1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
"""
unit tests for mir_eval.separation
load randomly generated source and estimated source signals and
the output from BSS_eval MATLAB implementation, make sure the results
from mir_eval numerically match.
"""
import numpy as np
import mir_eval
import glob
import pytest
import json
import os
A_TOL = 1e-2
REF_GLOB = "data/separation/ref*"
EST_GLOB = "data/separation/est*"
SCORES_GLOB = "data/separation/output*.json"
ref_files = sorted(glob.glob(REF_GLOB))
est_files = sorted(glob.glob(EST_GLOB))
sco_files = sorted(glob.glob(SCORES_GLOB))
assert len(ref_files) == len(est_files) == len(sco_files) > 0
file_sets = list(zip(ref_files, est_files, sco_files))
# Skip separation tests since deprecation
pytest.skip(allow_module_level=True)
@pytest.fixture
def separation_data(request):
ref_f, est_f, sco_f = request.param
with open(sco_f) as f:
expected_results = json.load(f)
expected_sources = expected_results["Sources"]
expected_frames = expected_results["Framewise"]
expected_images = expected_results["Images"]
expected_image_frames = expected_results["Images Framewise"]
# Load in example source separation data
ref_sources = __load_and_stack_wavs(ref_f)
est_sources = __load_and_stack_wavs(est_f)
# Test inference for single source passed as single dimensional array
if ref_sources.shape[0] == 1 and est_sources.shape[0] == 1:
ref_sources = ref_sources[0]
est_sources = est_sources[0]
return (
ref_sources,
est_sources,
expected_sources,
expected_frames,
expected_images,
expected_image_frames,
)
@pytest.fixture(autouse=True)
def seed_rng():
# Seed the RNG before each test run
np.random.seed(1999)
def __load_and_stack_wavs(directory):
"""Load all wavs in a directory and stack them vertically into a matrix"""
stacked_audio_data = []
global_fs = None
for f in sorted(glob.glob(os.path.join(directory, "*.wav"))):
audio_data, fs = mir_eval.io.load_wav(f)
assert global_fs is None or fs == global_fs
global_fs = fs
stacked_audio_data.append(audio_data)
return np.vstack(stacked_audio_data)
def __generate_multichannel(mono_sig, nchan=2, gain=1.0, reverse=False):
"""Turn a single channel (ie. mono) audio sample into a multichannel
(e.g. stereo)
Note: to achieve channels of silence pass gain=0
"""
# add the channels dimension
input_3d = np.atleast_3d(mono_sig)
# get the desired number of channels
stackin = [input_3d] * nchan
# apply the gain to the new channels
stackin[1:] = np.multiply(gain, stackin[1:])
if reverse:
# reverse the new channels
stackin[1:] = stackin[1:][:][::-1]
return np.dstack(stackin)
@pytest.mark.parametrize(
"metric",
[
mir_eval.separation.bss_eval_sources,
mir_eval.separation.bss_eval_sources_framewise,
mir_eval.separation.bss_eval_images,
mir_eval.separation.bss_eval_images_framewise,
],
)
def test_empty_input(metric):
if (
metric == mir_eval.separation.bss_eval_sources
or metric == mir_eval.separation.bss_eval_images
):
args = [np.array([]), np.array([])]
elif (
metric == mir_eval.separation.bss_eval_sources_framewise
or metric == mir_eval.separation.bss_eval_images_framewise
):
args = [np.array([]), np.array([]), 40, 20]
with pytest.warns(UserWarning, match="is empty") as record:
# First, test for a warning on empty audio data
metric(*args)
# And that the metric returns empty arrays
assert np.allclose(metric(*args), np.array([]))
# These warning counters are now offset by 1 because of the deprecation message
assert "reference_sources is empty" in str(record[1].message)
assert "estimated_sources is empty" in str(record[2].message)
@pytest.mark.parametrize(
"metric",
[
mir_eval.separation.bss_eval_sources,
mir_eval.separation.bss_eval_sources_framewise,
mir_eval.separation.bss_eval_images,
mir_eval.separation.bss_eval_images_framewise,
],
)
def test_silent_input(metric):
# Test for error when there is a silent reference/estimated source
if (
metric == mir_eval.separation.bss_eval_images
or metric == mir_eval.separation.bss_eval_images_framewise
):
ref_sources = np.vstack(
(np.zeros((1, 100, 2)), np.random.random_sample((2, 100, 2)))
)
est_sources = np.vstack(
(np.zeros((1, 100, 2)), np.random.random_sample((2, 100, 2)))
)
else:
ref_sources = np.vstack((np.zeros(100), np.random.random_sample((2, 100))))
est_sources = np.vstack((np.zeros(100), np.random.random_sample((2, 100))))
if (
metric == mir_eval.separation.bss_eval_sources
or metric == mir_eval.separation.bss_eval_images
):
with pytest.raises(ValueError):
metric(ref_sources[:2], est_sources[1:])
with pytest.raises(ValueError):
metric(ref_sources[1:], est_sources[:2])
elif (
metric == mir_eval.separation.bss_eval_sources_framewise
or metric == mir_eval.separation.bss_eval_images_framewise
):
with pytest.raises(ValueError):
metric(ref_sources[:2], est_sources[1:], 40, 20)
with pytest.raises(ValueError):
metric(ref_sources[1:], est_sources[:2], 40, 20)
@pytest.mark.parametrize(
"metric",
[
mir_eval.separation.bss_eval_sources_framewise,
mir_eval.separation.bss_eval_images_framewise,
],
)
def test_partial_silence(metric):
# Test for a full window of silence in reference/estimated source
if metric == mir_eval.separation.bss_eval_sources_framewise:
silence = np.zeros((2, 20))
sound = np.random.random_sample((2, 20))
elif metric == mir_eval.separation.bss_eval_images_framewise:
silence = np.zeros((2, 20, 2))
sound = np.random.random_sample((2, 20, 2))
# test with silence in the reference
results = metric(
np.concatenate((sound, silence, sound), axis=1),
np.concatenate((sound, sound, sound), axis=1),
window=10,
hop=10,
)
for measure in results:
for idx, source in enumerate(measure):
if idx < 2 or idx > 3:
assert not np.isnan(source[idx])
elif idx < 4:
assert np.isnan(source[idx])
else:
raise ValueError("Testing error in partial silence test")
# test with silence in the estimate
results = metric(
np.concatenate((sound, sound, sound), axis=1),
np.concatenate((sound, silence, sound), axis=1),
window=10,
hop=10,
)
for measure in results:
for idx, source in enumerate(measure):
if idx < 2 or idx > 3:
assert not np.isnan(source[idx])
elif idx < 4:
assert np.isnan(source[idx])
else:
raise ValueError("Testing error in partial silence test")
@pytest.mark.parametrize(
"metric",
[
mir_eval.separation.bss_eval_sources,
mir_eval.separation.bss_eval_sources_framewise,
mir_eval.separation.bss_eval_images,
mir_eval.separation.bss_eval_images_framewise,
],
)
def test_incompatible_shapes(metric):
# Test for error when shape is different
if (
metric == mir_eval.separation.bss_eval_images
or metric == mir_eval.separation.bss_eval_images_framewise
):
sources_4 = np.random.random_sample((4, 100, 2))
sources_3 = np.random.random_sample((3, 100, 2))
sources_4_chan = np.random.random_sample((4, 100, 3))
else:
sources_4 = np.random.random_sample((4, 100))
sources_3 = np.random.random_sample((3, 100))
if (
metric == mir_eval.separation.bss_eval_sources
or metric == mir_eval.separation.bss_eval_images
):
args1 = [sources_3, sources_4]
args2 = [sources_4, sources_3]
elif (
metric == mir_eval.separation.bss_eval_sources_framewise
or metric == mir_eval.separation.bss_eval_images_framewise
):
args1 = [sources_3, sources_4, 40, 20]
args2 = [sources_4, sources_3, 40, 20]
with pytest.raises(ValueError):
metric(*args1)
with pytest.raises(ValueError):
metric(*args2)
if (
metric == mir_eval.separation.bss_eval_images
or metric == mir_eval.separation.bss_eval_images_framewise
):
with pytest.raises(ValueError):
metric(sources_4, sources_4_chan)
@pytest.mark.parametrize(
"metric",
[
mir_eval.separation.bss_eval_sources,
mir_eval.separation.bss_eval_sources_framewise,
mir_eval.separation.bss_eval_images,
mir_eval.separation.bss_eval_images_framewise,
],
)
def test_too_many_sources(metric):
# Test for error when too many sources or references are provided
many_sources = np.random.random_sample((mir_eval.separation.MAX_SOURCES * 2, 400))
if metric == mir_eval.separation.bss_eval_sources:
with pytest.raises(ValueError):
metric(many_sources, many_sources)
elif metric == mir_eval.separation.bss_eval_sources_framewise:
with pytest.raises(ValueError):
metric(many_sources, many_sources, 40, 20)
@pytest.mark.xfail(raises=ValueError)
@pytest.mark.parametrize(
"metric",
[
mir_eval.separation.bss_eval_sources,
mir_eval.separation.bss_eval_sources_framewise,
mir_eval.separation.bss_eval_images,
mir_eval.separation.bss_eval_images_framewise,
],
)
def test_too_many_dimensions(metric):
# Test for detection of too high dimensioned images
ref_sources = np.random.random_sample((4, 100, 2, 3))
est_sources = np.random.random_sample((4, 100, 2, 3))
metric(ref_sources, est_sources)
@pytest.mark.parametrize(
"metric",
[mir_eval.separation.bss_eval_sources, mir_eval.separation.bss_eval_images],
)
def test_default_permutation(metric):
# Test for default permutation matrix when not computing permutation
if metric == mir_eval.separation.bss_eval_sources:
ref_sources = np.random.random_sample((4, 100))
est_sources = np.random.random_sample((4, 100))
elif metric == mir_eval.separation.bss_eval_images:
ref_sources = np.random.random_sample((4, 100, 2))
est_sources = np.random.random_sample((4, 100, 2))
results = metric(ref_sources, est_sources, compute_permutation=False)
assert np.array_equal(results[-1], np.asarray([0, 1, 2, 3]))
@pytest.mark.parametrize(
"metric",
[
mir_eval.separation.bss_eval_sources_framewise,
mir_eval.separation.bss_eval_images_framewise,
],
)
def test_framewise_small_window(metric):
# Test for invalid win/hop parameter detection
if metric == mir_eval.separation.bss_eval_sources_framewise:
ref_sources = np.random.random_sample((4, 100))
est_sources = np.random.random_sample((4, 100))
comparison_fcn = mir_eval.separation.bss_eval_sources
elif metric == mir_eval.separation.bss_eval_images_framewise:
ref_sources = np.random.random_sample((4, 100, 2))
est_sources = np.random.random_sample((4, 100, 2))
comparison_fcn = mir_eval.separation.bss_eval_images
# Test with window larger than source length
assert np.allclose(
np.squeeze(metric(ref_sources, est_sources, window=120, hop=20)),
comparison_fcn(ref_sources, est_sources, False),
atol=A_TOL,
)
# Test with hop larger than source length
assert np.allclose(
np.squeeze(metric(ref_sources, est_sources, window=20, hop=120)),
comparison_fcn(ref_sources, est_sources, False),
atol=A_TOL,
)
@pytest.mark.parametrize("separation_data", file_sets, indirect=True)
def test_separation_functions(separation_data):
(
ref_sources,
est_sources,
expected_sources,
expected_frames,
expected_images,
expected_image_frames,
) = separation_data
# Compute scores
scores = mir_eval.separation.evaluate(
ref_sources,
est_sources,
window=expected_frames["win"],
hop=expected_frames["hop"],
)
# Compare them
for key in scores:
if "Sources - " in key:
test_data_name = key.replace("Sources - ", "")
assert np.allclose(
scores[key], expected_sources[test_data_name], atol=A_TOL
)
elif "Sources Frames - " in key:
test_data_name = key.replace("Sources Frames - ", "")
assert np.allclose(scores[key], expected_frames[test_data_name], atol=A_TOL)
@pytest.mark.parametrize("separation_data", file_sets, indirect=True)
def test_separation_images(separation_data):
(
ref_sources,
est_sources,
expected_sources,
expected_frames,
expected_images,
expected_image_frames,
) = separation_data
# Compute scores with images
ref_images = __generate_multichannel(ref_sources, expected_images["nchan"])
est_images = __generate_multichannel(
est_sources,
expected_images["nchan"],
expected_images["gain"],
expected_images["reverse"],
)
image_scores = mir_eval.separation.evaluate(ref_images, est_images)
# Compare them
for key in image_scores:
if "Images - " in key:
test_data_name = key.replace("Images - ", "")
assert np.allclose(
image_scores[key], expected_images[test_data_name], atol=A_TOL
)
@pytest.mark.parametrize("separation_data", file_sets, indirect=True)
def test_separation_images_framewise(separation_data):
(
ref_sources,
est_sources,
expected_sources,
expected_frames,
expected_images,
expected_image_frames,
) = separation_data
# Compute scores with images framewise
ref_images = __generate_multichannel(ref_sources, expected_image_frames["nchan"])
est_images = __generate_multichannel(
est_sources,
expected_image_frames["nchan"],
expected_image_frames["gain"],
expected_image_frames["reverse"],
)
imageframe_scores = mir_eval.separation.evaluate(
ref_images,
est_images,
window=expected_image_frames["win"],
hop=expected_image_frames["hop"],
)
# Compare them
for key in imageframe_scores:
if "Images Frames - " in key:
test_data_name = key.replace("Images Frames - ", "")
assert np.allclose(
imageframe_scores[key],
expected_image_frames[test_data_name],
atol=A_TOL,
)
# Catch a few exceptions in the evaluate function
image_scores = mir_eval.separation.evaluate(ref_images, est_images)
# make sure sources is not being evaluated on images
assert "Sources - Source to Distortion" not in image_scores
|