File: segment.py

package info (click to toggle)
mir-eval 0.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,784 kB
  • sloc: python: 8,364; javascript: 261; makefile: 154
file content (1296 lines) | stat: -rw-r--r-- 46,806 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
# CREATED:2013-08-13 12:02:42 by Brian McFee <brm2132@columbia.edu>
"""
Evaluation criteria for structural segmentation fall into two categories:
boundary annotation and structural annotation.  Boundary annotation is the task
of predicting the times at which structural changes occur, such as when a verse
transitions to a refrain.  Metrics for boundary annotation compare estimated
segment boundaries to reference boundaries.  Structural annotation is the task
of assigning labels to detected segments.  The estimated labels may be
arbitrary strings - such as A, B, C, - and they need not describe functional
concepts.  Metrics for structural annotation are similar to those used for
clustering data.

Conventions
-----------

Both boundary and structural annotation metrics require two dimensional arrays
with two columns, one for boundary start times and one for boundary end times.
Structural annotation further require lists of reference and estimated segment
labels which must have a length which is equal to the number of rows in the
corresponding list of boundary edges.  In both tasks, we assume that
annotations express a partitioning of the track into intervals.  The function
:func:`mir_eval.util.adjust_intervals` can be used to pad or crop the segment
boundaries to span the duration of the entire track.


Metrics
-------

* :func:`mir_eval.segment.detection`: An estimated boundary is considered
  correct if it falls within a window around a reference boundary
  [#turnbull2007]_
* :func:`mir_eval.segment.deviation`: Computes the median absolute time
  difference from a reference boundary to its nearest estimated boundary, and
  vice versa [#turnbull2007]_
* :func:`mir_eval.segment.pairwise`: For classifying pairs of sampled time
  instants as belonging to the same structural component [#levy2008]_
* :func:`mir_eval.segment.rand_index`: Clusters reference and estimated
  annotations and compares them by the Rand Index
* :func:`mir_eval.segment.ari`: Computes the Rand index, adjusted for chance
* :func:`mir_eval.segment.nce`: Interprets sampled reference and estimated
  labels as samples of random variables :math:`Y_R, Y_E` from which the
  conditional entropy of :math:`Y_R` given :math:`Y_E` (Under-Segmentation) and
  :math:`Y_E` given :math:`Y_R` (Over-Segmentation) are estimated
  [#lukashevich2008]_
* :func:`mir_eval.segment.mutual_information`: Computes the standard,
  normalized, and adjusted mutual information of sampled reference and
  estimated segments
* :func:`mir_eval.segment.vmeasure`: Computes the V-Measure, which is similar
  to the conditional entropy metrics, but uses the marginal distributions
  as normalization rather than the maximum entropy distribution
  [#rosenberg2007]_


References
----------
    .. [#turnbull2007] Turnbull, D., Lanckriet, G. R., Pampalk, E.,
        & Goto, M.  A Supervised Approach for Detecting Boundaries in Music
        Using Difference Features and Boosting. In ISMIR (pp. 51-54).

    .. [#levy2008] Levy, M., & Sandler, M.
        Structural segmentation of musical audio by constrained clustering.
        IEEE transactions on audio, speech, and language processing, 16(2),
        318-326.

    .. [#lukashevich2008] Lukashevich, H. M.
        Towards Quantitative Measures of Evaluating Song Segmentation.
        In ISMIR (pp. 375-380).

    .. [#rosenberg2007] Rosenberg, A., & Hirschberg, J.
        V-Measure: A Conditional Entropy-Based External Cluster Evaluation
        Measure.
        In EMNLP-CoNLL (Vol. 7, pp. 410-420).
"""

import collections
import warnings

import numpy as np
import scipy.stats
import scipy.sparse
import scipy.special

from . import util


def validate_boundary(reference_intervals, estimated_intervals, trim):
    """Check that the input annotations to a segment boundary estimation
    metric (i.e. one that only takes in segment intervals) look like valid
    segment times, and throws helpful errors if not.

    Parameters
    ----------
    reference_intervals : np.ndarray, shape=(n, 2)
        reference segment intervals, in the format returned by
        :func:`mir_eval.io.load_intervals` or
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_intervals : np.ndarray, shape=(m, 2)
        estimated segment intervals, in the format returned by
        :func:`mir_eval.io.load_intervals` or
        :func:`mir_eval.io.load_labeled_intervals`.
    trim : bool
        will the start and end events be trimmed?
    """
    if trim:
        # If we're trimming, then we need at least 2 intervals
        min_size = 2
    else:
        # If we're not trimming, then we only need one interval
        min_size = 1

    if len(reference_intervals) < min_size:
        warnings.warn("Reference intervals are empty.")

    if len(estimated_intervals) < min_size:
        warnings.warn("Estimated intervals are empty.")

    for intervals in [reference_intervals, estimated_intervals]:
        util.validate_intervals(intervals)


def validate_structure(
    reference_intervals, reference_labels, estimated_intervals, estimated_labels
):
    """Check that the input annotations to a structure estimation metric (i.e.
    one that takes in both segment boundaries and their labels) look like valid
    segment times and labels, and throws helpful errors if not.

    Parameters
    ----------
    reference_intervals : np.ndarray, shape=(n, 2)
        reference segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    reference_labels : list, shape=(n,)
        reference segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_intervals : np.ndarray, shape=(m, 2)
        estimated segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_labels : list, shape=(m,)
        estimated segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.

    """
    for intervals, labels in [
        (reference_intervals, reference_labels),
        (estimated_intervals, estimated_labels),
    ]:
        util.validate_intervals(intervals)
        if intervals.shape[0] != len(labels):
            raise ValueError("Number of intervals does not match number " "of labels")

        # Check only when intervals are non-empty
        if intervals.size > 0:
            # Make sure intervals start at 0
            if not np.allclose(intervals.min(), 0.0):
                raise ValueError("Segment intervals do not start at 0")

    if reference_intervals.size == 0:
        warnings.warn("Reference intervals are empty.")
    if estimated_intervals.size == 0:
        warnings.warn("Estimated intervals are empty.")
    # Check only when intervals are non-empty
    if reference_intervals.size > 0 and estimated_intervals.size > 0:
        if not np.allclose(reference_intervals.max(), estimated_intervals.max()):
            raise ValueError("End times do not match")


def detection(
    reference_intervals, estimated_intervals, window=0.5, beta=1.0, trim=False
):
    """Boundary detection hit-rate.

    A hit is counted whenever an reference boundary is within ``window`` of a
    estimated boundary.  Note that each boundary is matched at most once: this
    is achieved by computing the size of a maximal matching between reference
    and estimated boundary points, subject to the window constraint.

    Examples
    --------
    >>> ref_intervals, _ = mir_eval.io.load_labeled_intervals('ref.lab')
    >>> est_intervals, _ = mir_eval.io.load_labeled_intervals('est.lab')
    >>> # With 0.5s windowing
    >>> P05, R05, F05 = mir_eval.segment.detection(ref_intervals,
    ...                                            est_intervals,
    ...                                            window=0.5)
    >>> # With 3s windowing
    >>> P3, R3, F3 = mir_eval.segment.detection(ref_intervals,
    ...                                         est_intervals,
    ...                                         window=3)
    >>> # Ignoring hits for the beginning and end of track
    >>> P, R, F = mir_eval.segment.detection(ref_intervals,
    ...                                      est_intervals,
    ...                                      window=0.5,
    ...                                      trim=True)

    Parameters
    ----------
    reference_intervals : np.ndarray, shape=(n, 2)
        reference segment intervals, in the format returned by
        :func:`mir_eval.io.load_intervals` or
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_intervals : np.ndarray, shape=(m, 2)
        estimated segment intervals, in the format returned by
        :func:`mir_eval.io.load_intervals` or
        :func:`mir_eval.io.load_labeled_intervals`.
    window : float > 0
        size of the window of 'correctness' around ground-truth beats
        (in seconds)
        (Default value = 0.5)
    beta : float > 0
        weighting constant for F-measure.
        (Default value = 1.0)
    trim : boolean
        if ``True``, the first and last boundary times are ignored.
        Typically, these denote start (0) and end-markers.
        (Default value = False)

    Returns
    -------
    precision : float
        precision of estimated predictions
    recall : float
        recall of reference reference boundaries
    f_measure : float
        F-measure (weighted harmonic mean of ``precision`` and ``recall``)
    """
    validate_boundary(reference_intervals, estimated_intervals, trim)

    # Convert intervals to boundaries
    reference_boundaries = util.intervals_to_boundaries(reference_intervals)
    estimated_boundaries = util.intervals_to_boundaries(estimated_intervals)

    # Suppress the first and last intervals
    if trim:
        reference_boundaries = reference_boundaries[1:-1]
        estimated_boundaries = estimated_boundaries[1:-1]

    # If we have no boundaries, we get no score.
    if len(reference_boundaries) == 0 or len(estimated_boundaries) == 0:
        return 0.0, 0.0, 0.0

    matching = util.match_events(reference_boundaries, estimated_boundaries, window)

    precision = float(len(matching)) / len(estimated_boundaries)
    recall = float(len(matching)) / len(reference_boundaries)

    f_measure = util.f_measure(precision, recall, beta=beta)

    return precision, recall, f_measure


def deviation(reference_intervals, estimated_intervals, trim=False):
    """Compute the median deviations between reference
    and estimated boundary times.

    Examples
    --------
    >>> ref_intervals, _ = mir_eval.io.load_labeled_intervals('ref.lab')
    >>> est_intervals, _ = mir_eval.io.load_labeled_intervals('est.lab')
    >>> r_to_e, e_to_r = mir_eval.boundary.deviation(ref_intervals,
    ...                                              est_intervals)

    Parameters
    ----------
    reference_intervals : np.ndarray, shape=(n, 2)
        reference segment intervals, in the format returned by
        :func:`mir_eval.io.load_intervals` or
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_intervals : np.ndarray, shape=(m, 2)
        estimated segment intervals, in the format returned by
        :func:`mir_eval.io.load_intervals` or
        :func:`mir_eval.io.load_labeled_intervals`.
    trim : boolean
        if ``True``, the first and last intervals are ignored.
        Typically, these denote start (0.0) and end-of-track markers.
        (Default value = False)

    Returns
    -------
    reference_to_estimated : float
        median time from each reference boundary to the
        closest estimated boundary
    estimated_to_reference : float
        median time from each estimated boundary to the
        closest reference boundary
    """
    validate_boundary(reference_intervals, estimated_intervals, trim)

    # Convert intervals to boundaries
    reference_boundaries = util.intervals_to_boundaries(reference_intervals)
    estimated_boundaries = util.intervals_to_boundaries(estimated_intervals)

    # Suppress the first and last intervals
    if trim:
        reference_boundaries = reference_boundaries[1:-1]
        estimated_boundaries = estimated_boundaries[1:-1]

    # If we have no boundaries, we get no score.
    if len(reference_boundaries) == 0 or len(estimated_boundaries) == 0:
        return np.nan, np.nan

    dist = np.abs(np.subtract.outer(reference_boundaries, estimated_boundaries))

    estimated_to_reference = np.median(dist.min(axis=0))
    reference_to_estimated = np.median(dist.min(axis=1))

    return reference_to_estimated, estimated_to_reference


def pairwise(
    reference_intervals,
    reference_labels,
    estimated_intervals,
    estimated_labels,
    frame_size=0.1,
    beta=1.0,
):
    """Frame-clustering segmentation evaluation by pair-wise agreement.

    Examples
    --------
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab')
    >>> (est_intervals,
    ...  est_labels) = mir_eval.io.load_labeled_intervals('est.lab')
    >>> # Trim or pad the estimate to match reference timing
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.util.adjust_intervals(ref_intervals,
    ...                                               ref_labels,
    ...                                               t_min=0)
    >>> (est_intervals,
    ...  est_labels) = mir_eval.util.adjust_intervals(
    ...     est_intervals, est_labels, t_min=0, t_max=ref_intervals.max())
    >>> precision, recall, f = mir_eval.structure.pairwise(ref_intervals,
    ...                                                    ref_labels,
    ...                                                    est_intervals,
    ...                                                    est_labels)

    Parameters
    ----------
    reference_intervals : np.ndarray, shape=(n, 2)
        reference segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    reference_labels : list, shape=(n,)
        reference segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_intervals : np.ndarray, shape=(m, 2)
        estimated segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_labels : list, shape=(m,)
        estimated segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    frame_size : float > 0
        length (in seconds) of frames for clustering
        (Default value = 0.1)
    beta : float > 0
        beta value for F-measure
        (Default value = 1.0)

    Returns
    -------
    precision : float > 0
        Precision of detecting whether frames belong in the same cluster
    recall : float > 0
        Recall of detecting whether frames belong in the same cluster
    f : float > 0
        F-measure of detecting whether frames belong in the same cluster

    """
    validate_structure(
        reference_intervals, reference_labels, estimated_intervals, estimated_labels
    )

    # Check for empty annotations.  Don't need to check labels because
    # validate_structure makes sure they're the same size as intervals
    if reference_intervals.size == 0 or estimated_intervals.size == 0:
        return 0.0, 0.0, 0.0

    # Generate the cluster labels
    y_ref = util.intervals_to_samples(
        reference_intervals, reference_labels, sample_size=frame_size
    )[-1]

    y_ref = util.index_labels(y_ref)[0]

    # Map to index space
    y_est = util.intervals_to_samples(
        estimated_intervals, estimated_labels, sample_size=frame_size
    )[-1]

    y_est = util.index_labels(y_est)[0]

    # Build the reference label agreement matrix
    agree_ref = np.equal.outer(y_ref, y_ref)
    # Count the unique pairs
    n_agree_ref = (agree_ref.sum() - len(y_ref)) / 2.0

    # Repeat for estimate
    agree_est = np.equal.outer(y_est, y_est)
    n_agree_est = (agree_est.sum() - len(y_est)) / 2.0

    # Find where they agree
    matches = np.logical_and(agree_ref, agree_est)
    n_matches = (matches.sum() - len(y_ref)) / 2.0

    precision = n_matches / n_agree_est
    recall = n_matches / n_agree_ref
    f_measure = util.f_measure(precision, recall, beta=beta)

    return precision, recall, f_measure


def rand_index(
    reference_intervals,
    reference_labels,
    estimated_intervals,
    estimated_labels,
    frame_size=0.1,
    beta=1.0,
):
    """(Non-adjusted) Rand index.

    Examples
    --------
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab')
    >>> (est_intervals,
    ...  est_labels) = mir_eval.io.load_labeled_intervals('est.lab')
    >>> # Trim or pad the estimate to match reference timing
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.util.adjust_intervals(ref_intervals,
    ...                                               ref_labels,
    ...                                               t_min=0)
    >>> (est_intervals,
    ...  est_labels) = mir_eval.util.adjust_intervals(
    ...     est_intervals, est_labels, t_min=0, t_max=ref_intervals.max())
    >>> rand_index = mir_eval.structure.rand_index(ref_intervals,
    ...                                            ref_labels,
    ...                                            est_intervals,
    ...                                            est_labels)

    Parameters
    ----------
    reference_intervals : np.ndarray, shape=(n, 2)
        reference segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    reference_labels : list, shape=(n,)
        reference segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_intervals : np.ndarray, shape=(m, 2)
        estimated segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_labels : list, shape=(m,)
        estimated segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    frame_size : float > 0
        length (in seconds) of frames for clustering
        (Default value = 0.1)
    beta : float > 0
        beta value for F-measure
        (Default value = 1.0)

    Returns
    -------
    rand_index : float > 0
        Rand index
    """
    validate_structure(
        reference_intervals, reference_labels, estimated_intervals, estimated_labels
    )

    # Check for empty annotations.  Don't need to check labels because
    # validate_structure makes sure they're the same size as intervals
    if reference_intervals.size == 0 or estimated_intervals.size == 0:
        return 0.0, 0.0, 0.0

    # Generate the cluster labels
    y_ref = util.intervals_to_samples(
        reference_intervals, reference_labels, sample_size=frame_size
    )[-1]

    y_ref = util.index_labels(y_ref)[0]

    # Map to index space
    y_est = util.intervals_to_samples(
        estimated_intervals, estimated_labels, sample_size=frame_size
    )[-1]

    y_est = util.index_labels(y_est)[0]

    # Build the reference label agreement matrix
    agree_ref = np.equal.outer(y_ref, y_ref)

    # Repeat for estimate
    agree_est = np.equal.outer(y_est, y_est)

    # Find where they agree
    matches_pos = np.logical_and(agree_ref, agree_est)

    # Find where they disagree
    matches_neg = np.logical_and(~agree_ref, ~agree_est)

    n_pairs = len(y_ref) * (len(y_ref) - 1) / 2.0

    n_matches_pos = (matches_pos.sum() - len(y_ref)) / 2.0
    n_matches_neg = matches_neg.sum() / 2.0
    rand = (n_matches_pos + n_matches_neg) / n_pairs

    return rand


def _contingency_matrix(reference_indices, estimated_indices):
    """Compute the contingency matrix of a true labeling vs an estimated one.

    Parameters
    ----------
    reference_indices : np.ndarray
        Array of reference indices
    estimated_indices : np.ndarray
        Array of estimated indices

    Returns
    -------
    contingency_matrix : np.ndarray
        Contingency matrix, shape=(#reference indices, #estimated indices)
    .. note:: Based on sklearn.metrics.cluster.contingency_matrix

    """
    ref_classes, ref_class_idx = np.unique(reference_indices, return_inverse=True)
    est_classes, est_class_idx = np.unique(estimated_indices, return_inverse=True)
    n_ref_classes = ref_classes.shape[0]
    n_est_classes = est_classes.shape[0]
    # Using coo_matrix is faster than histogram2d
    return scipy.sparse.coo_matrix(
        (np.ones(ref_class_idx.shape[0]), (ref_class_idx, est_class_idx)),
        shape=(n_ref_classes, n_est_classes),
        dtype=np.int64,
    ).toarray()


def _adjusted_rand_index(reference_indices, estimated_indices):
    """Compute the Rand index, adjusted for change.

    Parameters
    ----------
    reference_indices : np.ndarray
        Array of reference indices
    estimated_indices : np.ndarray
        Array of estimated indices

    Returns
    -------
    ari : float
        Adjusted Rand index
    .. note:: Based on sklearn.metrics.cluster.adjusted_rand_score

    """
    n_samples = len(reference_indices)
    ref_classes = np.unique(reference_indices)
    est_classes = np.unique(estimated_indices)
    # Special limit cases: no clustering since the data is not split;
    # or trivial clustering where each document is assigned a unique cluster.
    # These are perfect matches hence return 1.0.
    if (
        ref_classes.shape[0] == est_classes.shape[0] == 1
        or ref_classes.shape[0] == est_classes.shape[0] == 0
        or (ref_classes.shape[0] == est_classes.shape[0] == len(reference_indices))
    ):
        return 1.0

    contingency = _contingency_matrix(reference_indices, estimated_indices)

    # Compute the ARI using the contingency data
    sum_comb_c = sum(
        scipy.special.comb(n_c, 2, exact=1) for n_c in contingency.sum(axis=1)
    )
    sum_comb_k = sum(
        scipy.special.comb(n_k, 2, exact=1) for n_k in contingency.sum(axis=0)
    )

    sum_comb = sum(
        scipy.special.comb(n_ij, 2, exact=1) for n_ij in contingency.flatten()
    )
    prod_comb = (sum_comb_c * sum_comb_k) / float(scipy.special.comb(n_samples, 2))
    mean_comb = (sum_comb_k + sum_comb_c) / 2.0
    return (sum_comb - prod_comb) / (mean_comb - prod_comb)


def ari(
    reference_intervals,
    reference_labels,
    estimated_intervals,
    estimated_labels,
    frame_size=0.1,
):
    """Compute the Adjusted Rand Index (ARI) for frame clustering segmentation evaluation.

    Examples
    --------
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab')
    >>> (est_intervals,
    ...  est_labels) = mir_eval.io.load_labeled_intervals('est.lab')
    >>> # Trim or pad the estimate to match reference timing
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.util.adjust_intervals(ref_intervals,
    ...                                               ref_labels,
    ...                                               t_min=0)
    >>> (est_intervals,
    ...  est_labels) = mir_eval.util.adjust_intervals(
    ...     est_intervals, est_labels, t_min=0, t_max=ref_intervals.max())
    >>> ari_score = mir_eval.structure.ari(ref_intervals, ref_labels,
    ...                                    est_intervals, est_labels)

    Parameters
    ----------
    reference_intervals : np.ndarray, shape=(n, 2)
        reference segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    reference_labels : list, shape=(n,)
        reference segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_intervals : np.ndarray, shape=(m, 2)
        estimated segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_labels : list, shape=(m,)
        estimated segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    frame_size : float > 0
        length (in seconds) of frames for clustering
        (Default value = 0.1)

    Returns
    -------
    ari_score : float > 0
        Adjusted Rand index between segmentations.

    """
    validate_structure(
        reference_intervals, reference_labels, estimated_intervals, estimated_labels
    )

    # Check for empty annotations.  Don't need to check labels because
    # validate_structure makes sure they're the same size as intervals
    if reference_intervals.size == 0 or estimated_intervals.size == 0:
        return 0.0, 0.0, 0.0

    # Generate the cluster labels
    y_ref = util.intervals_to_samples(
        reference_intervals, reference_labels, sample_size=frame_size
    )[-1]

    y_ref = util.index_labels(y_ref)[0]

    # Map to index space
    y_est = util.intervals_to_samples(
        estimated_intervals, estimated_labels, sample_size=frame_size
    )[-1]

    y_est = util.index_labels(y_est)[0]

    return _adjusted_rand_index(y_ref, y_est)


def _mutual_info_score(reference_indices, estimated_indices, contingency=None):
    """Compute the mutual information between two sequence labelings.

    Parameters
    ----------
    reference_indices : np.ndarray
        Array of reference indices
    estimated_indices : np.ndarray
        Array of estimated indices
    contingency : np.ndarray
        Pre-computed contingency matrix.  If None, one will be computed.
        (Default value = None)

    Returns
    -------
    mi : float
        Mutual information
    .. note:: Based on sklearn.metrics.cluster.mutual_info_score

    """
    if contingency is None:
        contingency = _contingency_matrix(reference_indices, estimated_indices).astype(
            float
        )
    contingency_sum = np.sum(contingency)
    pi = np.sum(contingency, axis=1)
    pj = np.sum(contingency, axis=0)
    outer = np.outer(pi, pj)
    nnz = contingency != 0.0
    # normalized contingency
    contingency_nm = contingency[nnz]
    log_contingency_nm = np.log(contingency_nm)
    contingency_nm /= contingency_sum
    # log(a / b) should be calculated as log(a) - log(b) for
    # possible loss of precision
    log_outer = -np.log(outer[nnz]) + np.log(pi.sum()) + np.log(pj.sum())
    mi = (
        contingency_nm * (log_contingency_nm - np.log(contingency_sum))
        + contingency_nm * log_outer
    )
    return mi.sum()


def _entropy(labels):
    """Calculate the entropy for a labeling.

    Parameters
    ----------
    labels : list-like
        List of labels.

    Returns
    -------
    entropy : float
        Entropy of the labeling.
    .. note:: Based on sklearn.metrics.cluster.entropy

    """
    if len(labels) == 0:
        return 1.0
    label_idx = np.unique(labels, return_inverse=True)[1]
    pi = np.bincount(label_idx).astype(np.float64)
    pi = pi[pi > 0]
    pi_sum = np.sum(pi)
    # log(a / b) should be calculated as log(a) - log(b) for
    # possible loss of precision
    return -np.sum((pi / pi_sum) * (np.log(pi) - np.log(pi_sum)))


def _adjusted_mutual_info_score(reference_indices, estimated_indices):
    """Compute the mutual information between two sequence labelings, adjusted for
    chance.

    Parameters
    ----------
    reference_indices : np.ndarray
        Array of reference indices
    estimated_indices : np.ndarray
        Array of estimated indices

    Returns
    -------
    ami : float <= 1.0
        Mutual information
    .. note:: Based on sklearn.metrics.cluster.adjusted_mutual_info_score
        and sklearn.metrics.cluster.expected_mutual_info_score

    """
    n_samples = len(reference_indices)
    ref_classes = np.unique(reference_indices)
    est_classes = np.unique(estimated_indices)
    # Special limit cases: no clustering since the data is not split.
    # This is a perfect match hence return 1.0.
    if (
        ref_classes.shape[0] == est_classes.shape[0] == 1
        or ref_classes.shape[0] == est_classes.shape[0] == 0
    ):
        return 1.0
    contingency = _contingency_matrix(reference_indices, estimated_indices).astype(
        float
    )
    # Calculate the MI for the two clusterings
    mi = _mutual_info_score(
        reference_indices, estimated_indices, contingency=contingency
    )
    # The following code is based on
    # sklearn.metrics.cluster.expected_mutual_information
    R, C = contingency.shape
    N = float(n_samples)
    a = np.sum(contingency, axis=1).astype(np.int32)
    b = np.sum(contingency, axis=0).astype(np.int32)
    # There are three major terms to the EMI equation, which are multiplied to
    # and then summed over varying nij values.
    # While nijs[0] will never be used, having it simplifies the indexing.
    nijs = np.arange(0, max(np.max(a), np.max(b)) + 1, dtype="float")
    # Stops divide by zero warnings. As its not used, no issue.
    nijs[0] = 1
    # term1 is nij / N
    term1 = nijs / N
    # term2 is log((N*nij) / (a * b)) == log(N * nij) - log(a * b)
    # term2 uses the outer product
    log_ab_outer = np.log(np.outer(a, b))
    # term2 uses N * nij
    log_Nnij = np.log(N * nijs)
    # term3 is large, and involved many factorials. Calculate these in log
    # space to stop overflows.
    gln_a = scipy.special.gammaln(a + 1)
    gln_b = scipy.special.gammaln(b + 1)
    gln_Na = scipy.special.gammaln(N - a + 1)
    gln_Nb = scipy.special.gammaln(N - b + 1)
    gln_N = scipy.special.gammaln(N + 1)
    gln_nij = scipy.special.gammaln(nijs + 1)
    # start and end values for nij terms for each summation.
    start = np.array([[v - N + w for w in b] for v in a], dtype="int")
    start = np.maximum(start, 1)
    end = np.minimum(np.resize(a, (C, R)).T, np.resize(b, (R, C))) + 1
    # emi itself is a summation over the various values.
    emi = 0
    for i in range(R):
        for j in range(C):
            for nij in range(start[i, j], end[i, j]):
                term2 = log_Nnij[nij] - log_ab_outer[i, j]
                # Numerators are positive, denominators are negative.
                gln = (
                    gln_a[i]
                    + gln_b[j]
                    + gln_Na[i]
                    + gln_Nb[j]
                    - gln_N
                    - gln_nij[nij]
                    - scipy.special.gammaln(a[i] - nij + 1)
                    - scipy.special.gammaln(b[j] - nij + 1)
                    - scipy.special.gammaln(N - a[i] - b[j] + nij + 1)
                )
                term3 = np.exp(gln)
                emi += term1[nij] * term2 * term3
    # Calculate entropy for each labeling
    h_true, h_pred = _entropy(reference_indices), _entropy(estimated_indices)
    ami = (mi - emi) / (max(h_true, h_pred) - emi)
    return ami


def _normalized_mutual_info_score(reference_indices, estimated_indices):
    """Compute the mutual information between two sequence labelings, adjusted for
    chance.

    Parameters
    ----------
    reference_indices : np.ndarray
        Array of reference indices
    estimated_indices : np.ndarray
        Array of estimated indices

    Returns
    -------
    nmi : float <= 1.0
        Normalized mutual information
    .. note:: Based on sklearn.metrics.cluster.normalized_mutual_info_score

    """
    ref_classes = np.unique(reference_indices)
    est_classes = np.unique(estimated_indices)
    # Special limit cases: no clustering since the data is not split.
    # This is a perfect match hence return 1.0.
    if (
        ref_classes.shape[0] == est_classes.shape[0] == 1
        or ref_classes.shape[0] == est_classes.shape[0] == 0
    ):
        return 1.0
    contingency = _contingency_matrix(reference_indices, estimated_indices).astype(
        float
    )
    contingency = np.array(contingency, dtype="float")
    # Calculate the MI for the two clusterings
    mi = _mutual_info_score(
        reference_indices, estimated_indices, contingency=contingency
    )
    # Calculate the expected value for the mutual information
    # Calculate entropy for each labeling
    h_true, h_pred = _entropy(reference_indices), _entropy(estimated_indices)
    nmi = mi / max(np.sqrt(h_true * h_pred), 1e-10)
    return nmi


def mutual_information(
    reference_intervals,
    reference_labels,
    estimated_intervals,
    estimated_labels,
    frame_size=0.1,
):
    """Frame-clustering segmentation: mutual information metrics.

    Examples
    --------
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab')
    >>> (est_intervals,
    ...  est_labels) = mir_eval.io.load_labeled_intervals('est.lab')
    >>> # Trim or pad the estimate to match reference timing
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.util.adjust_intervals(ref_intervals,
    ...                                               ref_labels,
    ...                                               t_min=0)
    >>> (est_intervals,
    ...  est_labels) = mir_eval.util.adjust_intervals(
    ...     est_intervals, est_labels, t_min=0, t_max=ref_intervals.max())
    >>> mi, ami, nmi = mir_eval.structure.mutual_information(ref_intervals,
    ...                                                      ref_labels,
    ...                                                      est_intervals,
    ...                                                      est_labels)

    Parameters
    ----------
    reference_intervals : np.ndarray, shape=(n, 2)
        reference segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    reference_labels : list, shape=(n,)
        reference segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_intervals : np.ndarray, shape=(m, 2)
        estimated segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_labels : list, shape=(m,)
        estimated segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    frame_size : float > 0
        length (in seconds) of frames for clustering
        (Default value = 0.1)

    Returns
    -------
    MI : float > 0
        Mutual information between segmentations
    AMI : float
        Adjusted mutual information between segmentations.
    NMI : float > 0
        Normalize mutual information between segmentations

    """
    validate_structure(
        reference_intervals, reference_labels, estimated_intervals, estimated_labels
    )

    # Check for empty annotations.  Don't need to check labels because
    # validate_structure makes sure they're the same size as intervals
    if reference_intervals.size == 0 or estimated_intervals.size == 0:
        return 0.0, 0.0, 0.0

    # Generate the cluster labels
    y_ref = util.intervals_to_samples(
        reference_intervals, reference_labels, sample_size=frame_size
    )[-1]

    y_ref = util.index_labels(y_ref)[0]

    # Map to index space
    y_est = util.intervals_to_samples(
        estimated_intervals, estimated_labels, sample_size=frame_size
    )[-1]

    y_est = util.index_labels(y_est)[0]

    # Mutual information
    mutual_info = _mutual_info_score(y_ref, y_est)

    # Adjusted mutual information
    adj_mutual_info = _adjusted_mutual_info_score(y_ref, y_est)

    # Normalized mutual information
    norm_mutual_info = _normalized_mutual_info_score(y_ref, y_est)

    return mutual_info, adj_mutual_info, norm_mutual_info


def nce(
    reference_intervals,
    reference_labels,
    estimated_intervals,
    estimated_labels,
    frame_size=0.1,
    beta=1.0,
    marginal=False,
):
    """Frame-clustering segmentation: normalized conditional entropy

    Computes cross-entropy of cluster assignment, normalized by the
    max-entropy.

    Examples
    --------
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab')
    >>> (est_intervals,
    ...  est_labels) = mir_eval.io.load_labeled_intervals('est.lab')
    >>> # Trim or pad the estimate to match reference timing
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.util.adjust_intervals(ref_intervals,
    ...                                               ref_labels,
    ...                                               t_min=0)
    >>> (est_intervals,
    ...  est_labels) = mir_eval.util.adjust_intervals(
    ...     est_intervals, est_labels, t_min=0, t_max=ref_intervals.max())
    >>> S_over, S_under, S_F = mir_eval.structure.nce(ref_intervals,
    ...                                               ref_labels,
    ...                                               est_intervals,
    ...                                               est_labels)

    Parameters
    ----------
    reference_intervals : np.ndarray, shape=(n, 2)
        reference segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    reference_labels : list, shape=(n,)
        reference segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_intervals : np.ndarray, shape=(m, 2)
        estimated segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_labels : list, shape=(m,)
        estimated segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    frame_size : float > 0
        length (in seconds) of frames for clustering
        (Default value = 0.1)
    beta : float > 0
        beta for F-measure
        (Default value = 1.0)
    marginal : bool
        If `False`, normalize conditional entropy by uniform entropy.
        If `True`, normalize conditional entropy by the marginal entropy.
        (Default value = False)

    Returns
    -------
    S_over
        Over-clustering score:

        - For `marginal=False`, ``1 - H(y_est | y_ref) / log(|y_est|)``

        - For `marginal=True`, ``1 - H(y_est | y_ref) / H(y_est)``

        If `|y_est|==1`, then `S_over` will be 0.
    S_under
        Under-clustering score:

        - For `marginal=False`, ``1 - H(y_ref | y_est) / log(|y_ref|)``

        - For `marginal=True`, ``1 - H(y_ref | y_est) / H(y_ref)``

        If `|y_ref|==1`, then `S_under` will be 0.
    S_F
        F-measure for (S_over, S_under)
    """
    validate_structure(
        reference_intervals, reference_labels, estimated_intervals, estimated_labels
    )

    # Check for empty annotations.  Don't need to check labels because
    # validate_structure makes sure they're the same size as intervals
    if reference_intervals.size == 0 or estimated_intervals.size == 0:
        return 0.0, 0.0, 0.0

    # Generate the cluster labels
    y_ref = util.intervals_to_samples(
        reference_intervals, reference_labels, sample_size=frame_size
    )[-1]

    y_ref = util.index_labels(y_ref)[0]

    # Map to index space
    y_est = util.intervals_to_samples(
        estimated_intervals, estimated_labels, sample_size=frame_size
    )[-1]

    y_est = util.index_labels(y_est)[0]

    # Make the contingency table: shape = (n_ref, n_est)
    contingency = _contingency_matrix(y_ref, y_est).astype(float)

    # Normalize by the number of frames
    contingency = contingency / len(y_ref)

    # Compute the marginals
    p_est = contingency.sum(axis=0)
    p_ref = contingency.sum(axis=1)

    # H(true | prediction) = sum_j P[estimated = j] *
    # sum_i P[true = i | estimated = j] log P[true = i | estimated = j]
    # entropy sums over axis=0, which is true labels

    true_given_est = p_est.dot(scipy.stats.entropy(contingency, base=2))
    pred_given_ref = p_ref.dot(scipy.stats.entropy(contingency.T, base=2))

    if marginal:
        # Normalize conditional entropy by marginal entropy
        z_ref = scipy.stats.entropy(p_ref, base=2)
        z_est = scipy.stats.entropy(p_est, base=2)
    else:
        z_ref = np.log2(contingency.shape[0])
        z_est = np.log2(contingency.shape[1])

    score_under = 0.0
    if z_ref > 0:
        score_under = 1.0 - true_given_est / z_ref

    score_over = 0.0
    if z_est > 0:
        score_over = 1.0 - pred_given_ref / z_est

    f_measure = util.f_measure(score_over, score_under, beta=beta)

    return score_over, score_under, f_measure


def vmeasure(
    reference_intervals,
    reference_labels,
    estimated_intervals,
    estimated_labels,
    frame_size=0.1,
    beta=1.0,
):
    """Frame-clustering segmentation: v-measure

    Computes cross-entropy of cluster assignment, normalized by the
    marginal-entropy.

    This is equivalent to `nce(..., marginal=True)`.

    Examples
    --------
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab')
    >>> (est_intervals,
    ...  est_labels) = mir_eval.io.load_labeled_intervals('est.lab')
    >>> # Trim or pad the estimate to match reference timing
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.util.adjust_intervals(ref_intervals,
    ...                                               ref_labels,
    ...                                               t_min=0)
    >>> (est_intervals,
    ...  est_labels) = mir_eval.util.adjust_intervals(
    ...     est_intervals, est_labels, t_min=0, t_max=ref_intervals.max())
    >>> V_precision, V_recall, V_F = mir_eval.structure.vmeasure(ref_intervals,
    ...                                                          ref_labels,
    ...                                                          est_intervals,
    ...                                                          est_labels)

    Parameters
    ----------
    reference_intervals : np.ndarray, shape=(n, 2)
        reference segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    reference_labels : list, shape=(n,)
        reference segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_intervals : np.ndarray, shape=(m, 2)
        estimated segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    estimated_labels : list, shape=(m,)
        estimated segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    frame_size : float > 0
        length (in seconds) of frames for clustering
        (Default value = 0.1)
    beta : float > 0
        beta for F-measure
        (Default value = 1.0)

    Returns
    -------
    V_precision
        Over-clustering score:
        ``1 - H(y_est | y_ref) / H(y_est)``

        If `|y_est|==1`, then `V_precision` will be 0.
    V_recall
        Under-clustering score:
        ``1 - H(y_ref | y_est) / H(y_ref)``

        If `|y_ref|==1`, then `V_recall` will be 0.
    V_F
        F-measure for (V_precision, V_recall)
    """
    return nce(
        reference_intervals,
        reference_labels,
        estimated_intervals,
        estimated_labels,
        frame_size=frame_size,
        beta=beta,
        marginal=True,
    )


def evaluate(ref_intervals, ref_labels, est_intervals, est_labels, **kwargs):
    """Compute all metrics for the given reference and estimated annotations.

    Examples
    --------
    >>> (ref_intervals,
    ...  ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab')
    >>> (est_intervals,
    ...  est_labels) = mir_eval.io.load_labeled_intervals('est.lab')
    >>> scores = mir_eval.segment.evaluate(ref_intervals, ref_labels,
    ...                                    est_intervals, est_labels)

    Parameters
    ----------
    ref_intervals : np.ndarray, shape=(n, 2)
        reference segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    ref_labels : list, shape=(n,)
        reference segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    est_intervals : np.ndarray, shape=(m, 2)
        estimated segment intervals, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    est_labels : list, shape=(m,)
        estimated segment labels, in the format returned by
        :func:`mir_eval.io.load_labeled_intervals`.
    **kwargs
        Additional keyword arguments which will be passed to the
        appropriate metric or preprocessing functions.

    Returns
    -------
    scores : dict
        Dictionary of scores, where the key is the metric name (str) and
        the value is the (float) score achieved.
    """
    # Adjust timespan of estimations relative to ground truth
    ref_intervals, ref_labels = util.adjust_intervals(
        ref_intervals, labels=ref_labels, t_min=0.0
    )

    est_intervals, est_labels = util.adjust_intervals(
        est_intervals, labels=est_labels, t_min=0.0, t_max=ref_intervals.max()
    )

    # Now compute all the metrics
    scores = collections.OrderedDict()

    # Boundary detection
    # Force these values for window
    kwargs["window"] = 0.5
    (
        scores["Precision@0.5"],
        scores["Recall@0.5"],
        scores["F-measure@0.5"],
    ) = util.filter_kwargs(detection, ref_intervals, est_intervals, **kwargs)

    kwargs["window"] = 3.0
    (
        scores["Precision@3.0"],
        scores["Recall@3.0"],
        scores["F-measure@3.0"],
    ) = util.filter_kwargs(detection, ref_intervals, est_intervals, **kwargs)

    # Boundary deviation
    scores["Ref-to-est deviation"], scores["Est-to-ref deviation"] = util.filter_kwargs(
        deviation, ref_intervals, est_intervals, **kwargs
    )

    # Pairwise clustering
    (
        scores["Pairwise Precision"],
        scores["Pairwise Recall"],
        scores["Pairwise F-measure"],
    ) = util.filter_kwargs(
        pairwise, ref_intervals, ref_labels, est_intervals, est_labels, **kwargs
    )

    # Rand index
    scores["Rand Index"] = util.filter_kwargs(
        rand_index, ref_intervals, ref_labels, est_intervals, est_labels, **kwargs
    )
    # Adjusted rand index
    scores["Adjusted Rand Index"] = util.filter_kwargs(
        ari, ref_intervals, ref_labels, est_intervals, est_labels, **kwargs
    )

    # Mutual information metrics
    (
        scores["Mutual Information"],
        scores["Adjusted Mutual Information"],
        scores["Normalized Mutual Information"],
    ) = util.filter_kwargs(
        mutual_information,
        ref_intervals,
        ref_labels,
        est_intervals,
        est_labels,
        **kwargs
    )

    # Conditional entropy metrics
    (
        scores["NCE Over"],
        scores["NCE Under"],
        scores["NCE F-measure"],
    ) = util.filter_kwargs(
        nce, ref_intervals, ref_labels, est_intervals, est_labels, **kwargs
    )

    # V-measure metrics
    scores["V Precision"], scores["V Recall"], scores["V-measure"] = util.filter_kwargs(
        vmeasure, ref_intervals, ref_labels, est_intervals, est_labels, **kwargs
    )

    return scores