File: util.py

package info (click to toggle)
mir-eval 0.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,784 kB
  • sloc: python: 8,364; javascript: 261; makefile: 154
file content (962 lines) | stat: -rw-r--r-- 29,719 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
"""
Useful functionality required across the task submodules,
such as preprocessing, validation, and common computations.
"""

import os
import inspect
import warnings
from decorator import decorator

import numpy as np


def index_labels(labels, case_sensitive=False):
    """Convert a list of string identifiers into numerical indices.

    Parameters
    ----------
    labels : list of strings, shape=(n,)
        A list of annotations, e.g., segment or chord labels from an
        annotation file.
    case_sensitive : bool
        Set to True to enable case-sensitive label indexing
        (Default value = False)

    Returns
    -------
    indices : list, shape=(n,)
        Numerical representation of ``labels``
    index_to_label : dict
        Mapping to convert numerical indices back to labels.
        ``labels[i] == index_to_label[indices[i]]``
    """
    label_to_index = {}
    index_to_label = {}

    # If we're not case-sensitive,
    if not case_sensitive:
        labels = [str(s).lower() for s in labels]

    # First, build the unique label mapping
    for index, s in enumerate(sorted(set(labels))):
        label_to_index[s] = index
        index_to_label[index] = s

    # Remap the labels to indices
    indices = [label_to_index[s] for s in labels]

    # Return the converted labels, and the inverse mapping
    return indices, index_to_label


def generate_labels(items, prefix="__"):
    """Given an array of items (e.g. events, intervals), create a synthetic label
    for each event of the form '(label prefix)(item number)'

    Parameters
    ----------
    items : list-like
        A list or array of events or intervals
    prefix : str
        This prefix will be prepended to all synthetically generated labels
        (Default value = '__')

    Returns
    -------
    labels : list of str
        Synthetically generated labels

    """
    return [f"{prefix}{n}" for n in range(len(items))]


def intervals_to_samples(intervals, labels, offset=0, sample_size=0.1, fill_value=None):
    """Convert an array of labeled time intervals to annotated samples.

    Parameters
    ----------
    intervals : np.ndarray, shape=(n, d)
        An array of time intervals, as returned by
        :func:`mir_eval.io.load_intervals()` or
        :func:`mir_eval.io.load_labeled_intervals()`.
        The ``i`` th interval spans time ``intervals[i, 0]`` to
        ``intervals[i, 1]``.
    labels : list, shape=(n,)
        The annotation for each interval
    offset : float > 0
        Phase offset of the sampled time grid (in seconds)
        (Default value = 0)
    sample_size : float > 0
        duration of each sample to be generated (in seconds)
        (Default value = 0.1)
    fill_value : type(labels[0])
        Object to use for the label with out-of-range time points.
        (Default value = None)

    Returns
    -------
    sample_times : list
        list of sample times
    sample_labels : list
        array of labels for each generated sample

    Notes
    -----
        Intervals will be rounded down to the nearest multiple
        of ``sample_size``.
    """
    # Round intervals to the sample size
    num_samples = int(np.floor(intervals.max() / sample_size))
    sample_indices = np.arange(num_samples, dtype=np.float32)
    sample_times = (sample_indices * sample_size + offset).tolist()
    sampled_labels = interpolate_intervals(intervals, labels, sample_times, fill_value)

    return sample_times, sampled_labels


def interpolate_intervals(intervals, labels, time_points, fill_value=None):
    """Assign labels to a set of points in time given a set of intervals.

    Time points that do not lie within an interval are mapped to `fill_value`.

    Parameters
    ----------
    intervals : np.ndarray, shape=(n, 2)
        An array of time intervals, as returned by
        :func:`mir_eval.io.load_intervals()`.
        The ``i`` th interval spans time ``intervals[i, 0]`` to
        ``intervals[i, 1]``.

        Intervals are assumed to be disjoint.

    labels : list, shape=(n,)
        The annotation for each interval

    time_points : array_like, shape=(m,)
        Points in time to assign labels.  These must be in
        non-decreasing order.

    fill_value : type(labels[0])
        Object to use for the label with out-of-range time points.
        (Default value = None)

    Returns
    -------
    aligned_labels : list
        Labels corresponding to the given time points.

    Raises
    ------
    ValueError
        If `time_points` is not in non-decreasing order.
    """
    # Verify that time_points is sorted
    time_points = np.asarray(time_points)

    if np.any(time_points[1:] < time_points[:-1]):
        raise ValueError("time_points must be in non-decreasing order")

    aligned_labels = [fill_value] * len(time_points)

    starts = np.searchsorted(time_points, intervals[:, 0], side="left")
    ends = np.searchsorted(time_points, intervals[:, 1], side="right")

    for start, end, lab in zip(starts, ends, labels):
        aligned_labels[start:end] = [lab] * (end - start)

    return aligned_labels


def sort_labeled_intervals(intervals, labels=None):
    """Sort intervals, and optionally, their corresponding labels
    according to start time.

    Parameters
    ----------
    intervals : np.ndarray, shape=(n, 2)
        The input intervals
    labels : list, optional
        Labels for each interval

    Returns
    -------
    intervals_sorted or (intervals_sorted, labels_sorted)
        Labels are only returned if provided as input
    """
    idx = np.argsort(intervals[:, 0])

    intervals_sorted = intervals[idx]

    if labels is None:
        return intervals_sorted
    else:
        return intervals_sorted, [labels[_] for _ in idx]


def f_measure(precision, recall, beta=1.0):
    """Compute the f-measure from precision and recall scores.

    Parameters
    ----------
    precision : float in (0, 1]
        Precision
    recall : float in (0, 1]
        Recall
    beta : float > 0
        Weighting factor for f-measure
        (Default value = 1.0)

    Returns
    -------
    f_measure : float
        The weighted f-measure
    """
    if precision == 0 and recall == 0:
        return 0.0

    return (1 + beta**2) * precision * recall / ((beta**2) * precision + recall)


def intervals_to_boundaries(intervals, q=5):
    """Convert interval times into boundaries.

    Parameters
    ----------
    intervals : np.ndarray, shape=(n_events, 2)
        Array of interval start and end-times
    q : int
        Number of decimals to round to. (Default value = 5)

    Returns
    -------
    boundaries : np.ndarray
        Interval boundary times, including the end of the final interval
    """
    return np.unique(np.ravel(np.round(intervals, decimals=q)))


def boundaries_to_intervals(boundaries):
    """Convert an array of event times into intervals

    Parameters
    ----------
    boundaries : list-like
        List-like of event times.  These are assumed to be unique
        timestamps in ascending order.

    Returns
    -------
    intervals : np.ndarray, shape=(n_intervals, 2)
        Start and end time for each interval
    """
    if not np.allclose(boundaries, np.unique(boundaries)):
        raise ValueError("Boundary times are not unique or not ascending.")

    intervals = np.asarray(list(zip(boundaries[:-1], boundaries[1:])))

    return intervals


def adjust_intervals(
    intervals,
    labels=None,
    t_min=0.0,
    t_max=None,
    start_label="__T_MIN",
    end_label="__T_MAX",
):
    """Adjust a list of time intervals to span the range ``[t_min, t_max]``.

    Any intervals lying completely outside the specified range will be removed.

    Any intervals lying partially outside the specified range will be cropped.

    If the specified range exceeds the span of the provided data in either
    direction, additional intervals will be appended.  If an interval is
    appended at the beginning, it will be given the label ``start_label``; if
    an interval is appended at the end, it will be given the label
    ``end_label``.

    Parameters
    ----------
    intervals : np.ndarray, shape=(n_events, 2)
        Array of interval start and end-times
    labels : list, len=n_events or None
        List of labels
        (Default value = None)
    t_min : float or None
        Minimum interval start time.
        (Default value = 0.0)
    t_max : float or None
        Maximum interval end time.
        (Default value = None)
    start_label : str or float or int
        Label to give any intervals appended at the beginning
        (Default value = '__T_MIN')
    end_label : str or float or int
        Label to give any intervals appended at the end
        (Default value = '__T_MAX')

    Returns
    -------
    new_intervals : np.ndarray
        Intervals spanning ``[t_min, t_max]``
    new_labels : list
        List of labels for ``new_labels``
    """
    # When supplied intervals are empty and t_max and t_min are supplied,
    # create one interval from t_min to t_max with the label start_label
    if t_min is not None and t_max is not None and intervals.size == 0:
        return np.array([[t_min, t_max]]), [start_label]
    # When intervals are empty and either t_min or t_max are not supplied,
    # we can't append new intervals
    elif (t_min is None or t_max is None) and intervals.size == 0:
        raise ValueError("Supplied intervals are empty, can't append new" " intervals")

    if t_min is not None:
        # Find the intervals that end at or after t_min
        first_idx = np.argwhere(intervals[:, 1] >= t_min)

        if len(first_idx) > 0:
            # If we have events below t_min, crop them out
            if labels is not None:
                labels = labels[first_idx[0, 0] :]
            # Clip to the range (t_min, +inf)
            intervals = intervals[first_idx[0, 0] :]
        intervals = np.maximum(t_min, intervals)

        if intervals.min() > t_min:
            # Lowest boundary is higher than t_min:
            # add a new boundary and label
            intervals = np.vstack(([t_min, intervals.min()], intervals))
            if labels is not None:
                labels.insert(0, start_label)

    if t_max is not None:
        # Find the intervals that begin after t_max
        last_idx = np.argwhere(intervals[:, 0] > t_max)

        if len(last_idx) > 0:
            # We have boundaries above t_max.
            # Trim to only boundaries <= t_max
            if labels is not None:
                labels = labels[: last_idx[0, 0]]
            # Clip to the range (-inf, t_max)
            intervals = intervals[: last_idx[0, 0]]

        intervals = np.minimum(t_max, intervals)

        if intervals.max() < t_max:
            # Last boundary is below t_max: add a new boundary and label
            intervals = np.vstack((intervals, [intervals.max(), t_max]))
            if labels is not None:
                labels.append(end_label)

    return intervals, labels


def adjust_events(events, labels=None, t_min=0.0, t_max=None, label_prefix="__"):
    """Adjust the given list of event times to span the range
    ``[t_min, t_max]``.

    Any event times outside of the specified range will be removed.

    If the times do not span ``[t_min, t_max]``, additional events will be
    added with the prefix ``label_prefix``.

    Parameters
    ----------
    events : np.ndarray
        Array of event times (seconds)
    labels : list or None
        List of labels
        (Default value = None)
    t_min : float or None
        Minimum valid event time.
        (Default value = 0.0)
    t_max : float or None
        Maximum valid event time.
        (Default value = None)
    label_prefix : str
        Prefix string to use for synthetic labels
        (Default value = '__')

    Returns
    -------
    new_times : np.ndarray
        Event times corrected to the given range.

    """
    if t_min is not None:
        first_idx = np.argwhere(events >= t_min)

        if len(first_idx) > 0:
            # We have events below t_min
            # Crop them out
            if labels is not None:
                labels = labels[first_idx[0, 0] :]
            events = events[first_idx[0, 0] :]

        if events[0] > t_min:
            # Lowest boundary is higher than t_min:
            # add a new boundary and label
            events = np.concatenate(([t_min], events))
            if labels is not None:
                labels.insert(0, "%sT_MIN" % label_prefix)

    if t_max is not None:
        last_idx = np.argwhere(events > t_max)

        if len(last_idx) > 0:
            # We have boundaries above t_max.
            # Trim to only boundaries <= t_max
            if labels is not None:
                labels = labels[: last_idx[0, 0]]
            events = events[: last_idx[0, 0]]

        if events[-1] < t_max:
            # Last boundary is below t_max: add a new boundary and label
            events = np.concatenate((events, [t_max]))
            if labels is not None:
                labels.append("%sT_MAX" % label_prefix)

    return events, labels


def intersect_files(flist1, flist2):
    """Return the intersection of two sets of filepaths, based on the file name
    (after the final '/') and ignoring the file extension.

    Examples
    --------
     >>> flist1 = ['/a/b/abc.lab', '/c/d/123.lab', '/e/f/xyz.lab']
     >>> flist2 = ['/g/h/xyz.npy', '/i/j/123.txt', '/k/l/456.lab']
     >>> sublist1, sublist2 = mir_eval.util.intersect_files(flist1, flist2)
     >>> print sublist1
     ['/e/f/xyz.lab', '/c/d/123.lab']
     >>> print sublist2
     ['/g/h/xyz.npy', '/i/j/123.txt']

    Parameters
    ----------
    flist1 : list
        first list of filepaths
    flist2 : list
        second list of filepaths

    Returns
    -------
    sublist1 : list
        subset of filepaths with matching stems from ``flist1``
    sublist2 : list
        corresponding filepaths from ``flist2``

    """

    def fname(abs_path):
        """Return the filename given an absolute path.

        Parameters
        ----------
        abs_path

        Returns
        -------
        filename

        """
        return os.path.splitext(os.path.split(abs_path)[-1])[0]

    fmap = {fname(f): f for f in flist1}
    pairs = [list(), list()]
    for f in flist2:
        if fname(f) in fmap:
            pairs[0].append(fmap[fname(f)])
            pairs[1].append(f)

    return pairs


def merge_labeled_intervals(x_intervals, x_labels, y_intervals, y_labels):
    r"""Merge the time intervals of two sequences.

    Parameters
    ----------
    x_intervals : np.ndarray
        Array of interval times (seconds)
    x_labels : list or None
        List of labels
    y_intervals : np.ndarray
        Array of interval times (seconds)
    y_labels : list or None
        List of labels

    Returns
    -------
    new_intervals : np.ndarray
        New interval times of the merged sequences.
    new_x_labels : list
        New labels for the sequence ``x``
    new_y_labels : list
        New labels for the sequence ``y``

    """
    align_check = [
        x_intervals[0, 0] == y_intervals[0, 0],
        x_intervals[-1, 1] == y_intervals[-1, 1],
    ]
    if False in align_check:
        raise ValueError(
            "Time intervals do not align; did you mean to call "
            "'adjust_intervals()' first?"
        )
    time_boundaries = np.unique(np.concatenate([x_intervals, y_intervals], axis=0))
    output_intervals = np.array([time_boundaries[:-1], time_boundaries[1:]]).T

    x_labels_out, y_labels_out = [], []
    x_label_range = np.arange(len(x_labels))
    y_label_range = np.arange(len(y_labels))
    for t0, _ in output_intervals:
        x_idx = x_label_range[(t0 >= x_intervals[:, 0])]
        x_labels_out.append(x_labels[x_idx[-1]])
        y_idx = y_label_range[(t0 >= y_intervals[:, 0])]
        y_labels_out.append(y_labels[y_idx[-1]])
    return output_intervals, x_labels_out, y_labels_out


def _bipartite_match(graph):
    """Find maximum cardinality matching of a bipartite graph (U,V,E).
    The input format is a dictionary mapping members of U to a list
    of their neighbors in V.

    The output is a dict M mapping members of V to their matches in U.

    Parameters
    ----------
    graph : dictionary : left-vertex -> list of right vertices
        The input bipartite graph.  Each edge need only be specified once.

    Returns
    -------
    matching : dictionary : right-vertex -> left vertex
        A maximal bipartite matching.

    """
    # Adapted from:
    #
    # Hopcroft-Karp bipartite max-cardinality matching and max independent set
    # David Eppstein, UC Irvine, 27 Apr 2002

    # initialize greedy matching (redundant, but faster than full search)
    matching = {}
    for u in graph:
        for v in graph[u]:
            if v not in matching:
                matching[v] = u
                break

    while True:
        # structure residual graph into layers
        # pred[u] gives the neighbor in the previous layer for u in U
        # preds[v] gives a list of neighbors in the previous layer for v in V
        # unmatched gives a list of unmatched vertices in final layer of V,
        # and is also used as a flag value for pred[u] when u is in the first
        # layer
        preds = {}
        unmatched = []
        pred = {u: unmatched for u in graph}
        for v in matching:
            del pred[matching[v]]
        layer = list(pred)

        # repeatedly extend layering structure by another pair of layers
        while layer and not unmatched:
            new_layer = {}
            for u in layer:
                for v in graph[u]:
                    if v not in preds:
                        new_layer.setdefault(v, []).append(u)
            layer = []
            for v in new_layer:
                preds[v] = new_layer[v]
                if v in matching:
                    layer.append(matching[v])
                    pred[matching[v]] = v
                else:
                    unmatched.append(v)

        # did we finish layering without finding any alternating paths?
        if not unmatched:
            unlayered = {}
            for u in graph:
                for v in graph[u]:
                    if v not in preds:
                        unlayered[v] = None
            return matching

        def recurse(v):
            """Recursively search backward through layers to find alternating
            paths.  recursion returns true if found path, false otherwise
            """
            if v in preds:
                L = preds[v]
                del preds[v]
                for u in L:
                    if u in pred:
                        pu = pred[u]
                        del pred[u]
                        if pu is unmatched or recurse(pu):
                            matching[v] = u
                            return True
            return False

        for v in unmatched:
            recurse(v)


def _outer_distance_mod_n(ref, est, modulus=12):
    """Compute the absolute outer distance modulo n.
    Using this distance, d(11, 0) = 1 (modulo 12)

    Parameters
    ----------
    ref : np.ndarray, shape=(n,)
        Array of reference values.
    est : np.ndarray, shape=(m,)
        Array of estimated values.
    modulus : int
        The modulus.
        12 by default for octave equivalence.

    Returns
    -------
    outer_distance : np.ndarray, shape=(n, m)
        The outer circular distance modulo n.

    """
    ref_mod_n = np.mod(ref, modulus)
    est_mod_n = np.mod(est, modulus)
    abs_diff = np.abs(np.subtract.outer(ref_mod_n, est_mod_n))
    return np.minimum(abs_diff, modulus - abs_diff)


def match_events(ref, est, window, distance=None):
    """Compute a maximum matching between reference and estimated event times,
    subject to a window constraint.

    Given two lists of event times ``ref`` and ``est``, we seek the largest set
    of correspondences ``(ref[i], est[j])`` such that
    ``distance(ref[i], est[j]) <= window``, and each
    ``ref[i]`` and ``est[j]`` is matched at most once.

    This is useful for computing precision/recall metrics in beat tracking,
    onset detection, and segmentation.

    Parameters
    ----------
    ref : np.ndarray, shape=(n,)
        Array of reference values
    est : np.ndarray, shape=(m,)
        Array of estimated values
    window : float > 0
        Size of the window.
    distance : function
        function that computes the outer distance of ref and est.
        By default uses ``|ref[i] - est[j]|``

    Returns
    -------
    matching : list of tuples
        A list of matched reference and event numbers.
        ``matching[i] == (i, j)`` where ``ref[i]`` matches ``est[j]``.

    """
    if distance is not None:
        # Compute the indices of feasible pairings
        hits = np.where(distance(ref, est) <= window)
    else:
        hits = _fast_hit_windows(ref, est, window)

    # Construct the graph input
    G = {}
    for ref_i, est_i in zip(*hits):
        if est_i not in G:
            G[est_i] = []
        G[est_i].append(ref_i)

    # Compute the maximum matching
    matching = sorted(_bipartite_match(G).items())

    return matching


def _fast_hit_windows(ref, est, window):
    """Fast calculation of windowed hits for time events.

    Given two lists of event times ``ref`` and ``est``, and a
    tolerance window, computes a list of pairings
    ``(i, j)`` where ``|ref[i] - est[j]| <= window``.

    This is equivalent to, but more efficient than the following:

    >>> hit_ref, hit_est = np.where(np.abs(np.subtract.outer(ref, est))
    ...                             <= window)

    Parameters
    ----------
    ref : np.ndarray, shape=(n,)
        Array of reference values
    est : np.ndarray, shape=(m,)
        Array of estimated values
    window : float >= 0
        Size of the tolerance window

    Returns
    -------
    hit_ref : np.ndarray
    hit_est : np.ndarray
        indices such that ``|hit_ref[i] - hit_est[i]| <= window``
    """
    ref = np.asarray(ref)
    est = np.asarray(est)
    ref_idx = np.argsort(ref)
    ref_sorted = ref[ref_idx]

    left_idx = np.searchsorted(ref_sorted, est - window, side="left")
    right_idx = np.searchsorted(ref_sorted, est + window, side="right")

    hit_ref, hit_est = [], []

    for j, (start, end) in enumerate(zip(left_idx, right_idx)):
        hit_ref.extend(ref_idx[start:end])
        hit_est.extend([j] * (end - start))

    return hit_ref, hit_est


def validate_intervals(intervals):
    """Check that an (n, 2) interval ndarray is well-formed, and raises errors
    if not.

    Parameters
    ----------
    intervals : np.ndarray, shape=(n, 2)
        Array of interval start/end locations.
    """
    # Validate interval shape
    if intervals.ndim != 2 or intervals.shape[1] != 2:
        raise ValueError(
            "Intervals should be n-by-2 numpy ndarray, "
            "but shape={}".format(intervals.shape)
        )

    # Make sure no times are negative
    if (intervals < 0).any():
        raise ValueError("Negative interval times found")

    # Make sure all intervals have strictly positive duration
    if (intervals[:, 1] <= intervals[:, 0]).any():
        raise ValueError("All interval durations must be strictly positive")


def validate_events(events, max_time=30000.0):
    """Check that a 1-d event location ndarray is well-formed, and raises
    errors if not.

    Parameters
    ----------
    events : np.ndarray, shape=(n,)
        Array of event times
    max_time : float
        If an event is found above this time, a ValueError will be raised.
        (Default value = 30000.)
    """
    # Make sure no event times are huge
    if (events > max_time).any():
        raise ValueError(
            "An event at time {} was found which is greater than "
            "the maximum allowable time of max_time = {} (did you"
            " supply event times in "
            "seconds?)".format(events.max(), max_time)
        )
    # Make sure event locations are 1-d np ndarrays
    if events.ndim != 1:
        raise ValueError(
            "Event times should be 1-d numpy ndarray, "
            "but shape={}".format(events.shape)
        )
    # Make sure event times are increasing
    if (np.diff(events) < 0).any():
        raise ValueError("Events should be in increasing order.")


def validate_frequencies(frequencies, max_freq, min_freq, allow_negatives=False):
    """Check that a 1-d frequency ndarray is well-formed, and raises
    errors if not.

    Parameters
    ----------
    frequencies : np.ndarray, shape=(n,)
        Array of frequency values
    max_freq : float
        If a frequency is found above this pitch, a ValueError will be raised.
        (Default value = 5000.)
    min_freq : float
        If a frequency is found below this pitch, a ValueError will be raised.
        (Default value = 20.)
    allow_negatives : bool
        Whether or not to allow negative frequency values.
    """
    # If flag is true, map frequencies to their absolute value.
    if allow_negatives:
        frequencies = np.abs(frequencies)
    # Make sure no frequency values are huge
    if (np.abs(frequencies) > max_freq).any():
        raise ValueError(
            "A frequency of {} was found which is greater than "
            "the maximum allowable value of max_freq = {} (did "
            "you supply frequency values in "
            "Hz?)".format(frequencies.max(), max_freq)
        )
    # Make sure no frequency values are tiny
    if (np.abs(frequencies) < min_freq).any():
        raise ValueError(
            "A frequency of {} was found which is less than the "
            "minimum allowable value of min_freq = {} (did you "
            "supply frequency values in "
            "Hz?)".format(frequencies.min(), min_freq)
        )
    # Make sure frequency values are 1-d np ndarrays
    if frequencies.ndim != 1:
        raise ValueError(
            "Frequencies should be 1-d numpy ndarray, "
            "but shape={}".format(frequencies.shape)
        )


def has_kwargs(function):
    r"""Determine whether a function has \*\*kwargs.

    Parameters
    ----------
    function : callable
        The function to test

    Returns
    -------
    True if function accepts arbitrary keyword arguments.
    False otherwise.
    """
    sig = inspect.signature(function)

    for param in list(sig.parameters.values()):
        if param.kind == param.VAR_KEYWORD:
            return True

    return False


def filter_kwargs(_function, *args, **kwargs):
    r"""Given a function and args and keyword args to pass to it, call the function
    but using only the keyword arguments which it accepts.  This is equivalent
    to redefining the function with an additional \*\*kwargs to accept slop
    keyword args.

    If the target function already accepts \*\*kwargs parameters, no filtering
    is performed.

    Parameters
    ----------
    _function : callable
        Function to call.  Can take in any number of args or kwargs
    *args
    **kwargs
        Arguments and keyword arguments to _function.
    """
    if has_kwargs(_function):
        return _function(*args, **kwargs)

    # Get the list of function arguments
    func_code = _function.__code__
    function_args = func_code.co_varnames[: func_code.co_argcount]
    # Construct a dict of those kwargs which appear in the function
    filtered_kwargs = {}
    for kwarg, value in list(kwargs.items()):
        if kwarg in function_args:
            filtered_kwargs[kwarg] = value
    # Call the function with the supplied args and the filtered kwarg dict
    return _function(*args, **filtered_kwargs)


def intervals_to_durations(intervals):
    """Convert an array of n intervals to their n durations.

    Parameters
    ----------
    intervals : np.ndarray, shape=(n, 2)
        An array of time intervals, as returned by
        :func:`mir_eval.io.load_intervals()`.
        The ``i`` th interval spans time ``intervals[i, 0]`` to
        ``intervals[i, 1]``.

    Returns
    -------
    durations : np.ndarray, shape=(n,)
        Array of the duration of each interval.

    """
    validate_intervals(intervals)
    return np.abs(np.diff(intervals, axis=-1)).flatten()


def hz_to_midi(freqs):
    """Convert Hz to MIDI numbers

    Parameters
    ----------
    freqs : number or ndarray
        Frequency/frequencies in Hz

    Returns
    -------
    midi : number or ndarray
        MIDI note numbers corresponding to input frequencies.
        Note that these may be fractional.
    """
    return 12.0 * (np.log2(freqs) - np.log2(440.0)) + 69.0


def midi_to_hz(midi):
    """Convert MIDI numbers to Hz

    Parameters
    ----------
    midi : number or ndarray
        MIDI notes

    Returns
    -------
    freqs : number or ndarray
        Frequency/frequencies in Hz corresponding to `midi`
    """
    return 440.0 * (2.0 ** ((midi - 69.0) / 12.0))


def deprecated(*, version, version_removed):
    """Mark a function as deprecated.

    Using the decorated (old) function will result in a warning.
    """

    def __wrapper(func, *args, **kwargs):
        """Warn the user, and then proceed."""
        warnings.warn(
            f"{func.__module__}.{func.__name__}\n\tDeprecated as of mir_eval version {version}."
            f"\n\tIt will be removed in mir_eval version {version_removed}.",
            category=FutureWarning,
            stacklevel=3,  # Would be 2, but the decorator adds a level
        )
        return func(*args, **kwargs)

    return decorator(__wrapper)