File: test_multipitch.py

package info (click to toggle)
mir-eval 0.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,784 kB
  • sloc: python: 8,364; javascript: 261; makefile: 154
file content (333 lines) | stat: -rw-r--r-- 10,035 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
"""
Unit tests for mir_eval.multipitch
"""

import numpy as np
import json
import mir_eval
import glob
import warnings
import pytest

A_TOL = 1e-12

# Path to the fixture files
REF_GLOB = "data/multipitch/ref*.txt"
EST_GLOB = "data/multipitch/est*.txt"
SCORES_GLOB = "data/multipitch/output*.json"

ref_files = sorted(glob.glob(REF_GLOB))
est_files = sorted(glob.glob(EST_GLOB))
sco_files = sorted(glob.glob(SCORES_GLOB))

assert len(ref_files) == len(est_files) == len(sco_files) > 0
file_sets = list(zip(ref_files, est_files, sco_files))


@pytest.fixture
def multipitch_data(request):
    ref_f, est_f, sco_f = request.param

    with open(sco_f) as f_handle:
        expected_score = json.load(f_handle)

    ref_times, ref_freqs = mir_eval.io.load_ragged_time_series(ref_f)
    est_times, est_freqs = mir_eval.io.load_ragged_time_series(est_f)

    return ref_times, ref_freqs, est_times, est_freqs, expected_score


def __frequencies_equal(freqs_a, freqs_b):
    if len(freqs_a) != len(freqs_b):
        return False
    else:
        equal = True
        for freq_a, freq_b in zip(freqs_a, freqs_b):
            if freq_a.size != freq_b.size:
                return False
            equal = equal and np.allclose(freq_a, freq_b, atol=A_TOL)
        return equal


def __scores_equal(score_a, score_b):
    keys_a = set(list(score_a.keys()))
    keys_b = set(list(score_b.keys()))
    if keys_a != keys_b:
        return False
    else:
        equal = True
        for k in keys_a:
            value_a = score_a[k]
            value_b = score_b[k]
            equal = equal and np.allclose(value_a, value_b, atol=A_TOL)
    return equal


def test_resample_multif0():
    times = np.array([0.00, 0.01, 0.02, 0.03])
    empty_times = np.array([])
    freqs = [
        np.array([200.0]),
        np.array([]),
        np.array([300.0, 400.0, 500.0]),
        np.array([300.0, 500.0]),
    ]
    empty_freqs = []
    target_times1 = times
    target_times2 = np.array([0.001, 0.002, 0.01, 0.029, 0.05])
    target_times3 = empty_times

    expected_freqs1 = freqs
    expected_freqs2 = [
        np.array([200.0]),
        np.array([200.0]),
        np.array([]),
        np.array([300.0, 500.0]),
        np.array([]),
    ]
    expected_freqs3 = empty_freqs
    expected_freqs4 = [np.array([])] * 4

    actual_freqs1 = mir_eval.multipitch.resample_multipitch(times, freqs, target_times1)
    actual_freqs2 = mir_eval.multipitch.resample_multipitch(times, freqs, target_times2)
    actual_freqs3 = mir_eval.multipitch.resample_multipitch(times, freqs, target_times3)
    actual_freqs4 = mir_eval.multipitch.resample_multipitch(
        empty_times, empty_freqs, target_times1
    )

    assert __frequencies_equal(actual_freqs1, expected_freqs1)
    assert __frequencies_equal(actual_freqs2, expected_freqs2)
    assert __frequencies_equal(actual_freqs3, expected_freqs3)
    assert __frequencies_equal(actual_freqs4, expected_freqs4)


def test_frequencies_to_midi():
    frequencies = [
        np.array([440.0]),
        np.array([]),
        np.array([220.0, 660.0, 512.0]),
        np.array([300.0, 512.0]),
    ]
    expected = [
        np.array([69.0]),
        np.array([]),
        np.array([57.0, 76.01955000865388, 71.623683437704088]),
        np.array([62.369507723654657, 71.623683437704088]),
    ]
    actual = mir_eval.multipitch.frequencies_to_midi(frequencies)
    assert __frequencies_equal(actual, expected)


def test_midi_to_chroma():
    midi_frequencies = [
        np.array([69.0]),
        np.array([]),
        np.array([57.0, 76.01955000865388, 71.623683437704088]),
        np.array([62.369507723654657, 71.623683437704088]),
    ]
    expected = [
        np.array([9.0]),
        np.array([]),
        np.array([9.0, 4.01955000865388, 11.623683437704088]),
        np.array([2.3695077236546567, 11.623683437704088]),
    ]
    actual = mir_eval.multipitch.midi_to_chroma(midi_frequencies)
    assert __frequencies_equal(actual, expected)


def test_compute_num_freqs():
    frequencies = [
        np.array([256.0]),
        np.array([]),
        np.array([362.03867196751236, 128.0, 512.0]),
        np.array([300.0, 512.0]),
    ]
    expected = np.array([1, 0, 3, 2])
    actual = mir_eval.multipitch.compute_num_freqs(frequencies)
    assert np.allclose(actual, expected, atol=A_TOL)


def test_compute_num_true_positives():
    ref_freqs = [
        np.array([96.0, 100.0]),
        np.array([]),
        np.array([81.0]),
        np.array([102.0, 84.0, 108.0]),
        np.array([98.745824285950576, 108.0]),
    ]
    est_freqs = [
        np.array([96.0]),
        np.array([]),
        np.array([200.0, 82.0]),
        np.array([102.0, 84.0, 108.0]),
        np.array([99.0, 108.0]),
    ]
    expected = np.array([1, 0, 0, 3, 2])
    actual = mir_eval.multipitch.compute_num_true_positives(ref_freqs, est_freqs)
    assert np.allclose(actual, expected, atol=A_TOL)

    ref_freqs_chroma = [
        np.array([0.0, 1.5]),
        np.array([]),
        np.array([2.0]),
        np.array([5.1, 6.0, 11.0]),
        np.array([11.9, 11.9]),
    ]
    est_freqs_chroma = [
        np.array([0.0]),
        np.array([]),
        np.array([5.0, 2.6]),
        np.array([5.1, 6.0, 11.0]),
        np.array([0.2, 11.5]),
    ]
    expected = np.array([1, 0, 0, 3, 2])
    actual = mir_eval.multipitch.compute_num_true_positives(
        ref_freqs_chroma, est_freqs_chroma, chroma=True
    )
    assert np.allclose(actual, expected, atol=A_TOL)


def test_accuracy_metrics():
    true_positives = np.array([1, 0, 0, 3, 2])
    n_ref = np.array([2, 0, 1, 3, 2])
    n_est = np.array([1, 0, 2, 3, 2])

    expected_precision = 0.75
    expected_recall = 0.75
    expected_accuracy = 0.6

    (
        actual_precision,
        actual_recall,
        actual_accuarcy,
    ) = mir_eval.multipitch.compute_accuracy(true_positives, n_ref, n_est)

    assert np.allclose(actual_precision, expected_precision, atol=A_TOL)
    assert np.allclose(actual_recall, expected_recall, atol=A_TOL)
    assert np.allclose(actual_accuarcy, expected_accuracy, atol=A_TOL)


def test_error_score_metrics():
    true_positives = np.array([1, 0, 0, 3, 2])
    n_ref = np.array([2, 0, 1, 3, 2])
    n_est = np.array([1, 0, 2, 3, 2])

    expected_esub = 0.125
    expected_emiss = 0.125
    expected_efa = 0.125
    expected_etot = 0.375

    (
        actual_esub,
        actual_emiss,
        actual_efa,
        actual_etot,
    ) = mir_eval.multipitch.compute_err_score(true_positives, n_ref, n_est)

    assert np.allclose(actual_esub, expected_esub, atol=A_TOL)
    assert np.allclose(actual_emiss, expected_emiss, atol=A_TOL)
    assert np.allclose(actual_efa, expected_efa, atol=A_TOL)
    assert np.allclose(actual_etot, expected_etot, atol=A_TOL)


def unit_test_metrics():
    empty_array = np.array([])
    ref_time = np.array([0.0, 0.1])
    ref_freqs = [np.array([201.0]), np.array([])]
    est_time = np.array([0.0, 0.1])
    est_freqs = [np.array([200.0]), np.array([])]

    # ref sizes unequal
    with pytest.raises(ValueError):
        mir_eval.multipitch.metrics(np.array([0.0]), ref_freqs, est_time, est_freqs)

    # est sizes unequal
    with pytest.raises(ValueError):
        mir_eval.multipitch.metrics(ref_time, ref_freqs, np.array([0.0]), est_freqs)

    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        # Test for warnings on empty values
        actual_score = mir_eval.multipitch.metrics(
            ref_time, [empty_array, empty_array], est_time, [empty_array, empty_array]
        )
        assert len(w) == 6
        assert issubclass(w[-1].category, UserWarning)
        assert str(w[-1].message) == "Reference frequencies are all empty."

    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        # Test for warnings on empty values
        # test all inputs empty
        mir_eval.multipitch.metrics(empty_array, [], empty_array, [])
        assert len(w) == 10
        assert issubclass(w[-1].category, UserWarning)
        assert str(w[-1].message) == "Reference frequencies are all empty."

    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        # reference empty
        mir_eval.multipitch.metrics(empty_array, [], est_time, est_freqs)
        assert len(w) == 9
        assert issubclass(w[-1].category, UserWarning)
        assert str(w[-1].message) == "Reference frequencies are all empty."

    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        # estimate empty
        mir_eval.multipitch.metrics(ref_time, ref_freqs, empty_array, [])
        assert len(w) == 5
        assert issubclass(w[-1].category, UserWarning)
        assert str(w[-1].message) == "Estimate frequencies are all empty."

        expected_score = (
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
        )
        assert np.allclose(actual_score, expected_score)

    # test perfect estimate
    ref_time = np.array([0.0, 0.1, 0.2])
    ref_freqs = [np.array([201.0]), np.array([]), np.array([300.5, 87.1])]
    actual_score = mir_eval.multipitch.metrics(ref_time, ref_freqs, ref_time, ref_freqs)

    expected_score = (
        1.0,
        1.0,
        1.0,
        0.0,
        0.0,
        0.0,
        0.0,
        1.0,
        1.0,
        1.0,
        0.0,
        0.0,
        0.0,
        0.0,
    )
    assert np.allclose(actual_score, expected_score)


@pytest.mark.parametrize("multipitch_data", file_sets, indirect=True)
def test_evaluate_regression(multipitch_data):
    ref_times, ref_freqs, est_times, est_freqs, expected_score = multipitch_data

    actual_score = mir_eval.multipitch.evaluate(
        ref_times, ref_freqs, est_times, est_freqs
    )

    assert __scores_equal(actual_score, expected_score)