occs))
recall = s / float(len(est_occs))
return precision, recall
def compute_second_layer_PR(ref_pattern, est_pattern):
"""Compute the second layer Precision and Recall values given the
set of occurrences in the reference and the set of occurrences in the
estimation.
Parameters
----------
ref_pattern
est_pattern
Returns
-------
precision
recall
"""
# Compute the first layer scores
F_1 = compute_layer(ref_pattern, est_pattern)
# Compute the second layer scores
precision = np.mean(np.max(F_1, axis=0))
recall = np.mean(np.max(F_1, axis=1))
return precision, recall
def compute_layer(ref_elements, est_elements, layer=1):
"""Compute the F-measure matrix for a given layer. The reference and
estimated elements can be either patterns or occurrences, depending
on the layer.
For layer 1, the elements must be occurrences.
For layer 2, the elements must be patterns.
Parameters
----------
ref_elements
est_elements
layer
(Default value = 1)
Returns
-------
F : F-measure for the given layer
"""
if layer != 1 and layer != 2:
raise ValueError("Layer (%d) must be an integer between 1 and 2" % layer)
nP = len(ref_elements) # Number of elements in reference
nQ = len(est_elements) # Number of elements in estimation
F = np.zeros((nP, nQ)) # F-measure matrix for the given layer
for iP in range(nP):
for iQ in range(nQ):
if layer == 1:
func = compute_first_layer_PR
elif layer == 2:
func = compute_second_layer_PR
# Compute layer scores
precision, recall = func(ref_elements[iP], est_elements[iQ])
F[iP, iQ] = util.f_measure(precision, recall)
return F
# If no patterns were provided, metric is zero
if _n_onset_midi(reference_patterns) == 0 or _n_onset_midi(estimated_patterns) == 0:
return 0.0, 0.0, 0.0
# Compute the second layer (it includes the first layer)
F_2 = compute_layer(reference_patterns, estimated_patterns, layer=2)
# Compute the final scores (third layer)
precision_3 = np.mean(np.max(F_2, axis=0))
recall_3 = np.mean(np.max(F_2, axis=1))
f_measure_3 = util.f_measure(precision_3, recall_3)
return f_measure_3, precision_3, recall_3
def first_n_three_layer_P(reference_patterns, estimated_patterns, n=5):
"""First n three-layer precision.
This metric is basically the same as the three-layer FPR but it is only
applied to the first n estimated patterns, and it only returns the
precision. In MIREX and typically, n = 5.
Examples
--------
>>> ref_patterns = mir_eval.io.load_patterns("ref_pattern.txt")
>>> est_patterns = mir_eval.io.load_patterns("est_pattern.txt")
>>> P = mir_eval.pattern.first_n_three_layer_P(ref_patterns,
... est_patterns, n=5)
Parameters
----------
reference_patterns : list
The reference patterns in the format returned by
:func:`mir_eval.io.load_patterns()`
estimated_patterns : list
The estimated patterns in the same format
n : int
Number of patterns to consider from the estimated results, in
the order they appear in the matrix
(Default value = 5)
Returns
-------
precision : float
The first n three-layer Precision
"""
validate(reference_patterns, estimated_patterns)
# If no patterns were provided, metric is zero
if _n_onset_midi(reference_patterns) == 0 or _n_onset_midi(estimated_patterns) == 0:
return 0.0, 0.0, 0.0
# Get only the first n patterns from the estimated results
fn_est_patterns = estimated_patterns[: min(len(estimated_patterns), n)]
# Compute the three-layer scores for the first n estimated patterns
F, P, R = three_layer_FPR(reference_patterns, fn_est_patterns)
return P # Return the precision only
def first_n_target_proportion_R(reference_patterns, estimated_patterns, n=5):
"""First n target proportion establishment recall metric.
This metric is similar is similar to the establishment FPR score, but it
only takes into account the first n estimated patterns and it only
outputs the Recall value of it.
Examples
--------
>>> ref_patterns = mir_eval.io.load_patterns("ref_pattern.txt")
>>> est_patterns = mir_eval.io.load_patterns("est_pattern.txt")
>>> R = mir_eval.pattern.first_n_target_proportion_R(
... ref_patterns, est_patterns, n=5)
Parameters
----------
reference_patterns : list
The reference patterns in the format returned by
:func:`mir_eval.io.load_patterns()`
estimated_patterns : list
The estimated patterns in the same format
n : int
Number of patterns to consider from the estimated results, in
the order they appear in the matrix.
(Default value = 5)
Returns
-------
recall : float
The first n target proportion Recall.
"""
validate(reference_patterns, estimated_patterns)
# If no patterns were provided, metric is zero
if _n_onset_midi(reference_patterns) == 0 or _n_onset_midi(estimated_patterns) == 0:
return 0.0, 0.0, 0.0
# Get only the first n patterns from the estimated results
fn_est_patterns = estimated_patterns[: min(len(estimated_patterns), n)]
F, P, R = establishment_FPR(reference_patterns, fn_est_patterns)
return R
def evaluate(ref_patterns, est_patterns, **kwargs):
"""Load data and perform the evaluation.
Examples
--------
>>> ref_patterns = mir_eval.io.load_patterns("ref_pattern.txt")
>>> est_patterns = mir_eval.io.load_patterns("est_pattern.txt")
>>> scores = mir_eval.pattern.evaluate(ref_patterns, est_patterns)
Parameters
----------
ref_patterns : list
The reference patterns in the format returned by
:func:`mir_eval.io.load_patterns()`
est_patterns : list
The estimated patterns in the same format
**kwargs
Additional keyword arguments which will be passed to the
appropriate metric or preprocessing functions.
Returns
-------
scores : dict
Dictionary of scores, where the key is the metric name (str) and
the value is the (float) score achieved.
"""
# Compute all the metrics
scores = collections.OrderedDict()
# Standard scores
scores["F"], scores["P"], scores["R"] = util.filter_kwargs(
standard_FPR, ref_patterns, est_patterns, **kwargs
)
# Establishment scores
scores["F_est"], scores["P_est"], scores["R_est"] = util.filter_kwargs(
establishment_FPR, ref_patterns, est_patterns, **kwargs
)
# Occurrence scores
# Force these values for thresh
kwargs["thresh"] = 0.5
scores["F_occ.5"], scores["P_occ.5"], scores["R_occ.5"] = util.filter_kwargs(
occurrence_FPR, ref_patterns, est_patterns, **kwargs
)
kwargs["thresh"] = 0.75
scores["F_occ.75"], scores["P_occ.75"], scores["R_occ.75"] = util.filter_kwargs(
occurrence_FPR, ref_patterns, est_patterns, **kwargs
)
# Three-layer scores
scores["F_3"], scores["P_3"], scores["R_3"] = util.filter_kwargs(
three_layer_FPR, ref_patterns, est_patterns, **kwargs
)
# First Five Patterns scores
# Set default value of n
if "n" not in kwargs:
kwargs["n"] = 5
scores["FFP"] = util.filter_kwargs(
first_n_three_layer_P, ref_patterns, est_patterns, **kwargs
)
scores["FFTP_est"] = util.filter_kwargs(
first_n_target_proportion_R, ref_patterns, est_patterns, **kwargs
)
return scores
|